
 

 

 

 
Project Number: FP7-611404 

 

D3.1 – Report on major classes of hard-
ware components 

Authors 

M. Kaliorakis, S. Tselonis, N. Foutris, D. Gizopoulos 

  

Version 1.7 – 5/8/2014 

Lead contractor: University of Athens 

Contact person: 

Dimitris Gizopoulos 
University of Athens 
Department of Informatics & Telecommunications 
Panepistimiopolis, Ilissia 15784, Athens (Greece) 
 

Tel.  +30 210 7275145 
Fax.  +30 210 7275214 
E-mail:  dgizop@di.uoa.gr 

Work package: WP3 

Affected tasks: T3.1 

 

Nature of deliverable1 R P D O 

Dissemination level2 PU PP RE CO 

                                                        

 
1 R: Report, P: Prototype, D: Demonstrator, O: Other 

2 PU: public, PP: Restricted to other programme participants (including the commission services), RE Restrict-
ed to a group specified by the consortium (including the Commission services), CO Confidential, only for members of 
the consortium (Including the Commission services) 



D3.1: Report on major classes of hardware components Page 2 of 31 

  

 

Version 1.7 – 5/8/2014 

COPYRIGHT 

© COPYRIGHT CLERECO Consortium consisting of: 

• Politecnico di Torino (Italy) – Short name: POLITO 
• National and Kapodistrian University of Athens (Greece) - Short name: UoA 
• Centre National de la Recherche Scientifique - Laboratoire d'Informatique, de Ro-

botique et de Microélectronique de Montpellier (France) - Short name: CNRS 
• Intel Corporation Iberia S.A. (Spain) - Short name: INTEL 
• Thales SA (France) - Short name: THALES 
• Yogitech s.p.a. (Italy) - Short name: YOGITECH 
• ABB (Norway) - Short name: ABB 
• Universitat Politècnica de Catalunya: UPC 

 

CONFIDENTIALITY NOTE 
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED, OR MODIFIED IN WHOLE OR IN 

PART FOR ANY PURPOSE WITHOUT WRITTEN PERMISSION FROM THE CLERECO 
CONSORTIUM. IN ADDITION TO SUCH WRITTEN PERMISSION TO COPY, REPRODUCE, OR 

MODIFY THIS DOCUMENT IN WHOLE OR PART, AN ACKNOWLEDGMENT OF THE 
AUTHORS OF THE DOCUMENT AND ALL APPLICABLE PORTIONS OF THE COPYRIGHT 

NOTICE MUST BE CLEARLY REFERENCED 

 

ALL RIGHTS RESERVED. 



D3.1: Report on major classes of hardware components Page 3 of 31 

  

 

Version 1.7 – 5/8/2014 

 INDEX 

 

COPYRIGHT .............................................................................................................. 2!
INDEX ........................................................................................................................ 3!
Scope of the document ......................................................................................... 4!
1. Hardware components reliability characterization ........................................ 5!

1.1. Faults in hardware components .............................................................................. 5!
1.2. The role of hardware components in the overall computing system reliability . 8!

2. Lists and characteristics of hardware components ...................................... 10!
2.1. Major hardware sub-systems: coarse granularity ............................................... 10!
2.2. Breakdown of major hardware components – finer granularity ........................ 13!

2.2.1. Microprocessors sub-components .................................................................. 13!
2.2.2. Accelerators sub-components ........................................................................ 15!
2.2.3. Memories sub-components ............................................................................. 17!
2.2.4. Peripherals sub-components ........................................................................... 19!
2.2.5. Interconnects sub-components ...................................................................... 20!

3. Hardware reliability and faults behavior classification ................................. 21!
4. Reliability-related characteristics of hardware components ....................... 21!
5. Public studies of hardware components reliability ....................................... 21!
6. Candidate components and tools for CLERECO ........................................... 22!
7. Conclusions ....................................................................................................... 25!
8. Acronyms .......................................................................................................... 26!

8.1. List of acronyms ....................................................................................................... 26!
9. References ......................................................................................................... 27!
 

 

 

 

 

 

 

 

 

 

 



D3.1: Report on major classes of hardware components Page 4 of 31 

  

 

Version 1.7 – 5/8/2014 

Scope of the document 

This document is an outcome of Task T3.1, “Major classes of hardware components in future 
computing systems”, described in the description of work (DoW) of CLERECO project under 
Work Package (WP) 3 (WP3 – “Hardware components reliability characterization”).  

As described in the DoW, in Task T3.1, the five major classes of hardware components (pro-
cessors, accelerators, memories, peripherals, interconnects) will be analyzed and decided in-
cluding all possible variants employed in the computing continuum. T3.1 is an important initial 
task of the CLERECO project because the usefulness of the system reliability model depends on 
the reliability characterization of all existing hardware components. The task also identifies po-
tential representative hardware components that are either publicly available or can be ac-
quired during the course of the project, and can be used for the validation of the system 
methodology and the demonstration of the project. 

This document aims to list typical components employed in the design of the hardware lay-
er of both embedded computing (EC) systems and high performance computing (HPC) sys-
tems. 
  



D3.1: Report on major classes of hardware components Page 5 of 31 

  

 

Version 1.7 – 5/8/2014 

1. Hardware components reliability characterization 

Forthcoming computing systems are expected to be highly unreliable, due to the combina-
tion of the extreme scaling process (moving towards 12nm manufacturing process nodes and 
beyond), the high design complexity (expanding design validation space), and a constant 
time-to-market demand (the interval between design phase and massive production remains 
roughly the same). Furthermore, single-event upsets (SEUs) from particle strikes, wear-out and 
aging behavior throughout the operational period of a system are expected to further reduce 
circuit reliability.  

For instance, the failure probability of six-transistor SRAM bit is 7.3e-09 for 32nm and 1.5e-06 
for 22nm, while the failure probability of a latch is 1.8e-44 for 32 nm and 5.5e-18 for 22nm [1]. 
These single-bit failure probabilities are expected to increase significantly in forthcoming manu-
facturing nodes; [1] roadmap reports an expectation for an SRAM failure probability of 5.5e-05 
in 16nm and 2.6e-04 in 12nm, while the corresponding probabilities for latches are 5.4e-10 in 
16nm and 3.6e-07 in 12nm. 

Reliability characterization estimates the vulnerability of design components on transient 
(soft), intermittent, and permanent (hard) faults and produces valuable output to the design 
teams to make critical decisions on the protection mechanisms. CLERECO project will build a 
framework for early and fast estimation of the system reliability to facilitate such important de-
sign decisions across the entire computing continuum.  

1.1. Faults in hardware components 

The reliability characterization of the hardware components in the CLERECO framework will 
consider all different types of failure mechanisms and corresponding fault models that can af-
fect their operation. WP3 will characterize the impact of various types of faults on the hard-
ware components of a system. These fault types are briefly presented in Table 1 below, and a 
detailed discussion can be found in [2], [3], and [4]. 

 Table 1: Fault types in hardware components3.  

Fault type Occurrence/endurance Sources 
Transient (soft) instant bit flip; disappears 

on next write 
 

radiation, thermal cycling, transis-
tor variability, erratic fluctuation of 
voltage  

Intermittent stuck at logic 0 or 1 for an 
amount of cycles; re-
peated at arbitrary peri-
ods 

timing violations (e.g. changes in 
frequency), manufacturing resi-
dues, ultra-thin oxide breakdown, 
wear-out 

Permanent 
(hard) 

permanently stuck at 
state 0 or 1 

manufacturing defects, materials 
wear-out and device aging (deg-
radation) 

                                                        

 
3 This is a top-level classification of faulty hardware behavior in terms of the duration and persistence of faults; a 

very large number of formal “fault models” have been defined in the literature and is used in the industry [2]. As tech-
nologies evolve, new fault models appear while older ones become obsolete and are neglected. However, the top-
level classification that we focus on remains valid for several decades and is expected to be so for the foreseeable 
future. 



D3.1: Report on major classes of hardware components Page 6 of 31 

  

 

Version 1.7 – 5/8/2014 

Several types of permanent faults are experienced in CMOS transistors [2], [3], [4]. In particu-
lar, permanent faults are classified as either extrinsic or intrinsic. The sources of extrinsic faults 
are various process-related manufacturing defects within silicon devices and their rate usually 
decreases over time. Intrinsic faults arise from wear-out and aging of materials and their rate 
typically increases with time. In general, any faulty behavior that does not change within time 
is called a permanent failure and the model used to describe it is called a permanent fault.  A 
permanent fault is often modeled by assigning a fixed value to a signal or memory element 
(this is the classic stuck-at-0 or stuck-at-1 fault model). 

Intermittent faults occur due to manufacturing residues, timing violations and ultra-thin oxide 
breakdown. The corresponding fault model at logic level is intermittent stuck-at, intermittent 
delay and intermittent indetermination [5], [6]. Intermittent faults are often manifested in bursts 
and are highly dependent on temperature, voltage and frequency variations4 [6]. A storage 
element or a logic gate that suffers from an intermittent fault is modeled by setting it to one 
(stuck-at-1) or to zero (stuck-at-0) for (random) selected timing intervals.   

Transistor variability, thermal cycling, cosmic rays, α-particles, humidity, vibrations, power 
supply fluctuations, etc. are common causes of transient (soft) faults on memory elements 
(called as Single-Event-Upsets, SEUs). Furthermore, as technology scales the sensitivity of logic 
elements to transient phenomena due to environmental and operating modes effects (called 
Single-Event-Transients, SETs) has also increased. Modeling transient faults can be done through 
flipping the content of a memory cell in a (randomly selected) clock cycle. 

