
D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 1 of 36 

 

 

 

Version 1.1 – 31/10/2014 

 

 

 
Project Number: FP7-611404 

 

D5.1.1 - Input parameters and system modeling formal rep-
resentation (preliminary) 

Authors1 

A. Savino (POLITO), S. Di Carlo (POLITO), G. Di Natale (CNRS), A. Bosio (CNRS), T. Loekstad (ABB), M. 
Kalirorakis (UoA), S. Tselonis (UoA), N. Foutris (UoA), D. Gizopoulos (UoA), G. Politano (POLITO), M. Pip-

ponzi (YOGITECH) 

Version 1.1 – 31/10/2014 

Lead contractor: Politecnico di Torino 

Contact person: 

Alessandro Savino 
Control and Computer Engineering Dep. 
Politecnico di Torino, C.so Duca degli Abruzzi, 24 
I-10129 Torino TO Italy 

E-mail: alessandro.savino@polito.it 

Involved partners2: POLITO, UoA, CNRS, ABB, 
YOGITECH 

Work package: WP5 

Affected tasks: T5.1 

 

Nature of deliverable3 R P D O 

Dissemination level4 PU PP RE CO 

                                                        

 
1 Authors listed here only identify persons that contributed to the writing of the document.  
2 List of partners that contributed to the activities described in this deliverable. 
3 R: Report, P: Prototype, D: Demonstrator, O: Other 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 2 of 36 

 

Version 1.1 – 31/10/2014 

COPYRIGHT 

© COPYRIGHT CLERECO Consortium consisting of: 

• Politecnico di Torino (Italy) – Short name: POLITO 
• National and Kapodistrian University of Athens (Greece) - Short name: UoA 
• Centre National de la Recherche Scientifique - Laboratoire d'Informatique, de Ro-

botique et de Microélectronique de Montpellier (France) - Short name: CNRS 
• Intel Corporation Iberia S.A. (Spain) - Short name: INTEL 
• Thales SA (France) - Short name: THALES 
• Yogitech s.p.a. (Italy) - Short name: YOGITECH 
• ABB (Norway) - Short name: ABB 
• Università politecnica della Catalunya (Spain) – Short name: UPC 

 

CONFIDENTIALITY NOTE 
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED, OR MODIFIED IN WHOLE OR IN 

PART FOR ANY PURPOSE WITHOUT WRITTEN PERMISSION FROM THE CLERECO 
CONSORTIUM. IN ADDITION TO SUCH WRITTEN PERMISSION TO COPY, REPRODUCE, OR 

MODIFY THIS DOCUMENT IN WHOLE OR PART, AN ACKNOWLEDGMENT OF THE 
AUTHORS OF THE DOCUMENT AND ALL APPLICABLE PORTIONS OF THE COPYRIGHT 

NOTICE MUST BE CLEARLY REFERENCED 

ALL RIGHTS RESERVED. 

                                                                                                                                                                                

 
4 PU: public, PP: Restricted to other programme participants (including the commission services), RE Restrict-

ed to a group specified by the consortium (including the Commission services), CO Confidential, only for members of the consor-
tium (Including the Commission services) 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 3 of 36 

 

Version 1.1 – 31/10/2014 

 INDEX 

 

COPYRIGHT .............................................................................................................. 2	
  

INDEX ........................................................................................................................ 3	
  

Scope of the document ......................................................................................... 4	
  

1. Introduction ......................................................................................................... 6	
  

2. Taxonomy of Components Reliability Parameters .......................................... 7	
  
2.1. Hardware Components Description ........................................................................ 7	
  
2.2. Software Components Description ........................................................................ 11	
  

3. Description Language ...................................................................................... 16	
  
3.1. XML ........................................................................................................................... 16	
  
3.2. UML ........................................................................................................................... 17	
  
3.3. RBD ........................................................................................................................... 17	
  
3.4. RIIF ............................................................................................................................ 18	
  
3.5. Language comparison ........................................................................................... 18	
  

4. CLERECO Extended RIIF language .................................................................. 20	
  
4.1. CERIIF Templates ..................................................................................................... 21	
  
4.2. CERIIF Characterization of Components .............................................................. 23	
  

5. Conclusion ......................................................................................................... 28	
  

6. Additional material on CLERECO SVN Repository ......................................... 29	
  

7. Bibliography ...................................................................................................... 30	
  

8. Appendix ........................................................................................................... 32	
  
8.1. The CLERECO RIIF Templates .................................................................................. 32	
  
8.2. CLERECO Hardware Component Examples ......................................................... 33	
  
8.3. CLERECO Software Component Examples ........................................................... 35	
  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 4 of 36 

Version 1.1 – 31/10/2014 

Scope of the document 

This document is an outcome of task T5.1, “Input parameters representation and standardi-
zation”, elaborated in the Description of Work (DoW) of the CLERECO project under Work 
Package 5 (WP5).  

Figure 1 depicts graphically the goal of this deliverable, its main results, the inputs it uses and 
which work packages will use its outputs.  

 

    

Figure 1 - Inputs and Outputs of this Deliverable 

 

D5.1.1 has two main goals and outcomes:  

1. The first goal is to provide the initial taxonomy of parameters associated with the 
components of a system that may potentially impact the reliability of the system. 
With the term component we consider both the hardware and the software com-
ponents of the system, as described in Deliverable D3.1 (Report on major classes of 
hardware components) and Deliverable D4.1 (Software Impact on system reliability: 
metrics and models). Parameters considered in this document also include the fail-
ure mechanisms that may affect the selected components.  

2. The second goal is to introduce a formal language for the representation of these 
parameters. This is required to enable their use within an Electronic Design Automa-
tion (EDA) tool. This represents an important step toward the implementation of a 
software framework for early reliability evaluation of complex systems.  

 

A library of characterized HW and SW components described using the CERIIF language de-
fined in this deliverable is available as additional material to this document (see Table 11). 

The document is organized in the following sections: 
• Introduction. This section shortly overviews background research on reliability parame-

ters and standardization of reliability related information. 

Deliverable D5.1.1 

From the preliminary analyses performed in 
WP2,3,4 it defines a formal language to describe 
HW/SW components from a reliability standpoint.  

IN 

WP2 

WP3 

WP4 

WP5 

WP6 

D2.1, D2.2.1, 
D2.3, D2.4.1 

D3.1, D3.2.1, 
D3.3.1 

D4.1, D4.3.1 

•  Technology Information 
•  Failure mechanisms 
•  Operation modes 
•  Reliability metrics 

•  Classes of HW 
component 

•  Characterized HW 
components 

•  Characterized SW 
components  
(D4.3.1,D4.1) 

Results 

CERIIF Parser  
(under development) 

CERIIF Language  
Definition (complete) 

OUT 

WP2 

WP3 

WP4 

WP5 

WP6 

HW/SW components 
characterized using CERIIF files 

CLERECO tools process 
information in CERIIF format 

Taxonomy of 
reliability related 
parameters 
(complete) 

Tool 

Demo 

System 

Text 

Code 

Legend 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 5 of 36 

  

 

Version 1.1 – 31/10/2014 

• Taxonomy of Components Reliability Parameters. This section analyzes both hardware 
and software components to identify an initial set of useful parameters for their reliability 
characterization. 

• Description Language. This section analyzes different choices for the identification of a 
language able to efficiently describe the system’s components as expected from the 
previous section. It eventually identifies the target choice for the CLERECO project. 

• CLERECO Extended RIIF Language. This section introduces the CLERECO Extended RIIF 
language that will be used in the project for component’s description. It focuses on the 
language extensions that are introduced by CLERECO to the standard RIIF language. 
The extensions are useful to be able to describe all relevant parameters identified in this 
deliverable. The language overview is achieved by a set of relevant examples. 

• Conclusions. In this final section, we summarize the work done for the deliverable and 
we set a roadmap to reach a full reliability-oriented system description. 

 
 
  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 6 of 36 

  

 

Version 1.1 – 31/10/2014 

1. Introduction 

Nowadays, information about the reliability of an IC is essentially confined to the lower levels 
of the system stack (e.g., technology and circuit level). At this level, a deep understanding of 
the technology and of the implemented reliability mitigation techniques do exist. However, 
exposing this information to the higher levels of the system stack (e.g., architectural level, soft-
ware level and system level) introduces several major challenges. Among them the most chal-
lenging problem is to properly abstract information about reliability issues that was gained at 
the technology level. One key aspect is to define the correct interface to propagate reliability 
information up in the design abstraction levels. This interface must be designed in such a way 
that important knowledge on reliability can be linked through levels. 

Focusing on the way reliability related information could be described, we observed an in-
creased interest, within the research community, in the definition and standardization of relia-
bility oriented description languages [5]. This is an important task for the CLERECO project, 
where CLERECO is going to deliver important contributions. Representing reliability related in-
formation in a proper way is essential to distribute the reliability analysis throughout the design 
flow of a system and to propagate information across different levels of the system’s hierarchy.  

Older publications focus on system’s modeling for reliability analysis at the hardware layer 
[1][2][3]. A system is mainly modeled for simulation purposes in which the occurrence of a fault 
is emulated and its propagation within the system is analyzed. Relevant parameters that must 
be modeled in this scenario are limited to the fault properties  (i.e., time, feasible locations, 
etc.), and the final reliability metrics computed based on the simulation results. 

Some of the first attempts to model reliability information are reported in [6][7][8]. Even if 
these papers are still not working in a cross-layer scenario, the main idea is to split the system 
into a set of interrelated blocks that share information about the reliability of individual compo-
nents. While representing a first improvement, the main drawback of these approaches is that 
they oversimplify the description of a system limiting reliability related information to simple fault 
rates. 

A main step toward modeling reliability information of a system’s component has been re-
cently proposed in [4] through the Reliability Information Interchange Format (RIIF). Although 
limited to hardware components, RIIF has a set of primary characteristics that fit what is need-
ed in CLERECO for the reliability-related description of a system’s component.  