Figure 1 visualizes the timing behavior of a permanent (a), an intermittent (b) and a transient 
(c and d) fault on a memory element. In particular, whenever a permanent faulty bit (a) is 
read from a design, its output will always be faulty. Figure 1-(b) shows that an intermittent fault 
is likely to be propagated erroneously. However, when a write operation is executed within se-
quential activations of an intermittent fault, then any subsequent read operation will read a 
correct bit value. Finally, Figure 1-(c) and Figure 1-(d) visualize the effect of a transient error. In 
Figure 1-(c) a single event upset (a transient fault) occurs between two consecutive write op-
erations. The latter write masks the fault from the design because it updates the stored data. 
Thus, the following read operation delivers a correct outcome. On the contrary, for the case 
depicted in Figure 1-(d) the faulty value is propagated to the output.    

                                                        

 
4 Deliverable D2.3 (“Definition of operating modes for future systems”) elaborated in the description of work 

(DoW) of CLERECO project under work package 2 (WP2) lists the typical operational modes of the Embedded Systems 
(ES), as well as General Purpose (GP) and the High Performance Computing (HPC) systems.  



D3.1: Report on major classes of hardware components Page 7 of 31 

  

 

Version 1.7 – 5/8/2014 

 

 

 

Figure 1: Permanent, intermittent, and transient fault behavior in time. 

!

permanent fault

write bit write bit

read bit

!"!

active intermittent fault active intermittent fault

read bitread bit

write bitwrite bit

read bit

time!

!

write bit write bit

SEU read bit

"

write bit

SEU read bit

time

(c) 

(d) 

(b) 

(a) 



D3.1: Report on major classes of hardware components Page 8 of 31 

  

 

Version 1.7 – 5/8/2014 

1.2. The role of hardware components in the overall 

computing system reliability 

The reliability characterization of the hardware components of a computing system, both in 
the embedded and in the high-performance computing domains, is a fundamental step in the 
overall reliability evaluation process of a system. CLERECO aims to evaluate the combined ef-
fect of the raw technology layer reliability and the masking that the hardware architecture 
and software layers add on top of the technology. Figure 2 shows this basic idea of CLERECO. 
The low-level raw error rates of the physical devices are masked in several ways as their effects 
propagate to the hardware and software layers of the system stack. It is the CLERECO’s goal to 
contribute with a full system reliability estimation methodology, which takes into consideration 
all these factors (technology, hardware and software) to provide an accurate estimation of 
the expected reliability of the system as early as possible during the design phase. 

 

Figure 2: CLERECO combines raw error rates with masking effects of the hardware and software layers 

to estimate system reliability. 

The System Vulnerability (or Reliability) Stack consists of three independent layers of abstrac-
tion that interact through well-defined interfaces (e.g., the ISA). The lower layer is associated 
with the primary elements of a circuit (e.g., transistors), and their vulnerability parameters are 
determined by the level of circuit’s integration. The vulnerability of the hardware layer depends 
on the specific microarchitectural (e.g., cache levels, predictors, renaming logic, etc.) or archi-
tectural (e.g., the implementation of each instruction of the ISA) attributes of a circuit. The top 
level consists of software programs and the operating system, while its vulnerability depends on 
their characteristics. The vulnerability stack quantifies fault masking effects within an individual 
layer by focusing on its interfaces: a fault that does not propagate to an upper layer’s inter-
face will be masked. Thus, all the layers vulnerability measurements have to be combined to 
measure the full system vulnerability. 

There are three kinds of masking observed in logic blocks [4], [7], [8], [9]: 

• Logical Masking: A fault will be masked if it affects a portion of the circuit that does 
not logically affect the outcome of the circuit. 

• Electrical masking: A fault can be electrically masked if the pulse created by the 
physical source of the fault (for example, a particle strike) attenuates before it 
reaches the forward latch. 

• Latch-window masking: A fault can be latch-window masked if the pulse created by 
the physical source of the fault does not reach the forward latch at the clock transi-
tion. 

As technology moves deeper into nanometer-scale technologies, the relative contribution 
of soft errors will continue to increase due to three factors [4]. First, as technology scaling rapid-
ly decreases, the critical charge of gates becomes smaller. Second, as the clock frequency 
continues to increase, fewer error pulses will attenuate, decreasing the effect of electrical 
masking. Third, as the number of pipeline stages in modern processors continues to increase, 
the latch-window masking phenomenon will decrease. 

Software

Hardware

Technology

System reliability
software masking

hardware masking

raw error rates



D3.1: Report on major classes of hardware components Page 9 of 31 

  

 

Version 1.7 – 5/8/2014 

Although a significant fraction of these low circuit-level faults are masked due to the afore-
mentioned physical phenomena, still a noticeable number of faults will propagate to the next 
layer of the system reliability stack, i.e., the hardware (or micro-architectural) layer. The effect 
of these faults can be catastrophic for the proper functionality of the system. 

There are several cases that a fault can be masked either in the microarchitectural or in the 
architectural sub-layer. Figure 3 summarizes all the masking effects on the system stack [4]. A 
fault can be masked in the microarchitecture sub-layer if it: 

• Affects data or status bits that are either idle or invalid. 
• Occurs in a bit associated with a mis-speculative execution such as branch predic-

tion or speculative memory disambiguation.  
• Occurs in dead bits. Dead bits are those bits that remain in valid state but they are 

not used by the processor. For instance, when an instruction is issued for the last time 
in the instruction queue, it may remain in valid state, waiting until the processor 
knows that no further reissue will be needed. 

A fault can be masked in the architectural sub-layer for the following reasons: 

• NOP instruction: The fault will not be masked only if it is placed in the field of opcode 
or destination register. 

• Performance-enhancing instructions: Operations that influence the performance but 
not the correct execution (e.g., data prefetch instructions, branch prediction instruc-
tions). 

• Dynamically dead instruction: First-level dynamically dead instructions (FDD) are 
those whose results are simply not read by any other instructions. Transitively dynami-
cally dead instructions (TDD) are those whose results are used only by FDD instruc-
tions or other TDD instructions. An instruction with multiple destination registers is dy-
namically dead only if all its destination registers are unused. 

• Logic masking: It arises when a logic or arithmetic operation masks a faulty bit. For in-
stance, when one input of a logic-OR operation equals to one, then a fault in the 
other input is logically masked. 

  

Figure 3: Masking effects on System Vulnerability Stack. 

Software

Hardware

Technologyraw error rates

hardware masking

software masking

m
ic

ro
a

rc
h

ite
c

tu
ra

l 
m

a
skin

g
 

a
rc

h
ite

c
tu

ra
l 

m
a

skin
g

 

sy
st

e
m

 re
lia

b
ili

ty Architecture

Microarchitecture

Microarchitectural masking of faults in:
- invalid or idle data or status bits,
- misspeculated execution bits,
- dead bits.

Architectural masking faults in:
- NOP instruction,
- performane-enhancing instruction,
- dynamically dead instruction,
- Logically masked fault.

Not masked microarchitectural level faults

Not masked circuit level faults

Not masked aarchitectural level faults



D3.1: Report on major classes of hardware components Page 10 of 31 

 

 

Version 1.7 – 5/8/2014 

2. Lists and characteristics of hardware components  

2.1. Major hardware sub-systems: coarse granularity 

The five major hardware sub-systems that will be evaluated in WP3 are shown in Table 2 (as 
described in the CLERECO DoW). Subsequently, each of these major hardware sub-systems is 
decomposed in its sub-components, which will be separately evaluated from the reliability 
point of view. 

Table 2: Major hardware sub-systems of computing systems. 

Hardware  
sub-system 

Comments  CLERECO  
Tasks 

Microprocessors Different RISC and CISC architectures are employed in Embed-
ded and High-Performance computing systems5 as well as DSP-
based architectures and microcontrollers. Single-core as well as 
multicore and multithreaded versions of the microprocessors 
are being employed depending on the types of execution 
parallelism that the system exploits. 

T3.2 and 
T3.7 

Accelerators Certain tasks of a computing system require special hardware 
components for their acceleration. Common hardware accel-
erators are: (a) SIMD (single-instruction multiple-data stream) 
accelerators; (b) Visual/Graphics Processing Units (VPUs/GPUs) 
either for graphics or for general-purpose processing of data-
parallel tasks; (c) cryptographic cores in security-sensitive ap-
plications. Accelerators can be either discrete components in 
a board or system, or can be integrated with the main CPU(s) 
of the system in “fused” organizations, such as the Accelerated 
(or Advanced) Processing Units, APUs. 

T3.3 and 
T3.7 

Memories Large parts of the hardware of computing systems are occu-
pied by storage modules. The classic volatile storage compo-
nents Static and Dynamic RAMs (SRAMs, DRAMs) are currently 
combined in embedded and high-performance computing 
systems with non-volatile counterparts (Flash memories, resistive 
memories of different technology such as PCMs, memristors, 
etc. as well as magnetic inter-component communication is 
realized through interconnection media that are classified as 
on-chip and off-chip. High-speed on-chip interconnects (bus-
based architectures or Network-on-Chip (NoC) architectures 
are widely employed. System-level interconnects deal with 
larger scale off-chip memories). SRAMs and DRAMs are at the 
higher layers of the memory hierarchy (register files, L1/L2/L3 
caches, main memory) of a computing system while the use of 
non-volatile memories is being exploited at different layers. 
Magnetic disk storage as well as optical storage is the lower 
level of a computing system hierarchy (these two technologies 

T3.4 and 
T3.7 

                                                        

 
5 More than 20 different microprocessor vendors have contributed throughout the history of computing with unique micropro-

cessor designs [42]. 



D3.1: Report on major classes of hardware components Page 11 of 31 

 

 

Version 1.7 – 5/8/2014 

are gradually becoming of less importance in some computing 
segments like embedded systems). 

Peripherals A diverse set of peripherals components complement the func-
tionality of a computing system at all domains. Peripheral 
components consist of a digital electronics part that communi-
cates with the system (the controller) and analog or mechani-
cal or other parts for its main function.  

T3.5 and 
T3.7 

Interconnects Inter-component communication is realized through intercon-
nection media that are classified as on-chip and off-chip. High-
speed on-chip interconnects (bus-based architectures or Net-
work-on-Chip (NoC) architectures) are widely employed. Sys-
tem-level interconnects deal with larger scale off-chip com-
munication. 

T3.6 and 
T3.7 

Figure 4 summarizes the hardware components of a computing system that will be consid-
ered from the reliability point of view in the CLERECO project.  

All these different components have a different contribution to the overall system reliability 
depending on their several reliability-related parameters discussed in subsequent sections of 
this document. However, certain top-level components among the five categories shown in 
Figure 4 are to some extent more important and critical for the overall system reliability; for the-
se components (and their sub-components) CLERECO devotes more effort on their reliability 
characterization. These prioritized top-level components are the Microprocessors, the Acceler-
ators, and the Memories. All three types of components are: 

• Heavily utilized during workload execution and thus faults in them are more likely to 
affect program execution (correctness, performance and power).  

• To a large extent similarly vulnerable to the different faults types (permanent, inter-
mittent and transient) because they are manufactured using the same underlying 
technologies: logic, SRAM, DRAM (and emerging technologies are investigated for 
all these three types of components). 

• More “stable” architectures that have been employed in the HPC and EC domains, 
while for peripherals and interconnects, the technological landscape changes more 
frequently. 

However this prioritization for Microprocessors, Accelerators and Memories does not mean 
that Peripherals and Interconnects will be neglected in CLERECO. There are certain system 
cases where they severely affect the system reliability and this impact should be taken into ac-
count in WP3 as well as the overall methodology in WP5.  



D3.1: Report on major classes of hardware components Page 12 of 31 

 

 

Version 1.7 – 5/8/2014 

 

Figure 4: Hardware components in a computing system. 

Table 3 lists indicative commercial products and types for the five major hardware classes 
(microprocessors, accelerators, memories, peripherals, interconnects) of Table 2 along with in-
dicative manufacturers. 

Table 3: The major hardware components of the computing continuum. 

Hardware com-
ponent 

Architectural variants or product types Manufacturer 

Microprocessors CISC, RISC, DSP, microcontrollers, mul-
ti-core, multi-threaded 

Intel, AMD, IBM, ARM 

Accelerators GPUs (NVIDIA’s Fermi/Kepler, AMD’s 
ATI Radeon), Coprocessors (Intel Xeon 
Phi, Special Purpose Processors i.e. 
crypto cores), FPGAs, Embedded ac-
celerators 

NVIDIA, AMD, ARM, 
Imagination Technol-
ogies 

Memories SRAM, DRAM, Flash memories, resistive 
memories of different technology 
such as PCMs, memristors, magnetic 
memories 

Kingston,  Transcend, 
Micron, HP 

Peripherals DMA Controllers, Interrupt Controllers, 
VGA/LCD Controllers, General Pur-
pose IOs (GPIO) & UARTs, PCI Express, 
USB, Bluetooth Controller, I2C, WNIC, 
SPI, 1-wire, Sensors, Actuators 

HP, Epson, Freescale, 
ST, Bosch, TI, Panason-
ic, Denso, Canon, An-
alog devices, In-
fineon, Honeywell, GE, 
Sony, Mentor, Multi-
comp, Avago Tech-
nologies, Bidgeflux, 
Cree, Sharp, Osram, 
Optek Technology 
 

Interconnects Infiniband, Gigabit Ethernet, Cray In-
terconnect, Myrinet, Fat Tree, AMBA, 
Wishbone, SouthBridge & NorthBridge, 
NoC 

Artemis, Sonics 

 

R
IS

C
Computing 

system

C
IS

C

…

SI
M

D

G
PU

C
ry

p
to

SR
A

M

D
R

A
M

N
o

n
-v

o
la

til
e

O
n

-c
h

ip

O
ff

-c
h

ip

…

… … …



D3.1: Report on major classes of hardware components Page 13 of 31 

 

 

Version 1.7 – 5/8/2014 

2.2. Breakdown of major hardware components – finer 

granularity 

The major hardware components listed in Table 2 consist of a large variety of internal sub-
components. Each sub-component contributes to the major component’s functionality as well 
as to its overall reliability. WP3 will separately evaluate the reliability of different sub-
components of the major computing system hardware components. 

2.2.1. Microprocessors sub-components 

In this subsection we discuss the different microprocessor sub-components. On-chip memo-
ries (such as cache memories, TLBs, FIFOs, etc.) are not included here; they are listed on the 
memories sub-components section that follows. Furthermore, this subsection summarizes infor-
mation regarding the purpose and usage of each sub-component as well as indicative range 
of their sizes. 

Table 4 summarizes the microprocessors sub-components and briefly describes their func-
tionality (some sizes information comes from the CPUs database in [42]).  

Table 4: List of microprocessor sub-components. 

Sub-components Usage Typical Size 
Register file The register file consists of regis-

ters. A register has its own id and 
data. Given the id of a register, 
its data may be accessed for 
read or write operation.  

8 to 32 registers (8-bit, 16-
bit, 32-bit, 64-bit) 

SRAM All micropro-
cessor archi-
tectures 

Program counter (PC) or 
instruction pointer (IP) 

The register that contains the 
address of the instruction being 
executed at the current time. 

Depends on the available 
memory size 

Latch All micropro-
cessor archi-
tectures 

Branch predictors Speculates the branch direction, 
depending on prior branches 
history.  

8K to 32K entries (1-bits, 2-
bits per entry) SRAM All micropro-

cessor archi-
tectures 

Branch Target Buffers Speculates the branch address, 
depending on prior branches 
history 

Set-associative or direct 
mapped array. Size can 
vary from 512 to 2048 en-
tries (each entry size de-
pends on the PC size) 

SRAM All micropro-
cessor archi-
tectures 

Return Address Stack Speculated the return address 
on function return 

8, 16, 32 entries 
Flip-flop All micro-

processor 
architec-
tures 

Buffer Queue temporally data (FIFO, or 
Circular buffer) 

8, 128 entries 
SRAM or 
Flip-flop 

All micro-
processor 
architec-
tures 

dicarlo
Text



D3.1: Report on major classes of hardware components Page 14 of 31 

 

 

Version 1.7 – 5/8/2014 

Microcode storage 
/Firmware 

Usually, microcode or firmware is 
a set of hardware-level instruc-
tions involved in the implemen-
tation of higher level machine 
code instructions in many pro-
cessors. 

Unknown; large range 

ROM,  
SRAM, 
flash 
memory 

All micropro-
cessor archi-
tectures 

Fetch buffer Queues the instruction fetched 
from the instruction cache.  

16, 32 entries 

SRAM All micropro-
cessor archi-
tectures 

Reorder buffer Stores the program order of the 
committed instructions. 

64, 128 entries 

SRAM All micropro-
cessor archi-
tectures 

Load buffer Stores data from memory. 32, 64 entries 

SRAM All micropro-
cessor archi-
tectures 

Store buffer Saves data send to memory. 32, 64 entries 
SRAM All micropro-

cessor archi-
tectures 

Instruction decoder Decode instructions and gener-
ates the control signals that fed 
to the pipeline. 

Unknown 

Logic All micropro-
cessor archi-
tectures 

Instruction scheduler Schedules instructions for execu-
tion from the functional units. 

Unknown 

Logic All micropro-
cessor archi-
tectures 

Issue queue An instruction queue holds de-
coded instructions until their op-
erands and an appropriate 
functional unit is available. 

8, 16 entries 
 
 

SRAM All micropro-
cessor archi-
tectures 

Arithmetic-Logic Unit6 
(ALU) 

The functional unit that executes 
integer arithmetic and logic op-
erations.  

Input/output width equals 
the word length of the 
processor Logic All micropro-

cessor archi-
tectures 

                                                        

 
6 Integer and real numbers functional components, such as the ALU and the FPU, are implemented by many dif-

ferent arithmetic algorithms. For instance, a carry-lookahead adder, or a carry-skip adder, or even a simple ripple-carry 
added can be integrated into an Arithmetic-Logic Unit. Reliability characterization of such functional hardware com-
ponents will consider as many as possible design alternatives of the functional units’ internal structure. 



D3.1: Report on major classes of hardware components Page 15 of 31 

 

 

Version 1.7 – 5/8/2014 

Floating-point Unit (FPU) The functional unit that executes 
floating-point operations. 

Single and double IEEE 754 
(or custom) precision Logic All micropro-

cessor archi-
tectures 

Prefetcher Identifies repeatable memory 
access patterns (either instruc-
tion, or data) in a workload and 
issues prefetch requests to the 
memory system. 