In this deliverable we aim at identifying a reliability description language able to: 

• Describe how specific failure modes are affected by specific functional parameters of 
the component (e.g., voltage, size, etc.). 

• Enumerate the failure modes of a component. 
• Build composite components from simpler components. 
• Be scalable from cell level through to system-level. 
• Be general-purpose (not tied to a single application or system architecture). 
• Provide a mean to standardize the modeling of generic components (e.g., DRAMs) us-

ing templates. 
• Specify reliability targets that must be met. 

Limiting the description to the hardware domain contradicts the main objective of the 
CLERECO project. Since the full system is composed of both hardware and software compo-
nents, the defined description language must be general enough to work with both hardware 
and software components and to link information among layers in order to properly describe 
how errors propagate within the system. 

  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 7 of 36 

  

 

Version 1.1 – 31/10/2014 

2. Taxonomy of Components Reliability Parameters 

The CLERECO project has two dedicated work packages aiming at characterizing reliability 
aspects of hardware (WP3) and software (WP4) components of a system. This section starts 
from the results of these two work packages to create a taxonomy of relevant parameters that 
characterize a component in terms of its impact on the overall system’s reliability. The main 
goal of this taxonomy is to identify similarities and differences among classes of components in 
order to be able to provide a compact and formal description of each component at the sys-
tem level. 

At a first glance, hardware and software components will be studied separately in order to 
analyze and highlight their peculiar characteristics. Common parameters of these two macro 
classes will be later merged in order to simply the overall system’s description. The provided 
taxonomy is not meant to be exhaustive. It serves as a starting point for the definition of a ded-
icated description language. It will be continuously updated during the project.  

In order to have a uniform description of the identified parameters, each reliability-related 
parameter will be described in terms of the following information items: 

• Label: a keyword identifying the parameter. 
• Description: a free text describing the meaning and use of the parameter. 
• Data Type: the parameter’s data type (e.g., integer, string, etc.) required to identify 

how the related information can be stored. 
• Domain: the set of accepted values for the parameter. 
• Unit: the measurement unit for the parameter (if applicable). 
• Mandatory: a flag indicating whether the parameter is optional or mandatory. 

2.1. Hardware Components Description 

Table 1 summarizes the list of parameters identified within CLERECO for the characterization 
of a hardware component of a system. The list includes either generic parameters required to 
identify the component as well as more specific parameters modeling reliability related as-
pects of the component.  

According to deliverable D3.1 (Report on major classes of hardware components) hard-
ware components are classified in CLERECO into five main categories: (1) Microprocessors, (2) 
Accelerators, (3) Memories, (4) Peripherals and (5) Interconnections. The Class parameter is 
used to place a component within one of these five major classes. Moreover, the Subclass pa-
rameter enables to further refine the component’s classification defining subclasses within the 
five macro-classes (e.g., within the Memory macro class, a component can be further classi-
fied into a specific memory type including flash memories, SRAM, DRAM, etc.). Technological 
information analyzed in WP2 such as the technology process, the node size and the compo-
nent area are among the most important parameters to define the reliability level of a hard-
ware component and are therefore included in the list of considered parameters together with 
higher level architectural parameters (e.g., protection mechanisms) and functional parame-
ters (e.g., set of instructions or operations implemented by the component).  

 

 

 

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 8 of 36 

  

 

Version 1.1 – 31/10/2014 

Table 1 - Hardware Component Parameters 

Label Description Data Type Domain Unit Mandatory 

Name Component’s name String -  YES 

Vendor Component’s Vendor Name String -  YES 

Type Set to HW to identify hard-
ware components 

String {HW, SW}  YES 

Class Component’s class accord-
ing to Deliverable D3.1. 

String {Microprocessor, Ac-
celerator, Memory, 
Peripheral, Intercon-
nection} 

 YES 

Subclass Component’s subclass, if 
needed to distinguish 
among components of the 
same class 

String -  NO 

Technology Information about the tech-
nology process used to im-
plement the component 
according to Deliverable 
D2.1. 

String {CMOS, FinFET, …}  YES 

Node Size Technology node size di-
mension 

Number  {µm, nm, …} YES 

Area Component area. Number - {mm2, gates, 
bits, …} 

YES 

Word Length The number of bits consid-
ered as a word for the oper-
ations (if defined). Accord-
ing to D3.2.1, the wider the 
word length the higher is the 
vulnerability of the compo-
nent.  

Number - - NO 

ATPG-difficulty A value to identify how diffi-
cult is generating ATPG test 
patterns. According to 
D3.2.1, hard to detect faults 
can slip into production 
more easily. 

Number - - NO 

Inherent Redun-
dancy 

The amount of occurrences 
of subcomponents to identify 
per-se fault tolerant architec-
tures, according to D3.2.1. 

List - - NO 

Operation Set Set of all available opera-
tions. 

Table See Table 2 NO 

Error Rates List of error rates information 
about the component 

Table See Table 3 YES 

Protection 
Mechanisms 

List of error protection 
mechanisms implemented 
by the component 

Table See Table 4 NO 

Most hardware components employed in modern digital systems are able to perform well-
defined and structured operations (e.g., instructions implemented by microprocessors and ac-
celerators, read/write operations implemented by memory blocks, data transactions imple-
mented by interconnection infrastructures, etc.). Different operations may generate different 
behaviors in case of faults, thus leading to fault masking effects or fault amplification effects. To 
properly describe the operations implemented by a component the Operation Set parameter 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 9 of 36 

  

 

Version 1.1 – 31/10/2014 

describes a list of available operations each one represented according to the information 
items reported in Table 2. 

Table 2 - Operation Set Attributes 

Label Description Data Type Domain Unit Mandatory 

Name The operation Name String - - YES 

Type The operation type. Helps 
clustering operations (e.g., 
mathematical operations) 

Sting - - YES 

Timing /Latency The expected timing. Number - {clock cycles, 
seconds, … } 

YES 

Involved Area If available the portion of 
area implementing the op-
eration 

Number - {mm2, gates, 
bits, flip-
flops,…} 

NO 

Fault Models 
Masking Proba-
bilities 

If a set of fault models has 
been investigated, masking 
probabilities related to 
them may be available. 
They could generate one or 
more attributes (one for 
each probability) 

Number - - NO 

When dealing with reliability related information, components are usually characterized in 
order to understand their sensitivity to a selected list of Fault Models (FMs), providing Error Rates 
for each of the considered FM. This list of error rates represents one of the most important in-
formation for systems developers to understand the impact of a component on the reliability of 
a system. A detailed and accurate error rate information for each component represents the 
starting point to identify efficient reliability evaluation strategies. An error rate usually refers to a 
FM. Its value can be either provided as an absolute value or through the definition of a math-
ematical model that enables to compute the error rate based on a set of related variables, 
e.g., the area of the component, particles strike statistical rate, etc.  

Along with failures investigation, components may also be designed in order to include 
dedicated Protection Mechanisms able to increase the component’s reliability. A protection 
mechanism (detection, diagnosis, recovery, repair) is in general able to mitigate the effect of 
selected types of fault models. Moreover, a protection mechanism could be specifically de-
signed to protect only a set of operations of the component, e.g., the ones heavily affected by 
faults. The effect of the protection mechanism can in general be mathematically modeled as 
a modification of one of the raw error rates defined for the component. 

Table 3 and Table 4 show the main attributes identified to describe both the Error Rates and 
the Protection mechanisms. 

 

 

 

 

 

 

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 10 of 36 

 

 

Version 1.1 – 31/10/2014 

Table 3 - Error Rates Attributes 

Label Description Data Type Domain Unit Mandatory 

Fault Type The Error Rate type.  String {permanent, intermit-
tent, transient} 

- YES 

Fault Model The Related Fault Model String {stuck at, single bit 
upset, …} 

- YES 

Rate Model The rate value. Usually a 
formula taking into account 
several variables to com-
pute the value or a single 
value. 

String 
/Number 

- {FIT, MTBF,…} YES 

Timing Model Since each fault may intro-
duce an effect not only in 
the output but also in the 
operation timing, a modal 
of that impact could be 
provided. 

String 
/Number 

- {clock cycles, 
seconds, …} 

NO 

 

Table 4 - Mitigation Mechanism Attributes 

Label Description Data Type Domain Unit Mandatory 

Type The Mitigation Mechanism 
type.  

Sting - - YES 

Affected Fault 
Models 

The list of all affected fault 
models 

List - - YES 

Affected Opera-
tions 

The list of all affected oper-
ations 

List - - NO 

Rate Model The Rate model of the 
mechanisms. Usually a for-
mula to compute the effect 
of the mechanism by eval-
uating several variables 

String / 
Table 

- - YES 

Timing Model Since the mitigation mech-
anism could introduce tim-
ing effects (i.e., a computa-
tion delay), it should be 
described here 

String / 
Table 

- - NO 

 

In order to clarify the hardware description, Table 5 provides a set of available information 
for an instance of the OpenRISC 1200 microprocessor, publicly available on the Open-
cores.com website [25], organized as explained before. To keep the description short, in this 
document we only report a very small subset of instructions, two fault models and one protec-
tion mechanism. A complete description of this HW component, as well as additional compo-
nents characterized in CLERECO is available Deliverable D3.3.1 (Characterization of a set of 
hardware modules (preliminary)). 