Set-associative or direct-
mapped array, 16 to 64 
entries 

SRAM All micropro-
cessor archi-
tectures 

 

 
 

2.2.2. Accelerators sub-components 

Accelerators (also termed often co-processors) play a very important role in modern com-
puting systems from the low-performance end (handheld and embedded devices) to the 
largest supercomputers. Their role is to off-load the main CPU (or CPUs) of the system from par-
ticular tasks for which they (the accelerators) have been designed specifically to make them 
more efficiently (faster usually). As current and forthcoming computing systems are expected 
to rely more heavily on the performance and power of accelerators, the overall system reliabil-
ity will also depend on their reliability. Therefore, CLERECO will emphasize significantly on the 
reliability characterization of important hardware accelerators across the computing continu-
um. 

Table 5 lists different accelerators of the computing continuum along with their sub-
components and their purpose and usage; typical range of their size is also provided. 

Table 5: List of accelerators sub-components. 

Sub-component  Usage Typical size 

V
a

rio
u

s 
 G

PU
s 

A
rc

h
ite

c
tu

re
 

Register file The register file consists of registers. A 
register has its own id and data. Giv-
en the id of a register, its data may 
be accessed for read or write opera-
tion. 

8K to 64K (32-bits per register) 

Instruction buffer Queues the decoded instructions until 
they get issued. 

Unknown 

Scoreboard The Scoreboard logic checks for 
Write-After-Write (WAW) and Read-
After-Write (RAW) data dependency 
hazards. 

Unknown 

Handlers of 
branch diver-
gence7 

The basic mechanism that enables 
independent branching in each 
thread, while maintaining SIMD exe-
cution, is hardware generated active 
masks that indicate which threads 
are active and which threads are not. 
Inactive threads still execute the op-
eration because of the SIMD control 
but the results of the computation are 

Unknown 

                                                        

 
7 The branch divergence occurs when threads within a single warp take different paths 



D3.1: Report on major classes of hardware components Page 16 of 31 

 

 

Version 1.7 – 5/8/2014 

masked and discarded. Moreover, 
the re-convergence Stack is another 
approach for handling branch diver-
gence. 
 
 

Processing Units The processing units are included in 
SIMD Processors or Multiprocessors. A 
SIMD processor or Multiprocessor is 
roughly equivalent to what NVIDIA 
calls a Streaming Multiprocessor (SM) 
or what AMD calls a Compute Unit 
(CU). There are several processing 
units for execution of integer opera-
tions, floating point (single or double 
precision) operations and transcen-
dental8 operations. Furthermore, 
there is a Load/Store Unit (LD/ST Unit) 
for handling memory accesses. How-
ever, some architectures are able to 
execute operations either in vector or 
scalar fashion. 
 

Geforce 8400 M GS 

CUDA Cores 
per 
SM 

CUDA Cores 

8 16 

Tesla K20c 

CUDA Cores 
per 
SM 

CUDA Cores 

192 2496 

Radeon HD 5870 

Stream Pro-
cessing Units 1600 

AMD Radeon™ R9 Series Graphics 

Stream Pro-
cessing Units up to 5632 

Operand Collec-
tor 

The operand collector is allocated in 
order to buffer the source operands 
of the instruction for all threads or 
work items in the current warp or 
wave-front. 

Unknown 

Scheduler of 
blocks or work 
groups 

A block or work groups scheduler 
works at chip level distributing thread 
blocks9 or work groups to the availa-
ble Streaming Multiprocessors or SIMD 
Units. 

1 to 4 

Scheduler of 
warps or wave-
fronts 

A warp or wave-front scheduler works 
at the Streaming Multiprocessor or 
SIMD unit level distributing warps of 32 
threads or wave-fronts of 64 work 

1 

                                                        

 
8 Operations such as reciprocal, square root, and log are characterized as transcendental operations. 

9 A cuda kernel consists of blocks of threads. The number of blocks and the number of threads that compose a 
kernel and a block respectively are user/programmer defined variables. 



D3.1: Report on major classes of hardware components Page 17 of 31 

 

 

Version 1.7 – 5/8/2014 

items to the execution units of 
Streaming Multiprocessor or SIMD unit 
respectively. 

In
te

l®
 M

IC
 

Vector Pro-
cessing Unit  

The VPU provides support for integer 
and floating-point operations. Fur-
thermore, the VPU employs an Ex-
tended Math Unit (EMU) for the exe-
cution of transcendental operations 
in a vector fashion with high band-
width. The VPU supports various 
memory access patterns. 

16 to 32 SP operations or 8 to 16 
DP operations per cycle (per core) 

Register File The register file consists of registers. A 
register has its own id and data. Giv-
en the id of a register, its data may 
be accessed for read or write opera-
tion. 

32 vector registers 

Mask Register Mask registers allow conditional exe-
cution over 16 elements in vector in-
structions and merge the results to the 
original destination. 

8 

C
ry

p
to

-c
o

re
s Single Core  

Crypto-processor 
A special purpose processor that ex-
ecutes cryptographic algorithms. 

Unknown 

Task Scheduler The Task Scheduler dispatches cryp-
tographic tasks on all single core 
crypto-processors. 

Unknown 

Key Scheduler The key scheduler takes as input the 
key and it calculates the subkeys. 

128 bits (key size) 

 

2.2.3. Memories sub-components 

On-chip and off-chip memory components are abundant in all types of computing systems 
and because of their fundamental characteristics and technology can severely affect the sys-
tem reliability (positively or negatively depending on the employed protection mechanisms). 

Table 6 summarizes the memory/storage components of the computing continuum and 
their sub-components, along with their usage and a typical range of their sizes. 

Table 6: List of memories sub-components 

Sub-component  Usage Typical size 
Main Memory Internal memory storage for data and 

instructions. 
0.5GB to 64GB 

Cache Memories  
(L1, L2, L3, L4) 

Temporal store of data and instructions. 
Cache memories are organized in hi-
erarchical structures, where each 
cache level has a different access time 
(depends on the distance of the 
cache memory from the core).  

8KB to 8GB 

Translation Lookaside 
Buffer (instruction, data) 

TLB is an on-chip SRAM memory struc-
ture that translates the virtual addresses 
(from the core), to physical addresses 
(to the memory system).  

128 to 512 entries 

Flash Non-volatile storage device that can 1GB to 32GB 



D3.1: Report on major classes of hardware components Page 18 of 31 

 

 

Version 1.7 – 5/8/2014 

be erased and reprogrammed 
Universal Memory Tech-
nologies  

Non-volatile memory technologies. Da-
ta store either through change the 
electrical resistance (i.e. resistive mem-
ories), or through altering the state of 
the material (i.e. phase-change memo-
ries).   

 

Shared/Local Memory 
(NVIDIA’s/AMD’s GPUs) 

The shared/local memory is a scratch-
pad memory that can be shared by 
threads/work items within a thread 
block/work group. The shared/local 
memory is not cached and is explicitly 
managed by the programmer. 

16KB to 64KB (per 
multiprocessor) 

Local/Private Memory 
(NVIDIA’s/AMD’s GPUs) 

Each thread/work item has its own lo-
cal/private memory. If a SIMT core runs 
out of resources (i.e. registers), a thread 
will use local/private memory for spill-
ing. The local/private memory resides in 
device memory, thus local/private 
memory accesses have high latency 
and low bandwidth like global memory 
accesses. Local/Private memory is a 
cached memory. 

16KB to 512KB 
(per thread) 

Texture Memory 
(NVIDIA’s GPUs) 

Texture memory is a read only memory 
that can improve performance and 
reduce memory traffic when read op-
erations have certain access patterns 
(spatial locality). Texture memory is a 
cached memory. 

6KB to 48KB (per 
multiprocessor) 

Constant Memory 
(NVIDIA’s/AMD’s GPUs) 

Constant memory holds data that will 
not change over a kernel's execution. 
In some cases, it is preferable to use 
constant memory rather than global 
memory, reducing the required 
memory bandwidth. Constant memory 
is a cached memory.  

64KB 

Global Memory 
(NVIDIA’s/AMD’s GPUs) 

The global memory is either readable 
or writable. The programmer can trans-
fer blocks of data from host to device 
and vice versa via global memory 
while all threads (even the threads of 
different kernels) have access to the 
same global memory. Global memory 
is a cached memory. 

1GB to 12GB 

Tag Directories 
 

Caches are kept coherent with each 
other by the tag directory that is dis-
tributed in all cores. 

 

Directory The shared data are stored in shared 
memory (i.e. the directory) to maintain 
the coherence between caches. 

 



D3.1: Report on major classes of hardware components Page 19 of 31 

 

 

Version 1.7 – 5/8/2014 

2.2.4. Peripherals sub-components 

Table 7 lists major peripheral components integrated on high-performance computing and 
embedded systems.  

 Table 7: List of peripherals sub-components 

Sub-component name Usage   
DMA Controller Direct Memory Access (DMA) provides to specific hardware com-

ponents access to the memory sub-system, independently from 
the CPU. 

PIC/APIC  A Programmable Interrupt Controller (PIC) functions as a manager 
in an interrupt driven system environment. In modern systems, Ad-
vanced Programmable Interrupt Controller (APIC) is a family of 
interrupt controllers that allows the implementation of multiproces-
sor systems.   

VGA/LCD The VGA/LCD controller handles the low-level details of communi-
cation with a monitor. 