 

 

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 11 of 36 

 

 

Version 1.1 – 31/10/2014 

Table 5 - OpenRISC 1200 Component characterization example 

Label Data  Unit 

Name OpenRISC 1200 - 

Vendor Opencores.org - 

Type HW - 

Class Microprocessor - 

Subclass RISC - 

Technology CMOS - 

Node Size 0.18 µm 

Area 0.5 mm2 

Operation Set Name Type Timing Involved Area SBU Fault 
Mask Proba-
bility 

Stuck-At 
Mask Proba-
bility 

ADD add instruc-
tion 

1 3 * Registers 
Flip-Flop Size 

0.001 0.001 

BNE branch in-
struction 

1 Registers Flip-
Flop Size 

0.015 0.015 

MULTU multiply 
instruction 

10 4 * Registers 
Flip-Flop Size 

0.25 0.10 

SLL shift instruc-
tion 

1 2 * Registers 
Flip-Flop Size 

0.001 0.001 

… … … … … … 
 

Error Rates Type Fault Model Rate Timing Model 

Permanent Stuck_At RAW Stuck_At 
Probability * (1 - 
Operation 
Stuck_At Masking 
probability) 

NA 

Transient Single Bit Upset 
(SBU) 

SBU probability * 
(Operation In-
volved Area / Mi-
croprocessor Ar-
ea)  

Operation Timing 
+ 25% 

… … … … 
 

Protection Mechanisms Type Affected Fault 
Models 

Affected Opera-
tions 

Model 

Triple Module Re-
dundancy (TMR) 

Stuck At All Operation Time + 
(TMR computation 
& voting time) 

… … … … 
 

2.2. Software Components Description 

Software components are quite difficult to profile. They can be characterized by static 
properties that can be obtained by statically analyzing the software code without actually ex-
ecuting it, or by dynamic properties collected during the actual execution of the software. Dy-



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 12 of 36 

 

 

Version 1.1 – 31/10/2014 

namic properties are particularly difficult to collect since they are strongly influenced by the 
software workload (i.e., the set of inputs provided to the software) used during the analysis of 
the component. 

Table 6 summarizes the list of parameters identified within CLERECO for the characterization 
of a software component within a system, which is derived from the software characterization 
activities described in Deliverable D4.2.1 (Software Characterization Methods). The reader may 
notice that some of them overlap (e.g., name, vendor, type, class, subclass, etc.) with param-
eters defined for hardware components. This goes in the direction of trying to have a uniform 
and coherent description of all system’s components. 

 

Table 6 - Software Component Parameters 

Label Description Data Type Domain Unit Mandatory 

Name Component’s name String -  YES 

Vendor Component’s Vendor 
Name 

String -  YES 

Type Set to SW to identify 
hardware components 

String {HW, SW}  YES 

Class Component’s class. String {Application, OS}  YES 

Subclass Component’s subclass, 
if needed to distinguish 
among components of 
the same class 

String {Library, Device 
Driver, …} 

 NO 

Size This parameter charac-
terizes the component 
size. 

Number - {Line of code, 
instructions, 
executable 
size, etc.} 

NO 

Reading Ac-
cess Rate 

The count of memory 
read operations. It can 
be retrieved either from 
static or dynamic anal-
yses. Its actual value 
must be linked to the 
access that could be 
generated to memory 
or cache. 

Number -  NO 

Writing Access 
Rate 

The count of write oper-
ations. As for the read 
accesses, this infor-
mation can be evaluat-
ed by static or a dynam-
ic analysis. 

Number -  NO 

Memory Ac-
cesses 

The count of real 
memory accesses. It 
can be evaluated only 
by dynamic analysis 
using several workloads. 

Number   YES 

Cache Misses The count of cache 
misses. If the information 
is available during a 
dynamic analysis, it 
counts the cache misses 
in case of memory ac-
cesses 

Number   NO 

Cache Hits The count of cache hits. Number   NO 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 13 of 36 

 

 

Version 1.1 – 31/10/2014 

As for Cache misses, if 
available. 

Touched 
Memory Pages 

The count of memory 
pages touched by the 
component’s memory 
accesses. 

Number   YES 

Loops number The number of loops in 
the software 

Number   NO 

Variables Life-
time 

The expression of the 
variable lifetime. It could 
be an average value or 
a distribution function 

Number / 
String 

- - NO 

Algorithm 
Complexity 

The complexity of the 
component, i.e., com-
puting the number of 
nested loops… 

String   NO 

Timing Con-
straints 

The list of all possible 
timing constrains. 

List See Table 7 NO 

Software Faulty 
Behaviors 

The correlation between 
Fault Models and the 
observed Software 
Faulty Behaviors 

List See Table 8 YES 

The SW components often have timing constraints. A program or software routine is ex-
pected to end and to provide some outputs. Reliability issues may affect the software timing. 
Therefore, it is important to be able to define Timing Constraints when characterizing a soft-
ware component. Since the execution time of a software component always depends on the 
software workload, timing constraints are here defined in relation to a given workload as 
shown in Table 7. They rely on two basic data: the Workload and the Expected Execution Time. 
Moreover, if margins can be accepted in the execution time the optional Max Accepted Exe-
cution Time and Average Accepted Execution Time properties can be used. 

Table 7 - Timing Constraints Attributes 

Label Description Data Type Domain Unit Mandatory 

Workload The Workload used as ref-
erence 

String - - YES 

Expected Exe-
cution Time 

The expected execution 
time. Usually, provided by 
the developer. 

Number - {clock cycles} YES 

Maximum Ac-
cepted Execu-
tion Time 

The maximum execution 
time that can let consider 
the component as correctly 
working (even if later than 
expected). 

Number - {clock cycles} NO 

Average Ac-
cepted Execu-
tion Time 

The average execution 
time, computed resorting to 
several runs. 

Number - {clock cycles} NO 

 

Eventually, we may need information about the classes of Software Faulty Behaviors (SFB)5 
associated to the component. In this case, a list of SW Fault Models and occurring SFBs must be 

                                                        

 
5 See section 4 of Deliverable D4.1 (Software Impact on system reliability: metrics and models) for more details. 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 14 of 36 

 

 

Version 1.1 – 31/10/2014 

provided. They will help, at a first glance, to define among all SFBs the ones of interest during 
reliability estimation. 

Table 8 - Software Faulty Behaviors Attributes 

Label Description Data Type Domain Unit Mandatory 

Fault Type The Software Fault Model 
Type. They are similar to the 
HW ones. 

String {transient, intermittent, 
permanent} 

- YES 

Fault Model The Related Software Fault 
Model. 

String - - YES 

Occurring SFB The list of all expected Soft-
ware Faulty Behaviors. 

List - - YES 

Occurring SFB 
Probabilities 

The occurrence probability 
for each SFB 

List - - YES 

In order to better understand the software component description, Table 9 provides an ex-
ample of description of a simple software application performing the sum of two vectors. Fault 
injection has been conducted on this application to extract useful reliability information6.  
Rates are calculated with respect to a maximum run of 10000 elements in the vector. The full 
characterization of this SW component, as well as additional components considered in 
CLERECO, are available in deliverable D4.3.1 (Characterization of a set of software modules 
(preliminary)). 

Table 9 - Software Component Characterization example 

Label Data  Unit 

Name ADD Vector Application - 

Vendor CLERECO - 

Type SW - 

Class Application - 

Subclass Vector Operation Algorithm - 

Size 453 - 

Reading Access Rate 76 * # of vector element / 10000 - 

Writing Access Rate 75 * # of vector element / 10000 - 

Memory Accesses 151 * # of vector element / 10000 - 

Loops Number 3 - 

Algorithm Complexity N - 

Timing Constraints Workload Expected Exe-
cution Time 

Maximum Accept-
ed Execution Time 

Average Accepted 
Execution Time 

Test Bench #1 10-6 2 10-5 

…    
 

Software Faulty Behaviors Fault Type Fault Model Occurring SFB Occurring SFB 

                                                        

 
6 For further details refers to Deliverable D4.2.1 (Software Characterization Methods) 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 15 of 36 

 

 

Version 1.1 – 31/10/2014 

Probabilities 

Permanent Wrong Data In-Time, Unde-
tectable, Early, 
Late, Responsive, 
Full Unresponsive, 
Partially Unrespon-
sive, Data Benign, 
No Data, EDC, 
Non-EDC 

0.893, 0.107, 0, 0, 
0.891, 0.42, 0.67, 
0.413, 0.109, 0.052, 
0.426 

Permanent Instruction Re-
placement 

In-Time, Unde-
tectable, Early, 
Late, Responsive, 
Full Unresponsive, 
Partially Unrespon-
sive, Data Benign, 
No Data, EDC, 
Non-EDC 

0.274, 0.726, 0, 0, 
0.378, 0.348, 0.274, 
0, 0.726, 0, 0.274 

 …   
 

 

 

 

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 16 of 36 

Version 1.1 – 31/10/2014 

3. Description Language 

Once a set of relevant parameters has been identified in order to characterize reliability of 
HW and SW components in a system, these parameters must be described exploiting a de-
scription language that enables easy access of this information in the reliability evaluation EDA 
tools developed within CLERECO. 

A language for reliability information description and system interaction modeling needs to 
include certain features to enrich the description: 

• Availability of reliability parameter keywords. If a language to describe reliability 
concepts already exists, it is our aim to explore it before writing something new. 

• A template mechanism. Single components tend to cluster into classes that share 
information. Defining templates of components could be helpful, potentially reduc-
ing the time required to describe a new component and guaranteeing that re-
quired information is properly described. 

• An inheritance mechanism. Components can be often classified into families that 
share overall characteristics with small differences (e.g., different models of a single 
microprocessor). An inheritance mechanism will reduce redundancy in the descrip-
tion by simplifying it. A clear drawback is that, resorting to templates, the readability 
by humans will be more complex. 

• Values as formula definition. While most information can be count on precise val-
ues, we expect to describe some of them as formulas in order to define the final 
value as a function of other parameters. 

• Reliability related data metrics. Common languages define very simple data types. 
As described in the previous sections, for some parameters we look for values to be 
associated to specific metrics. 

• HW and SW description. Since CLERECO takes into account the whole system’s 
stack, it is mandatory to have a language general enough to describe characteris-
tics of both hardware and software components.   

This section reviews a set of already exiting languages for information modeling (both gen-
eral purpose and reliability oriented) with the goal to identify a candidate language to serve 
as a starting point for the definition of a component description language within CLERECO. Our 
analysis also takes into account the possibility of re-using tools that have already been devel-
oped, thus reducing the effort to build tools within CLERECO. Specifically, we look for: 

• The availability of (open source) parsers.  
• Extensive language documentation.  

The languages considered in this preliminary analysis are: 

1. The Extensible Markup Language (XML). 
2. The Unified Modeling Language (UML). 
3. The Reliability Block Diagram (RBD). 
4. The Reliability Information Interchange Format (RIIF). 

3.1. XML 

The Extensible Markup Language (XML) is a markup language that defines a set of rules for 
encoding documents in a format that is both human-readable and machine-readable. It is 
defined in the XML 1.0 Specification produced by the World Wide Web Consortium (W3C) [13]. 
It is a textual data format with strong support via Unicode for different human languages. The 
design goals of XML emphasize simplicity, generality, and usability, specifically addressing In-



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 17 of 36 

 

 

Version 1.1 – 31/10/2014 

ternet as final platform. The design of XML focuses on documents but it is widely used for the 
representation of arbitrary data structures, [14].  

XML, as a markup language, enables to describe any type of required keyword (so called 
tags in the XML syntax). However, it does not provide any direct template or inheritance 
mechanism. The only way to introduce templates and inheritance would be resorting to some 
intermediate representation of the information, such as the Document Object Model (DOM) 
[15]. This means building the mechanisms beyond the description, which seems a rather useful 
feature. Looking at the ability of describing values and their metrics, the language supports 
complex descriptions of values by resorting to tags and tag attributes. In XML, tags can be 
freely defined, it is therefore feasible to properly describe HW and SW components and let the 
user to define its own keywords. Serious concerns arise when formulas need to be defined in-
stead of precise values. The ability of the language to describe formula is out of discussion but 
the compliance with actual parsers must be verified. 

In terms of tools and documentation, thanks to its wide diffusion, XML is quite well supported 
and tons of information can be found on the Internet. 

3.2. UML 

The Unified Modeling Language (UML) offers a way to visualize a system's architectural de-
sign in a diagram, including elements such as activities (jobs), individual components of the 
system, and the interaction among components. Although originally intended solely for object-
oriented design documentation, the UML has been extended to cover a larger set of applica-
tion fields. Its general-purpose structure makes it suitable for the description of both HW and SW 
system’s components.  Nowadays the UML is adopted and managed by the Object Man-
agement Group (OMG) and it is an ISO standard, [16]. 

Regarding the reliability context, UML is a general-purpose language and modeling ap-
proach. Therefore, no reliability keywords are defined in the language, but they can be easily 
defined in the form of variables within a component. Moreover, UML allows both templates 
and inheritance because it follows the object-oriented paradigm [17]. A huge limitation stems 
in the possibility of defining metrics as well as using formulas instead of values for given param-
eters. Within classes, variables and processes are the only elements that can be described and 
no further extension is easy to plan.  

While UML is more complex compared to XML, a very wide and active community guaran-
tees the availability of parsers, tools and abundant documentation.  

3.3. RBD 

Reliability Block Diagrams (RBDs) do not belong exactly to the class of description lan-
guages but since they are largely use in the reliability evaluation [18][19], the CLERECO project 
takes them into account. An RBD is a diagrammatic method to analyze large and complex 
systems using block diagrams to show network relationships and to exploit how component re-
liability contributes to the success or failure of a complex system. RBD is also known as a de-
pendence diagram (DD). Each block represents a component of the system with a failure rate. 
The structure of the RBD defines the logical interactions of failures within a system that are re-
quired to sustain system operation. 

While the application context is the reliability of systems, RBD do not offer high flexibility in 
the characterization of single components. Usually, the block description is limited to the failure 
rate of each component. The RBD simplicity also means that it does not support template and 
inheritance mechanisms, along with metrics associated to the parameters and formulas in-



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 18 of 36 

 

 

Version 1.1 – 31/10/2014 

stead of values. This very small set of information may require extending the RBD description, 
basically completely changing the language. Since the actual version of the language speci-
fies failure rate only, modeling of HW and SW components within the same system does not 
seems challenging. 

There is a quite large set of commercial tools exploiting RBD descriptions while we observed 
a general lack of open source software and libraries. A set of commercial tools exploiting RBD 
for reliability analysis can be found in Section 4 of Deliverable D7.4.1 (Exploitation Plan Version 
1).  

3.4. RIIF 

The Reliability Information Interchange Format (RIIF) language is an application-specific lan-
guage targeting the problem of modeling failure propagation in System on Chips (SoCs). RIIF 
was first proposed in [4] and was further developed during a dedicated workshop at Design 
and Test in Europe Conference 2013 (DATE’13) [22][23]. It expresses the failure mechanisms as-
sociated with a generic hardware component. Complex components can be built by combin-
ing simpler components and the propagation of failures from lower to higher levels can be ex-
pressed.  

The language already includes reliability keywords helping the description of failure mecha-
nisms and their propagations (e.g., failure rates can be express either as a single value or a 
formula). Moreover, each parameter can be defined including the unit (keyword for metric) 
associated with, and its value can be a formula expressing it as a function of other parameters. 
Since RIIF has been developed taking into account real use cases, it offers a very rudimental 
approach to template and inheritance mechanisms. However, this mechanism is quite simple 
and may require significant improvements. The language usage is focused on HW compo-
nents, thus including SW components may require extending the language. 

Very recently a Java tool including a command-line interface to read, parse, calculate, 
navigate and write RIIF files has been released [24]. Although it is a very limited version, it 
comes under an open source license, thus it can be extended and maintained open to the 
community. On the other hand, documentation is still very poor, mainly related to the few pa-
pers already published, [1][21][22][23]. The early stage of development of the RIIF language 
brings an opportunity to the CLERECO project, which most probably must be investigated. 

3.5. Language comparison 

Table 10 proposes a general comparison of the characteristics of all languages overviewed 
in the previous sections. 

 

 

 

 

 

 

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 19 of 36 

 

 

Version 1.1 – 31/10/2014 

Table 10 – Reliability Languages Investigation Comparison Summary 

Characteristics Language 

XML UML RBD RIIF 

Reliability Keywords NO NO YES YES 

Templates NO YES NO PARTIAL 

Inheritance NO YES NO PARTIAL 

Formulas YES NO NO YES 

Metrics YES NO NO YES 

HW & SW YES YES YES NO 

Parser YES YES NO YES 

Documentation YES YES NO NO 

From the analysis of the table it is clear that RIIF is the language that fits more requirements 
than other languages. Going into details, more than the others, RIIF conjugates the flexibility of 
a general-purpose language with the ability of dealing with specific reliability related parame-
ters (see [21] for more examples). The built-in ability of defining values as a function of other 
parameters, the possibility of specifying measurement units associated to a parameter’s value 
and the strong focus on real use cases, suggest that the language can be improved to fit all 
CLERECO requirements with reasonable effort. Moreover, since the reliability community seems 
to support RIIF as the new generation language to model and describe systems and compo-
nents in the reliability context [21], RIIF seems to be a very good candidate as base language 
for the CLERECO project. The lack of documentation is of course a main obstacle to the use of 
this language that may impact on the learning curve compared to other languages. Never-
theless, the current version of the language is in a very early development stage and further 
documentation can be expected with the next release possibly including improvements de-
veloped within the CLERECO project.  

Since CLERECO is going to investigate reliability estimation models with a larger scope com-
pared to the one considered in RIIF (e.g., RIIF focuses on HW components only) within task T5.1 
there was an effort to improve the original language with a set of extensions to meet the spe-
cific CLERECO need. The resulting language has been named CERIIF (CLERECO Extended RIIF) 
and it will be described in Section 4 of this deliverable. 

  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 20 of 36 

 

 

Version 1.1 – 31/10/2014 

4. CLERECO Extended RIIF language  

This section presents the RIIF extensions introduced within CLERECO. With extensions here we 
both consider (a) new language keywords/statements or (b) specific usage of existing lan-
guage statements in the context of the CLERECO project. In order to highlight the improve-
ments introduced within CLERECO, we start with the description of the basic RIIF definitions to 
move later to the language improvements proposed in CLERECO. 

In RIIF, the keyword component is useful to represent a system’s HW component. From the 
CLERECO perspective, the same keyword could be re-used to define a SW component as well. 

RIIF authors also defined two additional types of “entities” to represent and describe: 

1. the Requirements to evaluate the components’ model (requirement keyword), and 
2. the Environments under which the whole model must be analyzed (environment 

keyword). 

In practical terms, components, requirements and environments can be described starting 
from three simple declarations as: 

 

component <LABEL>; 
  … 
endcomponent 

requirement <LABEL>; 
  … 
endrequirement 

environment <LABEL>; 
  … 
endenvironment 

where <LABEL> is a unique name to identify the instance of the entity. 

To define the set of information characterizing a single component, RIIF offers two alterna-
tives (hence keywords): a constant or a parameter. Since no full documentation is provided, 
the meaning of these two keywords can only be partially speculated. We consider that the 
purpose is to differentiate information to be used internally (constant, [4]) from information that 
must be exposed outside the component (parameter, [4]). The actual difference is the possibil-
ity to define aggregated information for a parameter, while the constant is expressed by a sin-
gle value, only. In terms of reliability, within a component, the user is able to declare different 
failure modes (fail_mode keyword) and their rate of occurrence can be expressed as a func-
tion of any other already defined parameter. The following RIIF snapshot proposes an example 
of basic usage of constants and parameters applied to the definition of a register file: 

component REGISTER_FILE; 
… 

 parameter NUMBER_REGISTERS: integer := 8; 
 parameter FF_PER_REG: integer := NUMBER_REGISTERS * 32; 
 constant SBU_TEMPERATURE_EFFECT_COEFF: float := 5.6e-12; 
endcomponent 

Both parameters and constants share the type information to define the kind of value they 
store. The general way to define both of them is based on the following schema: 

 <keyword> <label>: <type> [:= <value>]; 

The type can be chosen among the following list: boolean, integer, float, enum (as for an 
enumerative of items), and time (to define timing related information). The value assignment is 
optional (it can be set later in the definition) and the actual value can be either explicit or a 
formula (FF_PER_REG in the example is expressed in terms of NUMBER_OF REGISTER value). 