UART A UART (Universal Asynchronous Receiver/Transmitter) controller is 
the interface to serial communications. 

PCI Express Programmable Communication Interface Express (PCIe) is a high-
speed interconnection device between CPU and a co-processor, 
an accelerator, and a hard disk.  

I2C Inter-Integrated Circuit is a multimaster serial single-ended bus 
used for attaching low-speed peripherals to a motherboard, em-
bedded system, cellphone, or other digital electronic devices. 

USB (1.X, 2.0, 3.0, 3.1) The USB controller handles the data transfers between a generic 
local bus and a Universal Serial Bus. The USB controller supports the 
connection between a host computer and a peripheral i.e. USB 
stick, mouse, keyboard, printer, etc.  

Bluetooth Bluetooth is a wireless technology standard for data transferring 
between short distances. A Bluetooth controller process the data 
exchanged through the wireless bus. 

WNIC The Wireless Network Interface Controller is a network interface 
controller that uses an antenna for communication through mi-
crowaves with a radio-based computer network. 

SPI The Serial Peripheral Interface is a synchronous serial data link, op-
erating in full duplex mode for communication in short distance 
via the master/slave model. i.e. embedded systems, sensors, and 
SD cards 

1-Wire The 1-Wire is a device communication bus system that provides 
low-speed data, signaling, and power over a single signal.  The 1-
Wire provides lower data rates but in longer range than IIC and it is 
used to communicate with small inexpensive devices of embed-
ded systems as digital thermometers and weather instruments.  

Sensors of different 
types 

Temperature, Acceleration, Gyrocopes, Magneto, light, digital 
compasses, inertial modules, pressure sensors, humidity sensors 
and microphones, EMC/noise detection, over/under voltage de-
tection, vision 

Actuators of different 
types 

LEDs, fans, switches, breakers, MOSFETs 

 



D3.1: Report on major classes of hardware components Page 20 of 31 

 

 

Version 1.7 – 5/8/2014 

2.2.5. Interconnects sub-components 

Table 8 lists major interconnection components (classified as on-chip and off-chip intercon-
nection networks, depending on whether they connect remote computing systems or compo-
nents within a computing system) integrated on high-performance computing and embedded 
systems 

Table 8: List of interconnects sub-components 

Sub-component name Usage   Location 
Infiniband The InfiniBand is an industry standard, 

channel-based, switched fabric architec-
ture, for server and storage connectivity. 
10 to 40 Gbps. 

Off-chip 

10 Gigabit Ethernet Ethernet is the major LAN technology as it 
is currently used for approximately 85 
percent of the world's LAN-connected 
PCs and workstations. Gigabit Ethernet 
allows Ethernet to scale up to 10 Gbps. 

Off-chip 

Wi-Fi A local area wireless technology that 
enables data transfers between remote 
devices (IEEE 802.11). 

Off-chip 

Gemini Interconnect Gemini interconnect can handle tens of 
millions of MPI messages per second. It is 
designed to complement current and 
future many-core processors. 

On-chip 

Myrinet Myrinet is a cost-effective, high-
performance, packet-communication 
and switching technology that is widely 
used to interconnect clusters of work-
stations, PCs, servers, blade servers, or 
single-board computers.   

Off-chip 

Fat Tree The Fat Tree adopts the three-layered 
hierarchical model. The link speeds get 
progressively higher as moving on higher 
levels of hierarchy in order to prevent 
overload. 

Off-chip 

Bi-directional Ring Bi-directional Ring Network Topology has 
each node in a network connected to 
two other nodes in the network, while the 
first and last nodes are connected. The 
messages from one node to another 
travel from originator to destination via 
intermediate nodes while the message 
flow is bidirectional. The intermediate 
nodes serve as active repeaters for mes-
sages intended for other nodes. 

On-chip 

Wishbone The Wishbone Bus is a specification for a 
portable interface between IP cores. It is 
recommended for interface between 
cores inside a chip (FPGA, ASIC, etc.) by 
OpenCores.org and it is public available. 

On-chip 

AMBA The ARM® AMBA® protocol is an open 
standard, on-chip interconnect specifi-

On-chip 



D3.1: Report on major classes of hardware components Page 21 of 31 

 

 

Version 1.7 – 5/8/2014 

cation for interfacing of functional blocks 
in a System-on-Chip (SoC). It facilitates 
the design process of implementations 
with large numbers of controllers and pe-
ripherals. Defining common interface 
standards for SoC modules makes design 
re-use feasible. 

Pair of Northbridge & 
Southbridge  

The southbridge interconnection logic 
handles the lower – slow- priority com-
munications of the motherboard. On 
contrary, the northbridge interconnec-
tion processes tasks with high perfor-
mance needs.  

On-chip 

3.  Hardware reliability and faults behavior 

classification 

A critical task of CLERECO project is the definition of the appropriate reliability metrics to 
provide an accurate, early and fast estimation of the components reliability. WP 2 is assigned 
the task of defining the most relevant metrics to be used in WP3, WP4 and WP5. An analysis of 
the available reliability metrics will be presented in CLERECO deliverable 3.2.1 (D3.2.1).  

4. Reliability-related characteristics of hardware 

components 

Accurate reliability estimation is a critical task in chip’s development cycle. However, relia-
bility evaluation of hardware components is a multi-dimensional problem, since it is affected 
from various design-specific and technology-related parameters. A thorough analysis of all re-
liability-related attributes of the hardware components will be presented in CLERECO delivera-
ble 3.2.1 (D3.2.1). 

5. Public studies of hardware components reliability 

A comprehensive review of the related efforts in the publicly available literature for the 
characterization of the hardware components of computing systems will be presented in 
CLERECO deliverable 3.2.1 (D3.2.1). For completeness of the current deliverable we include the 
references list here as well. 
 



D3.1: Report on major classes of hardware components Page 22 of 31 

 

 

Version 1.7 – 5/8/2014 

6. Candidate components and tools for CLERECO  

In general, there are two different categories of tools that could be used to study reliability 
of hardware components: microarchitectural simulators and RTL- simulators. RTL simulators have 
many details of circuit-level characteristics facilitating the accurate hardware reliability estima-
tion, but the low simulation throughput is a limiting factor. Hardware emulation, such as FPGA-
based RTL emulation, can accelerate circuit-level simulation. However, adequately verified 
designs are usually uploaded on a hardware emulator, since it is a labor-intensive task. There-
fore, design vulnerability measurements cannot be extracted early enough on the chip’s de-
velopment cycle. Furthermore, fault modeling on a hardware emulator, such as injecting faults 
on FPGA arrays, has inaccuracies, compared to the RTL simulator. On the other hand, microar-
chitectural simulators have the ability of executing faster simulations than RTL model simulators, 
but they suffer from some inaccuracies in their models that make them prone to overestima-
tions of hardware components’ vulnerability factors. In WP3, we aim to work on both catego-
ries of tools for as many components as possible, in an effort to correlate the behavior of the 
hardware component when faults are injected in different levels of abstraction. Table 9 illus-
trates the most suitable, mature and widely used simulators with their major characteristics that 
could be used by WP3 to study reliability at a more complete representation of the HPC and 
EC systems, while Table 10 presents corresponding RTL models that are publicly found and 
could be used to study the reliability of hardware components at lower levels, again both for 
the HPC and the EC systems.  

Table 9: Microarchitectural and System Simulators  

Simulator Characteristics 
Marssx86 
(http://marss86.org/~marss86/index.php/Home) 

• Multicore version of PTLsim10 
• x86 microprocessor model 
• Cycle accurate 
• Full system (QEMU emulator) 
• Interconnects (Split-phase on-chip bus, 

Switch) 
• Write-through, write-back multi-level 

caches 
• DRAM controller 

GPGPUsim 
(http://www.gpgpu-sim.org/) 

• NVIDIA GPUs simulator 

Gem5 
(http://www.gem5.org/Main_Page) 

• Supports Alpha, ARM, SPARC, MIPS, 
Power, x86 

• Full system (for Alpha, ARM, x86) 
• Multicore 

Gem5+GPGPU-sim 
(http://cpu-gpu-sim.ece.wisc.edu/) 

• v1 is based on Alpha ISA  
• v2 is based on ARM ISA, not stable 

FusionSim 
(http://www.fusionsim.ca/) 

• Combines PTLsim+GPGPUsim 

Multi2Sim 
(https://www.multi2sim.org/) 

• CPU/GPU simulator 
• Supports: x86, MIPS-32, ARM, AMD Ever-

                                                        

 
10 PTLsim has been extensively used for uarch research (performance, reliability) and is not supported anymore; 
Marssx86 is its successor with many additional features. 