Every time information from another component of system is required, it is possible to refer to 
it using a getValue function: 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 21 of 36 

 

 

Version 1.1 – 31/10/2014 

parameter CURR_TEMPERATURE: float; 
assign CURR_TEMPERATURE'value = environment.getValue(TEMPERATURE); 

In this case, the parameter CURR_TEMPERATURE is linked to the environment (defined else-
where), which owns a parameter TEMPERATURE. The example also highlights how values to pa-
rameters can be associated after their definition: 

 assign <label>’<attribute> = <value>; 

The assign keyword tells to set a value to an attribute of a parameter (referred through its 
label). Attributes are open, and allow specifying aggregated information, such as units (met-
rics) for a parameter value: 

 parameter NODE_SIZE: float := 0.18; 
 assign NODE_SIZE'unit = um; 

Eventually, users define failure modes almost in the same way they define parameters. As in-
stance, if a user wants to define a Single Bit Upset failure mode he may resort to the following 
snippet of code: 

 fail_mode SBU; 
 assign SBU'description = "Single bit upset" ; 
 assign SBU'unit = FITS; 

The fail_mode keyword helps distinguish between general parameters and failure modes, 
but the way attributes are defined is the same for parameters. Typically, an extra attribute 
comes with a failure mode: the rate.  

assign SBU'rate = NUMBER_REGISTERS*FF_PER_REG/pow(2,20); 

In this example, the rate of the SBU is a formula taking into account two (previously) defined 
parameters. 

Environments and Requirements share the same syntax of components. As an example, we 
propose the following “cold” environment: 

environment COLD_COMPONENT_ENV;  
 // Temperature   
 parameter TEMPERATURE: float; 
 assign TEMPERATURE'unit = C; 
 assign TEMPERATURE'VALUE = 30; 
 
 // Voltage  
 parameter VOLTAGE : float; 

assign VOLTAGE'VALUE = 1.0; 
endenvironment 

In the environment we set two parameters: the temperature and the (reference) voltage. If 
needed, units can be defined as well. The concept of environment is particularly important in 
CLERECO to model the concept of operation mode defined in deliverable D2.3 (Definition of 
operation modes for future systems). 

In the next subsections we describe a set of components, showing how we resort to RIIF to 
properly model them, and describing all improvements we proposed and implemented in the 
language. 

4.1. CERIIF Templates 

The first task to accomplish in order to reduce the effort required to describe a component is 
the definition of common information across HW and SW components or across classes of 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 22 of 36 

 

 

Version 1.1 – 31/10/2014 

components belonging to the same group. The aim is to simplify the definition, reducing the 
amount of information to be re-written for each component, and to guarantee that essential 
information for a given component are properly provided. 

In RIIF, the possibility to define templates (mainly to address components and sub-
components) is delegated to the definition of a component in which common information 
items are described. In order to implement a full template mechanism (such as in most high 
level programming languages), CERIIF introduces a new template entity defined as follows: 

template <LABEL>; 
  … 
endtemplate 

Within a template it is possible to define a set of constants, parameters and failure modes 
that are common to all components implementing the template. Moreover resorting to the 
new CERIIF keyword (abstract) the actual values associated with constants and parameters do 
not necessarily need to be defined at this stage. Once a template is applied to a component, 
the user is required to define the actual values for the abstract items described within the tem-
plate. 

Referring to Section 2, a general CLERECO component (either HW or SW) can be defined 
according to the following template (the full version can be found in the Section 8.1 at the end 
of the document):  

template CLERECO_COMPONENT; 
 // Definition of common information   
 abstract constant NAME: string; 
 … 
 abstract constant TYPE: enum {HW, SW}; 
 … 
endtemplate 

Each definition within a template is identified with the CERIIF keyword (abstract) and by 
formally defining the information type for a constant or a parameter.  

Once a template is available, two possible usages are allowed in CERIIF: 

1. The template can be further refined generating a more detailed and specific tem-
plate through the CERIIF extension mechanism.  

2. The template can be used to instantiate a component, thus implementing the tem-
plate with final values. 

Extending the template means defining a template inheriting all definitions contained in the 
parent one. The keyword for this mechanism is extends. 

template CLERECO_HW_COMPONENT extends CLERECO_COMPONENT; 
 // imposing a specific value for a constant (or a parameter) 
 impose TYPE = HW; 
 … 
 abstract fail_mode ERRORE_RATE[]; 
endtemplate 

In the example above, the new template (CLERECO_HW_COMPONENT) extends the previ-
ously defined CLERECO_COMPONENT. The new CERIFF keyword impose is designed to specify, 
at template level the value of a constant or of a parameter. Whenever a component needs to 
implement a template, the keyword implements is used: 

component REGISTER_FILE implements CLERECO_HW_COMPONENT; 

 It means that all already defined information included in the template must be explicitly as-
signed to the component automatically. 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 23 of 36 

 

 

Version 1.1 – 31/10/2014 

When defining both templates and components it is often useful to define associative arrays 
of values. In [4], RIIF authors suggested the definition of simple vectors proposing a few exam-
ples in which vectors are defined as follow: 

<keyword> <LABEL> [1..<MAX_NUMBER_OF_ITEMS>]; 

 The maximum number of items in RIIF is known a priori and the items are referenced based 
on a numeric index. Since in many cases information is naturally describe as labels, with the 
ERROR_RATE (see Table 3) definition we suggest a new way to define vectors: 

<keyword> <LABEL> []; 

The empty brackets means two different things: 

1. The maximum number is not known, thus elements can be freely “appended”. 

<LABEL>[<index_label>] = <value>; 

2. The index of the item is defined during the element creation. In this way, there is no 
need to number the vector items and the access is based on the label used as an 
index. 

<LABEL>[<index_label>]’<attribute> = <value>; 

The next section shows examples of how Hardware and Software components are de-
scribed using CERIIF. They implement one of the two templates that can be found in Section 
8.1 describing an HW and a SW component. It is worth to mention here that at this stage of the 
project further refinements of the language are still possible to deal with specific requirements 
that will be identified during the development of the CLERECO EDA tool-suite. A more com-
plete and precise definition of the language will be provided in the next release of this deliver-
able (D5.1.2) later in the project. 

4.2. CERIIF Characterization of Components 

Once defined two different templates, targeting main characteristics of HW and SW com-
ponents, hereinafter we use them to describe three different components: 

1. A generic register file. 
2. A microprocessor (with and without protection mechanisms). 
3. A software application (with and without software techniques for data protection). 

All information described in Sections 2.1 and 2.2 are fit within the description. Full version of 
each description can be found in Section 8 as an Appendix of this deliverable. Figure 2 depicts 
how template and inheritance mechanisms will be used to efficiently describe all the consid-
ered components. The template mechanism allows the differentiation of HW and SW compo-
nents (as already seen in the previous Section) and the inheritance mechanism helps the hier-
archical organization of components (e.g., different version of the same component) and sim-
plifies the component’s descriptions.  

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 24 of 36 

 

 

Version 1.1 – 31/10/2014 

 

Figure 2 - Templates and Inheritance schema 

Starting from the Register file, the main idea is implementing the 
CLERECO_HW_COMPONENT template. The first step is the definition of all constants and pa-
rameters defined in the template: 

component REGISTER_FILE implements CLERECO_HW_COMPONENT; 
 set NAME = "Generic Register File"; 
 … 
 set NODE_SIZE = 0.18; 
 assign NODE_SIZE'unit = "um"; 
 … 

CERIIF extends RIIF by defining the set keyword used within a component to explicitly indi-
cate when an abstract field is explicitly defined.  

 The number of registers and the number of flip-flops per register are two important infor-
mation items that characterize a generic register file. They are therefore defined as parameters 
in the component: 

 parameter NUMBER_REGISTERS: integer := 8; 
  
 parameter FF_PER_REG: integer :=  32; 
  
 constant SBU_TEMPERATURE_EFFECT_COEFF: float := 5.6e-12; 
  
 // defining the current temperature... 
 parameter CURR_TEMPERATURE: float; 
 // ... the actual value will be assigned depending on the enviroment 
defined.  
 assign CURR_TEMPERATURE'value = environment.getValue(TEMPERATURE);
  

assign  ERROR_RATES[SBU]'description = "Single bit upset" ; 
 assign  ERROR_RATES[SBU]'unit = FITS; 
  
 assign  ERROR_RATES[SBU]'rate = 
(NUMBER_REGISTERS*FF_PER_REG/pow(2,20))*(SBU_TEMPERATURE_EFFECT_COEFF * 
CURR_TEMPERATURE); 
endcomponent 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 25 of 36 

 

 

Version 1.1 – 31/10/2014 

The constant SBU_TEMPERATURE_EFFECT_COEFF and the CURR_TEMPERATURE parameter are 
used in the above example to define the error rate for the Single Bit Upset (SBU) failure mode. It 
is interesting to note how the SBU failure mode is defined in the ERROR_RATES vector. The rate’s 
formula is a simplified version (for reading purposes only) of the one found [27]. It is particularly 
important to underline the way the current temperature is evaluated: the getValue word indi-
cates the intent to retrieve the actual value from the environment defined (as seen in previous 
section) by means of accessing its parameter TEMPERATURE. 

The generic register file is a really simple component. In order to show a more complex defi-
nition we report in the next example the description of a generic microprocessor component. 
The modeling starts with the creation of template, including a parameter to describe the op-
eration set (see Table 2) of a microprocessor, i.e., its Instruction Set Architecture (ISA). 

template MICROPROCESSOR_TEMPLATE extends CLERECO_HW_COMPONENT; 
 // definition of the Instruction Set Architecture through a table 
type. 
 abstract parameter ISA: table; 
 // table comes with two attributes: its headers and the items 
 impose ISA'headers = { NAME, TYPE, TIMING, INVOLVED_FF, SBF_P_MASK, 
STUCKAT_P_MASK }; 
endtemplate 

The template extends the hardware component template, including the ISA parameter of 
table type. The table type is a further improvement within CERIIF. The idea is to be able to de-
scribe structured data organized as tables of information. A table is defined by two attributes: 
the header and the items. Headers include a vector (instantiated inline using comma separat-
ed items within {} brackets) of all columns index labels. The number of elements of the vector 
sets the headers’ dimension dynamically. Since each microprocessor owns a different set of 
instructions, the items definition is demanded to the component implementation. 

In this specific example we propose a snippet of code describing the OpenRISC1200 [25], 
where the first part of the implementation includes the set of all constants and parameters al-
ready defined in the templates: 

component OPENRISC_1200 implements MICROPROCESSOR_TEMPLATE; 
 set NAME = "OpenRISC 1200"; 
 … 

Then the custom definition of the component starts by defining few constants regarding raw 
error rates for failure modes and including a subcomponent: the register file. 

 constant RAW_SBU: float := 1.2e-20; 
 constant RAW_STUCK_AT: float := 1.5e-25; 
 child_component REGISTER_FILE GPR; 
 assign GPR.SIZE = 32; 

The child_component keyword is already present in the original version of RIIF. It helps ag-
gregating sub-components, creating more complex structures. Once instantiated a sub-
component, it is possible to access its parameters (not its constants) to customize the instance, 
e.g., the size of the register file. 

The sub-component will be useful to define the number of flip-flops involved in an instruction 
execution (INVOLVED_FF field of each item of the ISA table). Thus, in the definition of an item, 
we resort to the number of flip-flops per register (FF_PER_REG parameter of the generic register 
file component): 

 assign ISA'items = { 
  [ "ADD", "add", 1, 3*GPR.FF_PER_REG, 0.001, 0.001], 
  [ "BNE", "branch, 1, GPR.FF_PER_REG, 0.015, 0.015], 
  [ "MULTU", "mul op", 10, 4*GPR.FF_PER_REG, 0.25, 0.10], 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 26 of 36 

 

 

Version 1.1 – 31/10/2014 

  [ "SLL", "shift", 1, 2*GPR.FF_PER_REG, 0.001, 0.001] 
 }; 

The access to a single item of a table can be shown resorting to the definition of one failure 
mode: 

 assign ERROR_RATE[SBU]'type = "transient", 
 assign ERROR_RATE[SBU]'description = "Single Bit Upset"; 
 assign ERROR_RATE[SBU]'unit = FITS; 
 assign ERROR_RATE[SBU]'affected = ISA; 
 assign ERROR_RATE[SBU]'rate = (P_SBU * 
(ISA[#][INVOLVED_REGISTERS_AREA] / AREA)); 
 assign ERROR_RATE[SBU]'timing_effect = ISA[#][TIMING] + 
ISA[#][TIMING] * 0.25; 

The SBU error rate is described resorting to a set of specific attributes: 

• affected defines what set of operations is affected by the failure mode. 
• rate defines the final rate of the failure mode (as in RIIF original version). 
• timing_effect defines how the failure mode modifies the timing of operations (if ap-

plicable). 

To simplify the formula statement in presence of a table, CERIIF introduces the [#] operator, 
which means “for each element in the table”. As example, referring to the timing effect previ-
ously defined, the formula expresses that the timing of each item of the ISA is changed (in 
presence of a SBU failure) by a delay of 25% of its standard timing. 

The inheritance mechanism enables to easily generate new complex components as ex-
tension of previously defined ones. As an example, we model a new version of the OpenRISC 
1200 to include a mitigation mechanism, as described in Table 4: 

component OPENRISC_1200_TMR extends OPENRISC_1200; 
… 

 // Create a constant to define the penalty required to execute a TMR 
mechanism 
 constant TMR_PENALITY: integer := 5; 
 
 // assign to each TIMING column value, the OPENRISC_1200 original 
value incremented by the time required to perform TMR; 
 // self is a new keyword... 
 assign ISA'items[#][TIMING] = self + TMR_PENALITY; 
  
 // reset the error rate of all failure mode because the TMR solve 
them. 
 assign ERROR_RATE[SBU]'rate = 0; 

… 
endcomponent 

For demonstration purposes only, we simplify the way a Triple Redundancy Mechanism 
(TMR) affect the microprocessor model. The idea is inheriting all previous definitions and modi-
fying only the aspects that change in the new version. Then, looking at the description, we in-
troduce the self keyword to help updating some already defined value. In the example, all 
TIMING are incremented of a delay value due to the extra time required to compute the op-
eration three times and vote among them. Since the TMR technique aims at avoiding errors, 
the SBU rate can be set to 0. Through the use of inheritance the main advantage is that the 
description of a child component becomes very small therefore reducing the probability of 
errors. 

Eventually, we describe a software component: an application program able to add two 
arrays consisting of 10,000 integer elements and monitoring the sum at the end of the calcula-



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 27 of 36 

 

 

Version 1.1 – 31/10/2014 

tions. The program is compiled to run under an LLVM based simulator, as described in Deliver-
able D4.1 (Software Impact on system reliability: metrics and models). 

According to the software component template, the very first part of the description im-
plements all information already defined, including the size and the type of implemented data 
protection mechanisms (see Section 8.1 for the template definition): 

component VADD implements CLERECO_SW_COMPONENT; 
 set NAME = "Vector ADD"; 
 set VENDOR = "CRNS"; 
  

… 
 set SIZE = 534; 
  
 set PROTECTION = NONE; 

… 

Thus we are able to describe a large number of the parameters identified in Table 6. It can 
be noticed how simple is the parameterization of such characteristics (in this example, through 
the number of items inside the vector): 

 constant NUMBER_OF_ITEMS: integer := 10000; 
  
 assign READING_ACCESSES = 76 * NUMBER_OF_ITEMS/10000; 

Also dealing with the timing constraints of Table 7 is quite simple. In the template, we de-
fined the table and its headers: 

abstract parameter TIMING_CONSTRAINS: table; 
  impose TIMING_CONSTRAINS'headers = { WORKLOAD, EXEC_TIME, MAX_TIME, 
AVG_TIME }; 

Then in the component only items must be defined: 

 assign TIMING_CONSTRAINS'items = { 
    [ "TEST_BENCH1", 0.0000001, 2, 0.000001 ], 
    }; 

Similarly, the same description approach is applied to the Software Faulty Behaviors (SFBs) of 
Table 8. The parameters definition is contained in the template: 

 abstract parameter SFB: table; 
 impose SFB'headers = { SFM, OCCURRING_SFB, OCCURRING_SFB_P }; 

and the actual items are defied within the component: 

 assign SFB'items = { 
  [ “permanent”, "WRONG_DATA", SFB_ITEMS, {0.893, 0.107, 0, 0, 
0.891, 0.42, 0.67, 0.413, 0.109, 0.052, 0.426} ], 
  [ “permanent”, "INSTR_REPLACEMENT", SFB_ITEMS, {0.274, 0.726, 
0, 0, 0.378, 0.348, 0.274, 0, 0.726, 0, 0.274}], 
  [ “transient”, "WRONG_DATA", SFB_ITEMS, {0.893, 0.009, 0, 
0.098, 0.987, 0.001, 0.012, 0.968, 0.013, 0, 0.019} ], 
  [ “transient”, "INSTR_REPLACEMENT ", SFB_ITEMS, {0.614, 0.309, 
0, 0.077, 0.309, 0, 0.691, 0.691, 0.309, 0, 0}], 
    }; 

We resort to the CERIIF language flexibility to ease the description of the SBFs occurrences in 
presence of software fault models: the OCCURRING_SFB and OCCURRING_SFB_P fields of each 
row contain a vector. This way we implement the ability to list all SFBs that may occur (the 
SFB_ITEMS is a vector already defined in the template) and the list of all associated probabili-
ties.  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 28 of 36 

 

 

Version 1.1 – 31/10/2014 

Similarly to the hardware component, we show how the inheritance mechanism is useful to 
easily extend a component with some new features. We implement the same algorithm with 
the ability of activating two different data protection mechanisms: variable duplication and 
variable triplication. 

Basically, since the data protection mechanisms allow almost the same protection, we re-
sort to the ability of RIIF language of declaring a value referred to a if clause, to distinguish the 
impact of each mechanism on the timing constraints:  

assign TIMING_CONSTRAINS'items = { 
   (PROTECTION == VAR_TRIP)?[ "TEST_BENCH1", self + 0.001, 
self + 0.2 , self + 0.0015] : [ "TEST_BENCH1", self + 0.0021, self + 
0.28, self + 0.0018 ] 
     }; 

While some of the masking probabilities and the software faulty behavior probabilities are 
going to be affected by the data protection mechanisms, we override only the items that 
show differences: 

assign SFB'items = { 
  [ “permanent”, "WRONG_DATA", SFB_ITEMS, {0.88, 0.067, 0, 0.53, 
0.044, 0.029, 0.927, 0.737, 0.073, 0.025, 0.165} ], 
  [ “permanent”, "INSTR_REPLACEMENT", SFB_ITEMS, {0.266, 0.726, 
0, 0.008, 0.446, 0.28, 0.274, 0, 0.726, 0, 0.274}], 
  [ “transient”, "WRONG_DATA", SFB_ITEMS, {0.907, 0.009, 0, 
0.084, 0.003, 0.001, 0.996, 0.986, 0.004, 0, 0.010} ], 
  [ “transient”, "INSTR_REPLACEMENT", SFB_ITEMS, {0.518, 0.309, 
0, 0.173, 0.309,  0, 0.691, 0.691, 0.309, 0, 0}], 
    }; 

Due to inheritance mechanisms, we expect to maintain all items that are defined in the 
parent component.   