D3.1: Report on major classes of hardware components Page 23 of 31 

 

 

Version 1.7 – 5/8/2014 

green GPU, AMD Southern Islands GPU, 
NVIDIA Fermi GPU11 (Full support for x86, 
AMD Evergreen and AMD Southern Is-
lands GPUs; the rest are in progress and 
not fully validated) 

SimNow 
(http://developer.amd.com/tools-and-
sdks/cpu-development/simnow-simulator/) 

• Functional simulator, not timing 
• Includes all x86 latest enhancements (no 

other includes all) 
ESESC 
(http://masc.cse.ucsc.edu/esesc/) 

• Enhancement of SESC; just released 
• ARM ISA 
• Model heterogeneous multicores 
• Detailed performance, power, and 

thermal models 
Simics 
(http://www.windriver.com/products/simics/) 

• Now a commercial product; university 
licenses available 

 

Table 10: RTL models (unless otherwise stated, these components are available at 

www.opencores.org)12 

Category RTL model Size 
Synthesizable 
CPU Cores 

OpenSPARC T1 
(http://www.oracle.com/technetwork/systems/opensp
arc/opensparc-t1-page-1444609.html) 

N/A 

CPU86 8088 FPGA IP Core 
(http://www.ht-
lab.com/freecores/cpu8086/cpu86.html) 

29,000 transistors 

8080 Compatible CPU 2082 LUTs 
AltOr32 - Alternative Lightweight OpenRisc CPU  N/A 
Amber ARM-compatible core 8732 LUTs 
AVR HP, Hyper Pipelined AVR Core N/A 
HC11 Compatible - Gator uProcessor  N/A 
Leightweight 8051 compatible CPU N/A 
Lightweight 8080 compatible core  204 LUTs 
Next 80186 processor  ~6000 LUTs 
NextZ80  ~2800 LUTs 
openMSP430  1650 LUTs 
OpenRISC 1000 N/A 
OpenRisc 1200 HP, Hyper Pipelined OR1200 Core  N/A 
Plasma – most MIPS I(TM) opcodes 8084 LUTs 
S1 Core N/A 
Small x86 subset core  N/A 
Storm Core (ARM7 compatible) N/A 
VHDL core of IC6821 N/A 

                                                        

 
11 Developers claim that other GPU simulators are not cycle accurate because they simulate NVDIA’s ptx ISA which is 
recompiled to native chip machine code. They also claim Multi2Sim is true cycle accurate for AMD GPUs. However, 
GPGPU-sim simulates also the native instruction set (so it is true cycle accurate) for the older architectures (before Fer-
mi).   

12 Hardware components whose RTL models are not public available have not been listed  



D3.1: Report on major classes of hardware components Page 24 of 31 

 

 

Version 1.7 – 5/8/2014 

Y80e - Z80/Z180 compatible processor extended by 
eZ80  instructions  

2557 LUTs 

Zet - The x86 (IA-32) open implementation  N/A 
LEON based on SPARC V8 
(www.gaisler.com) 

 

Arithmetic 
Cores 

Cellular Automata PRNG N/A 

Elliptic Curve Group 13,789 LUTs 

FPU N/A 

FPU Double VHDL N/A 

LZRW1 Compressor Core ~500 slices 

Communica-
tion 
Controllers 

10_100_1000 Mbps tri-mode Ethernet MAC 1839 LUTs 

8b10b Encoder/Decoder N/A 

a VHDL 16550 UART core N/A 

VHDL CAN Protocol Controller N/A 

DMX512 transceiver N/A 

Ethernet 10GE Low Latency MAC N/A 

Ethernet MAC 10/100 Mbps 28K gates or 2400 
flip-flops 

I2C controller core 230 LUTs 

IEEE 802.15.4 Core (physical layer) N/A 

sd card controller N/A 

Serial ATA Host Bus Adapter Core for Virtex 6 N/A 

SPI Flash controller N/A 

SPI Master/Slave Interface 41 slices 

UART to Bus 195 slices 

UART16750 378 slices 

USB 2.0 Function Core N/A 

Wishbone SD Card Controller N/A 

Crypto-cores AES 6503 LUTs 
Avalon AES ECB-Core (128, 192, 256 Bit) N/A 
DESL Core N/A 
DESLX Core  N/A 
DESX Core N/A 
SHA3 (KECCAK) 9895 LUTs 

DSP  
Cores 

filtro_FIR N/A 
Hilbert Transformer N/A 
Low-Pass IIR Filter N/A 
PID controller N/A 
Pipelined FFT/IFFT 256 points processor  N/A 

ECC Core Reed Solomon Decoder (204,188) 3397 slices 
Viterbi Decoder (AXI4-Stream compliant) N/A 
CF LDPC Decoder N/A 
Turbo Decoder N/A 
CF Interleaver N/A 

Memory  8/16/32 bit SDRAM Controller N/A 



D3.1: Report on major classes of hardware components Page 25 of 31 

 

 

Version 1.7 – 5/8/2014 

Cores BRSFmnCE 30 slices 

DDR3 SDRAM controller N/A 

DPSFmnCE 32 slices 

High Performance Dynamic Memory Controller N/A 

NoC  
Interconnects 

AHB to Wishbone Bridge N/A 

Async-SDM-NoC  N/A 

System-on-Chip Wire (SoCWire)  N/A 

System  
Controllers 
 

Memory Controller IP Core  N/A 

PCIe SG DMA controller N/A 

pci_mini 279 slices 

Testing / Veri-
fication 

PITbUtils N/A 

PRBS Signal Generator and Checker N/A 

Video  
Controller 

FastMemoryLink VGA framebuffer controller N/A 

Image warping/Texture mapping core  2150 slices 

JPEG Encoder  6135 ALUTs 

VGA/LCD Controller  N/A 

As mentioned in Section 2.1, as a starting point, WP3 studies the reliability of hardware com-
ponents of CISC microprocessors (commonly used in HPC systems), RISC microprocessors 
(commonly used in EC systems) and accelerators (commonly used in HPC systems) architec-
tures.  

The experimental vehicles will be mainly three state-of-the-art tools, Marssx86, Gem5 and 
GPGPU-sim simulators, respectively. Many studies have already been based on these tools. For 
instance, Marssx86 is considered to accurately model the memory hierarchy system of an out-
of-order x86_64 microprocessor [51]. In subsequent deliverables of WP3 the tools (simulators 
and models) that will be used for the characterization of all types of hardware components will 
be reported. The majority of tools and models will be derived from the lists of this deliverable. 

7. Conclusions 

Work package 3 (WP3) aims at analyzing the reliability of hardware components, such as 
microprocessor cores, accelerators, memory systems, peripherals and interconnection logic 
(and their major sub-components), throughout the whole computing spectrum. WP3 will con-
sider several design parameters, such as component complexity, area, power budget, re-
source utilization, error masking probability, timing constraints, to estimate the potential impact 
of hardware faults (transient, intermittent and permanent) to the overall system reliability. The 
output of WP3 will be a library of reliability-characterized components that will be employed 
alongside the results of WP4 into the overall “CLERECO statistical reliability estimation tool” of 
WP5 as well as the demonstration activity of CLERECO project during the validation and proof-
of-concept work package (WP6).  

�his report summarizes all major hardware component classes (processors, peripherals, ac-
celerators, memories and interconnects) along with their most representative sub-components 
within the computing continuum spectrum (ranging from High Performance Computing to Em-
bedded Systems). Furthermore, this deliverable lists the candidate hardware components, and 
tools which are either publicly available or can be acquired for the course of the project, and 
can be used for the validation of the system methodology and the demonstration of the pro-
ject. 



D3.1: Report on major classes of hardware components Page 26 of 31 

 

 

Version 1.7 – 5/8/2014 

8. Acronyms  

8.1. List of acronyms 

Table 11: List of Acronyms 

Acronym Full text 

ALU Arithmetic & Logic Unit 

AMBA Advanced Microcontroller Bus Architecture 

APIC Advanced Programmable Interrupt Controller 

CISC Complex Instruction Set Computer 

CPU Central Processing Unit 

CUDA Compute Unified Device Architecture 

DMA Direct Memory Access 

DSP Digital Signal Processing 

EC Embedded Computing 

ECC Error-correcting Code 

EMU Extended Math Unit  

FDD First-level Dynamically Dead (instructions) 

FPU Floating-Point Unit 

GPU Graphic Processing Unit 

HPC High Performance Computing 

I2C Inter-Integrated Circuit 

NoC Network-on-Chip 

PCM Phase-change Memory 

PCIe Peripheral Component Interconnect Express 

PIC Programmable Interrupt Controller 

RISC Reduced Instruction Set Computer 

ROM Read-Only Memory 

SIMD Single Instruction Multiple Data 

SIMT Single Instruction Multiple Threads 



D3.1: Report on major classes of hardware components Page 27 of 31 

 

 

Version 1.7 – 5/8/2014 

SPI Serial Peripheral Interface  

SRAM Static Random Access Memory 

TDD Transitively Dynamically Dead 

TLB Translation Look-aside Buffer  

UART Universal Asynchronous Receiver/Transmitter 

USB Universal Serial Bus 

VGA Video Graphic Array 

VPU Vector Processing Unit 

Wi-Fi Wireless Fidelity 

WNIC Wireless Network Interface Controller 

 
 

9. References 

[1] S.Nassif, N.Mehta, Y.Cao,"A Resilience Roadmap”, International Conference on Design 
Automation and Test in Europe (DATE), Dresden, Germany, March 8-12, 2010. 

[2] M.Abramovici, M.A.Breuer, A.D.Friedman, Digital Systems Testing and Testable Design, 
Wiley-IEEE Press, 1994. 

[3] M.Bushnell, V.Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits, Kluwer academic publishers, 2002. 

[4] S.Mukherjee, Architecture Design for Soft Errors, Morgan Kaufmann, 2008. 
[5] J.Gracia,L.Saiz, J.C.Baraza,D.Gil,P.Gil, "Analysis of the influence of intermittent faults in a 

microcontroller",Design and Diagnostics of Electronic Circuits and Systems (DDECS-11), 
Bratislava,Czech Republic,April 16-18, 2008.    