5. Conclusion 

This deliverables represents the first steps performed in CLERECO toward the aim of provid-
ing a formal and coherent description of all reliability aspects of a system. In particular, this de-
liverable focuses on the description of single components of a system. This deliverable provid-
ed two major contributions to the project. First the definition of an initial taxonomy of parame-
ters required to describe reliability aspects of both hardware and software components. Se-
cond it introduces a new description language named CERIIF based on a previous existing 
language (RIIF) that enables a formal representation of these parameters. The CERIIF language 
will be used for tools developed within CLERECO to properly share and transfer reliability relat-
ed information. The definition of CERIIF is still not final and modifications will be proposed when 
specific problems will be addressed. A final definition of this language and related tools (e.g., a 
full CERIIF parser) will be available in deliverable D.5.1.2. 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 29 of 36 

 

 

Version 1.1 – 31/10/2014 

6. Additional material on CLERECO SVN Repository 

This section provides a link to tools, code and models developed in the framework of the 
activities described in this deliverable that are available through the CLERECO SVN Repository. 
This material, listed in Table 11 must be considered as integral part of the deliverable. 

The CLERECO SVN repository is accessible through a web browse clicking on the links re-
ported in Table 11. The access to the material requires authentication. Reviewers can access it 
using the following credentials: 

• Username: clerecoreviewers 
• Password: fp7-611404 

 

Table 11: Additional Material 

Item No. Description Link to the CLERECO SVN Repository 

AM1 Full list of CERIIF files produced while characterizing HW 
and SW components 

http://goo.gl/dRaZ0m 

 
  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 30 of 36 

 

 

Version 1.1 – 31/10/2014 

 

7. Bibliography 

[1] George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. Algorithm-based fault tolerance applied to 
high performance computing. Journal of Parallel and Distributed Computing, 69(4):410–416, 2009. 

[2] Ramtilak Vemu and Jacob A Abraham. CEDA: Control-flow error detection through assertions. In International 
On-Line Testing Symposium (IOLTS), 2006. 

[3] Melvin A Breuer, Sandeep K Gupta, and T.M. Mak. Defect and error tolerance in the presence of massive num-
bers of defects. IEEE Design & Test of Computers, 21(3):216–227, 2004. 

[4] Evans, A; Nicolaidis, M.; Shi-Jie Wen; Alexandrescu, D.; Costenaro, E., "RIIF - Reliability information interchange 
format," IEEE 18th International On-Line Testing Symposium (IOLTS), 2012, vol., no., pp.103-108, 27-29 June 2012, 
doi: 10.1109/IOLTS.2012.6313849 

[5] Schlichtmann, U.; Kleeberger, V.B.; Abraham, J.A; Evans, A; Gimmler-Dumon, C.; Glas, M.; Herkersdorf, A; Nassif, 
S.R.; Wehn, N., "Connecting different worlds — Technology abstraction for reliability-aware design and Test," De-
sign, Automation and Test in Europe Conference and Exhibition (DATE), 2014, vol., no., pp.1,8, 24-28 March 2014, 
doi: 10.7873/DATE.2014.265 

[6] Argyrides, C.; Chipana, R.; Vargas, F.; Pradhan, D.K., "Reliability Analysis of H-Tree Random Access Memories Im-
plemented With Built in Current Sensors and Parity Codes for Multiple Bit Upset Correction," IEEE Transactions on 
Reliability, vol.60, no.3, pp.528,537, Sept. 2011, doi: 10.1109/TR.2011.2161131 

[7] Aliee, H.; Zarandi, H.R., "A Fast and Accurate Fault Tree Analysis Based on Stochastic Logic Implemented on Field-
Programmable Gate Arrays," IEEE Transactions on Reliability, vol.62, no.1, pp.13-22, March 2013, doi: 
10.1109/TR.2012.2221012 

[8] Seifert, N., "Soft Error Rates of Hardened Sequentials utilizing Local Redundancy," 14th IEEE International On-Line 
Testing Symposium, 2008. IOLTS '08., vol., no., pp.49,50, 7-9 July 2008, doi: 10.1109/IOLTS.2008.61 

[9] Bidokhti, N., "SEU concept to reality (allocation, prediction, mitigation)," Reliability and Maintainability Symposium 
(RAMS), 2010 Proceedings - Annual, vol., no., pp.1-5, 25-28 Jan. 2010, doi: 10.1109/RAMS.2010.5448078 

[10] Mitra, Subhasish; Sanda, Pia; Seifert, Norbert, "Soft Errors: Technology Trends, System Effects, and Protection Tech-
niques," 13th IEEE International On-Line Testing Symposium, 2007. IOLTS 07., vol., no., pp.4,4, 8-11 July 2007, doi: 
10.1109/IOLTS.2007.61 

[11] Clifton A. Ericson II, "Fault Tree Analysis - A History," Proceedings of the 17th International System Safety Confer-
ence, 1999, pages 87-96. 

[12] Anderson, R.T., Reliability Design Handbook, March 1976, Illinois Institute of Technology. Research Institute and 
Reliability Analysis Center (U.S.) 

[13] W3C, XML 1.0 Specification, http://www.w3.org/TR/REC-xml 
[14] Philip Fennell, "Extremes of XML", Presented at XML London 2013, June 15-16th, 2013. 

doi:10.14337/XMLLondon13.Fennell01. 
[15] W3C, Document Object Model reference, http://www.w3.org/DOM 
[16] ISO, UML Standard Part 1, 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32624 
[17] IBM Corporation, UML Basics, 

http://www.ibm.com/developerworks/rational/library/content/RationalEdge/sep04/bell 
[18] Modarres, Mohammad, Mark Kaminskiy, Vasiliy Krivtsov, Reliability Engineering and Risk Analysis, New York, NY: 

Marcel Decker, Inc., p. 198., ISBN 0-8247-2000-8 
[19] U.S. Department of Defense, "Reliability Modeling and Prediction", Electronic Reliability Design Handbook. B., 

1998. MIL–HDBK–338B. 
[20] Salvatore Distefano, Antonio Puliafito, Dependability Evaluation with Dynamic Reliability Block Diagrams and Dy-

namic Fault Trees. IEEE Trans. Dependable Sec. Comput. 6(1): 4-17 (2009), 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4385723 

[21] Schlichtmann, U.; Kleeberger, V.B.; Abraham, J.A; Evans, A; Gimmler-Dumon, C.; Glas, M.; Herkersdorf, A; Nassif, 
S.R.; Wehn, N., "Connecting different worlds — Technology abstraction for reliability-aware design and Test," De-
sign, Automation and Test in Europe Conference and Exhibition (DATE), 2014, vol., no., pp.1,8, 24-28 March 2014, 
doi: 10.7873/DATE.2014.265 

[22] Adrian Evans and Oliver Bringmann. RIIF DATE 2013 Workshop: Towards Standards for Specifying and Modelling 
the Reliability of Complex Electronic Systems. http://riif-workshop.fzi.de, 2013. 

[23] Alfonso Sanchez-Macian, Pedro Reviriego, and Juan Antonio Maestro. Modeling Reliability of Memories Protect-
ed with Error Correction Codes with RIIF. In RIIF DATE 2013 Workshop: Towards Standards for Specifying and Model-
ling the Reliability of Complex Electronic Systems, 2013. 

[24] [Online] Java RiiF CLI Project Page: http://code.google.com/p/java-riif-cli/. 
[25] [Online] OpenRISC 1200 Project Page: http://opencores.org/or1k/Main_Page 
[26] [Online] Univerisity of Michingan, MiBench: http://www.eecs.umich.edu/mibench/ 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 31 of 36 

 

 

Version 1.1 – 31/10/2014 

[27] M. Bagatin, S. Gerardin, A. Paccagnella, C. Andreani, G. Gorini, C.D. Frost, Temperature dependence of neutron-
induced soft errors in SRAMs, Microelectronics Reliability, Volume 52, Issue 1, January 2012, Pages 289-293, ISSN 
0026-2714, http://dx.doi.org/10.1016/j.microrel.2011.08.011. 

  



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 32 of 36 

 

 

Version 1.1 – 31/10/2014 

8. Appendix 

8.1. The CLERECO RIIF Templates 

template CLERECO_COMPONENT; 
 // Definition of common information   
 abstract constant NAME: string; 
 abstract constant VENDOR: string; 
 abstract constant TYPE: enum {HW, SW}; 
 abstract constant CLASS: string; 
 abstract constant SUBCLASS: string; 
endtemplate 

 

template CLERECO_HW_COMPONENT extends CLERECO_COMPONENT; 
 // imposing a specific value for a constant (or a parameter) 
 impose TYPE = HW; 
 abstract constant TECHNOLOGY: enum { CMOS, FINFET }; 
 abstract parameter AREA: float; 
 abstract parameter NODE_SIZE: float; 
  
 abstract fail_mode ERRORE_RATE[]; 
endtemplate 

 

template CLERECO_SW_COMPONENT extends CLERECO_COMPONENT 
 // imposing a specific value for a constant (or a parameter) 
 impose TYPE = SW; 
 // ------------------------- Constant Declaration ------------------
----- 
 abstract constant SIZE: integer;   
 abstract constant PROTECTION: enum { NONE, VAR_DUP, VAR_TRIP}; 
 abstract constant SFB_ITEMS[1..11] := { IN_TIME, UNDETECTABLE, 
EARLY, LATE, FULL_UNRESPONSIVE, PARTIAL_UNRESPONSIVE, RESPONSIVE, 
DATA_BENIGN, NO_DATA, EDC, NON-EDC}; 
  
 abstract parameter READING_ACCESSES: integer; 
 abstract parameter WRITING_ACCESSES: integer; 
 abstract parameter MEMORY_ACCESSES: integer; 
 abstract parameter NUMBER_OF_LOOPS: integer; 
 abstract parameter ALGORITHM_COMPLEXITY: string; 
  
 abstract parameter TIMING_CONSTRAINS: table; 
  impose TIMING_CONSTRAINS'headers = { WORKLOAD, EXEC_TIME, MAX_TIME, 
AVG_TIME }; 
 
 abstract parameter SFB: table; 
 impose SFB'headers = { SFM_TYPE, SFM, OCCURRING_SFB, OCCURRING_SFB_P 
}; 
endtemplate 