[6] C.Constantinescu,”Impact of Intermittent Faults on Nanocomputing Devices”, Interna-
tional Conference on Dependable Systems and Networks (DSN-37), Edinburgh, UK, June 
25-28, 2007. 

[7] F.Wang, Y. Xie, “An accurate and efficient model of electrical masking effect for soft er-
rors in combinational logic”, Silicon Errors in Logic – System Effects (SELSE-2), 2006. 

[8] Y.Lu, H.Zhou, “Retiming for Soft Error Minimization Under Error-Latching Window Con-
straints”, Design Automation & Test in Europe (DATE), 2013. 

[9] F.Wang, V.D.Agrawal, “Soft Error Rates with Inertial and Logical Masking”, IEEE Interna-
tional Conference on VLSI Design (VLSID), New-Delhi, India, January 5-9, 2009. 

[10] G.Reis, J.Chang, N.Vachharajani, R.Rangan, D.August, S.S.Mukherjee, “Design and Eval-
uation of Hybrid Fault-Detection Systems", ACM/IEEE International Symposium on Com-
puter Architecture (ISCA-32), Madison, Winsonsin, USA, June 4-8, 2005. 

[11] C.Weaver, J.Emer, S.S.Mukherjee, S.K.Reinhardt, “Techniques to Reduce the Soft Error 
Rate of High-Performane Microprocessor”, ACM/IEEE International Symposium on Com-
puter Architecture (ISCA-31), Munich, Germany, June 19-23, 2004. 

[12] N.J.Ge�rge, C.R.Elks, B.W.Johnson, J.Lach, “Transient Fault Models and AVF Estimation 
Revisited”, International Conference on Dependable Systems and Networks (DSN-40), 
Chicago, Illinois, USA, June 28 – July 1, 2010. 



D3.1: Report on major classes of hardware components Page 28 of 31 

 

 

Version 1.7 – 5/8/2014 

[13] S.S. Mukherjee, C.Weaver, J.Emer, S.K Reinhardt, T.Austin, “A Systematic Methodology to 
Compute the Architectural Vulnerability Factors for a High-Performance Microprocessor”, 
International Symposium on Microarchitecture (MICRO-36), San Diego, CA, USA, Decem-
ber 3-5, 2003. 

[14] V.Sridharan, D.R.Kaeli, “Using Hardware Vulnerability Factors to Enhance AVF Analysis”, 
ACM/IEEE International Symposium on Computer Architecture (ISCA-37), Saint-Malo, 
France, June 21-23, 2010. 

[15] V.Sridharan, D.R.Kaeli, “Eliminating microarchitectural dependency from architectural 
vulnerability”, IEEE International Symposium on High Performance Computer Architecture 
(HPCA-15), 2009. 

[16] V.Sridharan, D.R.Kaeli, “The Effect of Input Data on Program Vulnerability”, Workshop on 
Silicon Errors in Logic – System Effects (SELSE-5), Stanford University, March 24-25, 2009. 

[17] C.-K. Luk, R.Cohn, R.Muth, H.Patil, A.Klauser, G.Lowney, S.Wallace, V.J.Reddi, 
K.Hazelwood, “Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation”, Conference on Programming Language Design and Implementation (PLDI), Chi-
cago, Illinois, USA, June 11-15, 2005. 

[18] D.Hardy, I.Sideris, N.Ladas, Y.Sazeides, “The performance vulnerability of architectural 
and non-architectural arrays to permanent faults”, International Symposium on Microar-
chitecture (MICRO-45), Vancouver, BC, Canada, December 1-5, 2012. 

[19] N.Foutris, D.Gizopoulos, A.Chatzidimitriou, J.Kalamatianos, V.Sridharan, “Performance As-
sessment of Data Prefetchers in High  Error Rate Technologies”, 10th Workshop on Silicon 
Errors in Logic – System Effects (SELSE-10), Stanford University, April 2014. 

[20] N.Foutris, D.Gizopoulos, J.Kalamatianos, V.Sridharan, “Assessing the Impact of Hard Faults 
in Performance Components of Modern Microprocessors”, IEEE International Conference 
on Computer Design (ICCD 2013), Asheville, NC, USA, October 2013. 

[21] K.R.Walcott, G.Humphreys, S.Gurumurthi, “Dynamic Prediction of Architectural Vulnerabil-
ity from Microarchitectural State”, International Symposium on Computer Architecture 
(ISCA-34), San Diego, CA, USA, June 9-13, 2007. 

[22] A.Biswas, P.Racunas, R.Cheveresan, J.Emer, S.S. Mukherjee, R.Rangan, “Computing Ar-
chitectural Vulnerability Factors for Address-Based Structures”, International Symposium 
on Computer Architecture (ISCA-32), Madison, Wisconsin, USA, June 4-8, 2005. 

[23] W.Zhang, X.Fu, T.Li, J.Fortes, “An Analysis of Microarchitecture Vulnerability to Soft Errors 
on Simultaneous Multithreaded Architectures”, International Symposium on Performance 
Analysis of Systems and Software (ISPASS), San Jose, CA, USA, April 25-27, 2007. 

[24] N.J.Wang, A.Mahesri, S.J.Patel, “Examining ACE Analysis Reliability Estimates Using Fault-
Injection”, International Symposium on Computer Architecture (ISCA-34), San Diego, CA, 
USA, June 9-13, 2007. 

[25] N.Soundararajan, A.Parashar, A.Sivasubramaniam, “Mechanisms for Bounding Vulnerabil-
ities of Processor Structures”, International Symposium on Computer Architecture (ISCA-
34), San Diego, CA, USA, June 9-13, 2007.  

[26] P.Shivakumar, M.Kistler, S.W.Keckler, D.Burger, L.Alvisi, “Modeling the effect of technology 
trends on the soft error rate of combinational logic”, International Conference on De-
pendable Systems and Networks (DSN), Washington, DC, USA, 23-26 June, 2002. 

[27] S.Mirkhani, J.A.Abraham, “Fast Evaluation of Test Vector Sets Using a Simulation-based 
Statistical Metric”, VLSI Test Symposium (VTS-32), Napa, California, USA, 13-17 April, 2014. 

[28] J.Suh, M.Manoochehri, M.Annavaram, M.Dubois, “Soft Error Benchmarking of L2 Caches 
with PARMA”, International Conference on Measurement and Modeling Computer Sys-
tems (SIGMETRICS), San Jose, CA, USA, June 7-11, 2011. 

[29] H.Jeon, M.Wilkening, V.Sridharan, S.Gurumurthi, G.H.Loh, “Architectural Vulnerability 
Modeling and Analysis of Integrated Graphics Processors”, Workshop on Silicon Errors in 
Logic – System Effects (SELSE-9), Stanford University, March 26-27, 2013. 

[30] L.Duan, B.Li, L.Peng, “Versatile Prediction and Fast Estimation of Architectural Vulnerability 
Factor from Processor Performance Metrics”, International Symposium on High-



D3.1: Report on major classes of hardware components Page 29 of 31 

 

 

Version 1.7 – 5/8/2014 

Performance Computer Architecture (HPCA-15), Raleigh, North Carolina, February 14-18, 
2009. 

[31] A.Biswas, N.Soundararajan, S.S.Mukherjee, S.Gurumurthi, “Quantized AVF: A Means of 
Capturing Vulnerability Variations over Small Windows of Time”, Workshop on Silicon Errors 
in Logic – System Effects (SELSE-5), Stanford University, March 24-25, 2009. 

[32] R.Balasubramanian, K.Sankaralingam, “Understanding the Impact of Gate-Level Physical 
Reliability Effects on Whole Program Execution”, International Symposium on High-
Performance Computer Architecture (HPCA-20), Orlando, Florida, February 15-19, 2014. 

[33] G.Yalcin, O.S.Unsal, A.Cristal, M.Valero, “FIMSIM: A Fault Injection Infrastructure for Micro-
architectural Simulators”, International Conference on Computer Design (ICCD-29), Am-
hest, MA, USA, October 9-12, 2011. 

[34] M.-L. Li, P.Ramachandran, U.R.Karpuzcu, S. K. S. Hari, S.V.Adve, “Accurate Microarchitec-
ture-Level Fault Modeling for Studying Hardware Faults”, International Symposium on 
High-Performance Computer Architecture (HPCA-15), Raleigh, North Carolina, February 
14-18, 2009. 

[35] R.Shah, M.Choi, B.Jang, “Workload-Dependent Relative Fault Sensitivity and Error Contri-
bution Factor of GPU Onchip Memory Structures”, International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS-13), Samos, 
Greece, July 15-18, 2013. 

[36] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “Architecture-Level Soft Error Analysis: Examining the Lim-
its of Common Assumptions”, International Conference on Dependable Systems and 
Networks (DSN-37), Edinburgh, UK, June 25-28, 2007. 

[37] M.Rebaudengo, M.S.Reorda, M.Violante, “An Accurate Analysis of the Effects of Soft Er-
rors in the Instruction and Data Caches of a Pipelined Microprocessor”, International 
Conference on Design Automation and Test in Europe (DATE), Munich, Germany, March 
3-7, 2003. 

[38] J.Suh, M.Annavaram, M.Dubois, “MACAU: A Markov Model for Reliability Evaluations of 
Caches Under Single-bit and Multi-bit Upsets”, International Symposium on High-
Performance Computer Architecture (HPCA-18), New Orleans, Louisiana, February 25-29, 
2012. 

[39] J.Carretero, E.Herrero, M.Monchiero, T.Ramirez, X.Vera, “Capturing Vulnerability Varia-
tions for Register Files”, International Conference on Design Automation and Test in Eu-
rope (DATE), Grenoble, France, March 18-22, 2013. 

[40] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “SoftArch An Architecture-Level Tool for Modeling and 
Analyzing Soft-Errors”, International Conference on Dependable Systems and Networks 
(DSN), Yokohama, Japan, June 28-July 1, 2005. 

[41] L.Huang, Q.Xu, “AgeSim: A Simulation Framework for Evaluating the Lifetime Reliability of 
Processor-Based SoCs”, International Conference on Design Automation and Test in Eu-
rope (DATE), Dresden, Germany, March 8-12, 2010. 

[42] A.Danowitz, K.Kelley, J.Mao, J.P.Stevenson, M.Horowitz, “CPU DB: recording microproces-
sor history”, Communications of the ACM, vol. 55, no. 4, April 2012. (DB is online available 
on: http://cpudb.stanford.edu/). 

[43] S. Kim and K. Somani, "Soft Error Sensitivity Characterization for Microprocessor Dependa-
bility Enhancement Strategy," in Proceedings of International Conference on Dependa-
ble Systems and Networks (DSN), Washington, DC, USA, 23-26 June 2002. 

[44] N.J. Wang, J. Quek, T.M. Rafacz, and S.J. Patel, "Characterizing the Effects of Transient 
Faults on a High-Performance Processor Pipeline," in Proceedings of International Confer-
ence on Dependable Systems and Networks(DSN), Florence, Italy, June 28 - July 1, 2004 

[45] G. Saggese, N.J. Wang, Z. Kalbarczyk, S.J. Patel, and R. Iyer, "An Experimental Study of 
Soft Errors in Microprocessors," IEEE Micro, vol. 25, no. 6, pp. 30-39, Nov-Dec 2005. 

[46] N.George, C. Elks, B. Johnson, J. Lach, "Transient Fault Models and AVF estimation revisit-
ed", in Proceedings of International Conference on Dependable Systems and Networks 
(DSN), Chicago, Illinois, USA, 28 June - July 1, 2010. 



D3.1: Report on major classes of hardware components Page 30 of 31 

 

 

Version 1.7 – 5/8/2014 

[47] M.Maniatakos, N.Karimi, C.Tirumurti, A.Jas, Y.Makris,"Instruction-Level Impact Analysis of 
Low-Level Faults in a Modern Microprocessor Controller". 

[48] P.Ramachandrant, P. Kudvatt, J. Kellingtont, J. Schumannt, P. Sandat, "Statistical Fault 
Injection", International Conference on Dependable Systems & Networks(DSN): Anchor-
age, Alaska, June 24-27, 2008. 

[49] B.Wibovo, A.Agrawal, J.Tuck, “Toward a Cross-Layer Approach for Dynamic Vulnerability 
Estimation”, Silicon Errors in Logic – System Effects (SELSE-10), Stanford University, April 1-2, 
2014. 

[50] A.A.Nair, S.Eyerman, L.Eeckhout, L.K.John, “A first-Order Mechanistic Model for Architec-
tural Vulnerability Factor”, International Symposium on Computer Architecture (ISCA-39), 
Portland, OR, USA, June 19-23, 2012. 

[51] J.Stevens, P.Tschirhart, M-T.Chang, I.Bhati, P.Enns, J.Greensky, Z.Cristi, S-L.Lu, B.Jacob, “An 
integrated simulation infrastructure for the entire memory hierarchy: cache, dram, non-
volatile memory, and disk”, Intel Technology Journal, vol.17, no 1, 2013. 

[52] J.J.Cook, C.Zilles, “A Characterization of Instruction-level Error Derating and its Implica-
tions for Error Detection”, International Conference on Dependable Systems & Networks 
(DSN): Anchorage, Alaska, June 24-27, 2008. 

[53] D.Hardy, M.Kleanthous, I.Sidoros, A.G.Saidi, E.Ozer, Y.Sazeides, “An Analytical Framework 
for Estimating TCO and Exploring Data Center Design Space”, International Symposium 
on Performance Analysis of Systems and Software (ISPASS), Austin, TX, USA, April 21-23, 
2013. 

[54] F.A.Bower, D.Hower, M.Yilmaz, D.J.Sorin, S.Ozev, “Applying Architectural Vulnerability 
Analysis to Hard Faults in the Microprocessor”, International Conference on Measurement 
and Modeling Computer Systems (SIGMETRICS), Saint Malo, France, June 26-30, 2006. 

[55] Y.Luo, S.Govindan, B.Sharma, M.Santaniello, J.Meza, A.Kansal, J.Liu, B.Khessib, K.Vaid, 
O.Mutlu, “Characterizing Application Memory Error Vulnerability to Optimize Datacenter 
Cost via Heterogeneous-Reliability Memory”, International Conference on Dependable 
Systems & Networks (DSN): Atlanta, Georgia, USA, June 23-26, 2014. 

[56] S.Mirkhani, S.Mitra, C-Y.Cher, J.A.Abraham, “Effective Statistical Estimation of Soft Error 
Vulnerability for Complex Designs”, 10th Workshop on Silicon Errors in Logic – System Ef-
fects (SELSE-10), Stanford University, April 2014. 

[57] S.K.S.Hari, R.Venkatagiri, S.V.Adve, H.Naeimi, “GangES Gang Error Simulation for Hard-
ware Resiliency Evaluation”, ACM/IEEE International Symposium on Computer Architec-
ture (ISCA-41), Minneapolis, MN, USA, June 14-18, 2014. 

[58] K.Parasyris, G.Tziantzoulis, C.Antonopoulos, N.Bellas, “GemFI A Fault Injection Tool for 
Studying the Behavior of Applications on Unreliable Substrates”, International Conference 
on Dependable Systems & Networks (DSN): Atlanta, Georgia, USA, June 23-26, 2014. 

[59] G.Gupta, S.Sridharan, G.S.Sohi, “Globally Precise-restartable Execution of Parallel Pro-
grams”, Conference on Programming Language Design and Implementation (PLDI-35), 
Edinburgh, UK, June 9-11 2014. 

[60] B.Fang, K.Pattabiraman, M.Ripeanu, S.Gurumurthi, “GPU-Qin A Methodology for Evaluat-
ing the Error Resilience of GPGPU Applications”, International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), Monterey, CA, USA, March 23-25, 2014. 

[61] S.Pan, Y.Hu, X.Li, “IVF: Characterizing the Vulnerability of Microprocessor Structures to In-
termittent Faults”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, 
no. 5, May 2012. 

[62] A.Thomas, K.Pattabiraman, “LLFI: An Intermediate Code Level Fault Injector For Soft 
Computing Applications”, Workshop on Silicon Errors in Logic – System Effects (SELSE-9), 
Stanford University, March 26-27, 2013. 

[63] S.K.S.Hari, M-L.Pi, P.Ramachandran, B.Choi, S.V.Adve, “mSWAT: Low-Cost Hardware Fault 
Detection and Diagnosis for Multicore Systems”, International Symposium on Microarchi-
tecture (MICRO-42), New York, New York, USA, December 12-16, 2009. 



D3.1: Report on major classes of hardware components Page 31 of 31 

 

 

Version 1.7 – 5/8/2014 

[64] J.Wei, A. Thomas, G.Li, K.Pattabiraman, “Quantifying the Accuracy of High-Level Fault 
Injection Techniques for Hardware Faults”, International Conference on Dependable Sys-
tems & Networks (DSN): Atlanta, Georgia, USA, June 23-26, 2014. 

[65] H.Cho, S.Mirkhani, C-Y.Cher, J.A.Abraham, S.Mitra, “Quantitative Evaluation of Soft Error 
Injection Techniques for Robust System Design”, Design & Automation Conference (DAC-
50), Austin, TX, USA, May 29-June 7, 2013. 

[66] S.Sudhakrishnan, R.Dicochea, J.Renau, “Releasing Efficient Beta Cores to Market Early”, 
International Symposium on Computer Architecture (ISCA-38), San Jose, CA, USA, June 4-
8, 2011. 

[67] S.Nomura, M.D.Sinclair, C-H.Ho, V. Govindaraju, M.Kruijf, K. Sankaralingam, “Sampling + 
DMR Practical and Low-overhead Permanent Fault Detection”, International Symposium 
on Computer Architecture (ISCA-38), San Jose, CA, USA, June 4-8, 2011. 

[68] X.Fu, T.Li, J.A.B.Fortes, “Sim-SODA: A Unified Framework for Architectural Level Software 
Reliability Analysis”, Workshop on Modeling, Benchmarking and Simulation (MoBS, Held in 
conjunction with International Symposium on Computer Architecture), June 18, 2006. 

[69] J.Tan, N. Goswami, T.Li, X.Fu, “Analyzing Soft-Error Vulnerability on GPGPU Microarchitec-
ture”, IEEE International Symposium on Workload Characterization (IISWC), Austin, TX, 
USA, November 6-8, 2011. 

[70] A.Gutierrez, J.Pusdesris, R.G. Dreslinski, T.Mudge, C. Sudanthi, C.D.Emmons, “Sources of 
Error in Full-System Simulation”, International Symposium on Performance Analysis of Sys-
tems and Software (ISPASS), Monterey, CA, USA, March 23-25, 2014. 