 

 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 33 of 36 

 

 

Version 1.1 – 31/10/2014 

template MICROPROCESSOR_TEMPLATE extends CLERECO_HW_COMPONENT; 
 // definition of the Instruction Set Architecture through a table 
type. 
 abstract parameter ISA: table; 
 // table comes with two attributes: its headers and the items 
 impose ISA'headers = { NAME, TYPE, TIMING, INVOLVED_FF, SBF_P_MASK, 
STUCKAT_P_MASK }; 
endtemplate 

 

8.2. CLERECO Hardware Component Examples 

component REGISTER_FILE implements CLERECO_HW_COMPONENT; 
 set NAME = "Generic Register File"; 
 set VENDOR = "Generic Vendor"; 
 
 set CLASS = "Memory"; 
 set SUBCLASS = "Registers File"; 
 
 set TECHNOLOGY = CMOS; 
 set NODE_SIZE = 0.18; 
 assign NODE_SIZE'unit = um; 
  
 set AREA = 0.03; 
 assign  AREA'unit = mm2; 
  
 parameter NUMBER_REGISTERS: integer := 8; 
  
 parameter FF_PER_REG: integer :=  32; 
  
 constant SBU_TEMPERATURE_EFFECT_COEFF: float := 5.6e-12; 
  
 // defining the current temperature... 
 parameter CURR_TEMPERATURE: float; 
 // ... the actual value will be assigned depending on the enviroment 
defined.  
 assign CURR_TEMPERATURE'value = environment.getValue(TEMPERATURE); 
  
 assign  ERROR_RATES[SBU]'description = "Single bit upset" ; 
 assign  ERROR_RATES[SBU]'unit = FITS; 
  
 assign  ERROR_RATES[SBU]'rate = 
(NUMBER_REGISTERS*FF_PER_REG/pow(2,20))*(SBU_TEMPERATURE_EFFECT_COEFF * 
CURR_TEMPERATURE);  
endcomponent 

 

component OPENRISC_1200 implements MICROPROCESSOR_TEMPLATE; 
 // set all inherited definitions of constants & parameters 
 set NAME = "OpenRISC 1200"; 
 set VENDOR = "Opencores.Org"; 
 
 set CLASS = "Microprocessor"; 
 set SUBCLASS = "RISC"; 
  
 set TECHNOLOGY = CMOS; 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 34 of 36 

 

 

Version 1.1 – 31/10/2014 

 set NODE_SIZE = 0.18; 
 assign NODE_SIZE'unit = um; 
 set AREA = 0.5; 
 assign AREA'unit = mm2; 
  
 // Define RAW Error Rate for Single Bit Upset (SBU) 
 constant RAW_SBU: float := 1.2e-20; 
 // Define RAW Error Rate for Stuck-at fault 
 constant RAW_STUCK_AT: float := 1.5e-25; 
  
 child_component REGISTER_FILE GPR; 
 assign GPR.SIZE = 32; 
  
 // assign a description to the ISA table 
 assign ISA'description = "The instruction Set Table"; 
  
 // assign the items in the form of vector of associative vectors 
(index label defined in the headers attributes) 
 assign ISA'items = { 
  [ "ADD", "add",  1, 3*GPR.FF_PER_REG, 0.001, 0.001], 
  [ "BNE", "branch, 1, GPR.FF_PER_REG, 0.015, 0.015], 
  [ "MULTU", "mul op", 10, 4*GPR.FF_PER_REG, 0.25, 0.10], 
  [ "SLL", "shift", 1, 2*GPR.FF_PER_REG, 0.001, 0.001] 
 }; 
  
 // -------------------------------------- Define Failure Modes -----
----------------------------- 
 assign ERROR_RATE[SBU]'type = "transient", 
 assign ERROR_RATE[SBU]'description = "Single Bit Upset"; 
 assign ERROR_RATE[SBU]'unit = FITS; 
 assign ERROR_RATE[SBU]'affected = ISA; 
 assign ERROR_RATE[SBU]'rate = (P_SBU * 
(ISA[#][INVOLVED_REGISTERS_AREA] / AREA)); 
 assign ERROR_RATE[SBU]'timing_effect = ISA[#][TIMING] + 
ISA[#][TIMING] * 0.25; 
      
 assign ERROR_RATE[STUCK_AT]'type = "permanent"; 
 assign ERROR_RATE[STUCK_AT]'description = "stuck-at in a single bit 
of a register"; 
 assign ERROR_RATE[STUCK_AT]'unit = FITS; 
 // to define 'affected... 
 assign ERROR_RATE[STUCK_AT]'affected = ISA; 
 assign ERROR_RATE[STUCK_AT]'rate = RAW_STUCK_AT * (1- 
ISA[#][STUCKAT_P_MASK]); 
 // to define timing_effect 
 assign ERROR_RATE[STUCK_AT]'timing_effect = 0; 
endcomponent 

 

component OPENRISC_1200_TMR extends OPENRISC_1200; 
 // Change the area according to the extra-space needed to implement 
TMR 
 set AREA = 0.6; 
 
 // Create a constant to define the penalty required to execute a TMR 
mechanism 
 constant TMR_PENALITY: integer := 5; 
 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 35 of 36 

 

 

Version 1.1 – 31/10/2014 

 // assign to each TIMING column value, the OPENRISC_1200 original 
value incremented by the time required to perform TMR; 
 // self is a new keyword... 
 assign ISA'items[#][TIMING] = self + TMR_PENALITY; 
  
 // reset the error rate of all failure mode because the TMR solve 
them. 
 assign ERROR_RATE[STUCK_AT]'rate = 0; 
 assign ERROR_RATE[SBU]'rate = 0; 
endcomponent 

 

8.3. CLERECO Software Component Examples 

component VADD implements CLERECO_SW_COMPONENT; 
 set NAME = "Vector ADD"; 
 set VENDOR = "CRNS"; 
  
 set CLASS = "Application"; 
 set SUBCLASS = "Encoding Algorithm"; 
 set SIZE = 534; 
  
 set PROTECTION = NONE; 
  
 constant NUMBER_OF_ITEMS: integer := 10000; 
  
 assign READING_ACCESSES = 76 * NUMBER_OF_ITEMS/10000; 
 assign WRITING_ACCESSES = 75 * NUMBER_OF_ITEMS/10000; 
 assign MEMORY_ACCESSES = 151 * NUMBER_OF_ITEMS/10000;  

assign NUMBER_OF_LOOPS = 3; 
 assign ALGORITHM_COMPLEXITY = "n"; 
 
 assign TIMING_CONSTRAINS'items = { 
    [ "TEST_BENCH1", 0.0000001, 2, 0.000001 ] 
    }; 
 
 assign SFB'items = { 
  [ “permanent”, "WRONG_DATA", SFB_ITEMS, {0.893, 0.107, 0, 0, 
0.891, 0.42, 0.67, 0.413, 0.109, 0.052, 0.426} ], 
  [ “permanent”, "INSTR_REPLACEMENT", SFB_ITEMS, {0.274, 0.726, 
0, 0, 0.378, 0.348, 0.274, 0, 0.726, 0, 0.274}], 
  [ “transient”, "WRONG_DATA", SFB_ITEMS, {0.893, 0.009, 0, 
0.098, 0.987, 0.001, 0.012, 0.968, 0.013, 0, 0.019} ], 
  [ “transient”, "INSTR_REPLACEMENT ", SFB_ITEMS, {0.614, 0.309, 
0, 0.077, 0.309, 0, 0.691, 0.691, 0.309, 0, 0}] 
    }; 
endcomponent 

 

component VADD_VARIABLE_DUPLICATION extends VADD; 
 set NAME = "Vector ADD with Variable Duplication"; 
 
 set PROTECTION = VAR_DUP; 
  
 assign TIMING_CONSTRAINS'items = { 



D5.1.1 – Input parameters and system modeling formal representation (preliminary) Page 36 of 36 

 

 

Version 1.1 – 31/10/2014 

   (PROTECTION == VAR_TRIP)?[ "TEST_BENCH1", self + 0.001, 
self + 0.2 , self + 0.0015] : [ "TEST_BENCH1", self + 0.0021, self + 
0.28, self + 0.0018 ] 
     }; 
            
 assign SFB'items = { 
  [ “permanent”, "WRONG_DATA", SFB_ITEMS, {0.88, 0.067, 0, 0.53, 
0.044, 0.029, 0.927, 0.737, 0.073, 0.025, 0.165} ], 
  [ “permanent”, "INSTR_REPLACEMENT", SFB_ITEMS, {0.266, 0.726, 
0, 0.008, 0.446, 0.28, 0.274, 0, 0.726, 0, 0.274}], 
  [ “transient”, "WRONG_DATA", SFB_ITEMS, {0.907, 0.009, 0, 
0.084, 0.003, 0.001, 0.996, 0.986, 0.004, 0, 0.010} ], 
  [ “transient”, "INSTR_REPLACEMENT", SFB_ITEMS, {0.518, 0.309, 
0, 0.173, 0.309,  0, 0.691, 0.691, 0.309, 0, 0}] 
    }; 
endcomponent 

 


