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Scope of the document 

This document is an outcome of task T5.1, “Input parameters representation and standardi-
zation”, elaborated in the Description of Work (DoW) of the CLERECO project under Work 
Package 5 (WP5).  

Figure 1 depicts graphically the goal of this deliverable, its main results, the inputs it uses and 
which work packages will use its outputs.  

 

     

Figure 1 - Inputs and Outputs of this Deliverable 

 

D5.1.2 has three main goals and outcomes:  

1. The first goal is to provide the initial taxonomy of parameters associated with the 
components of a system that may potentially impact the reliability of the system. 
With the term component we consider both the hardware and the software com-
ponents of the system, as described in Deliverable D3.1 (Report on major classes of 
hardware components) and Deliverable D4.1 (Software Impact on system reliability: 
metrics and models). Parameters considered in this document also include the fail-
ure mechanisms that may affect the selected components.  

2. The second goal is to introduce a formal language for the representation of these 
parameters. This is required to enable their use within an Electronic Design Automa-
tion (EDA) tool. This represents an important step toward the implementation of a 
software framework for early reliability evaluation of complex systems.  

3. The third goal is to propose a representation for the system architecture. This is man-
datory to be able to analyze the system reliability within an EDA tool. 
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components and the introduction of the extended XDSL language used to model the archi-
tecture of the system. 

The document is organized in the following sections: 
• Introduction. This section shortly overviews background research on reliability parame-

ters and standardization of reliability related information. 
• System components characterization. This section introduces the way reliability infor-

mation of each components are described resorting to the RIIF-2 language defined in 
the framework of the project 

• System description language. This section describes how the system architecture is rep-
resented resorting to the extended XDSL language defined in the framework of the pro-
ject. 

• Conclusions. In this final section, we summarize the work done for the deliverable and 
we set a roadmap to reach a full reliability-oriented system description. 
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1. Introduction 

Nowadays, reliability information for complex digital systems is mainly confined to the tech-
nology and circuit level. At these levels, there is a deep knowledge of the different failure 
mechanisms. However, cross-layer reliability requires a comprehensive full system model that 
includes all failure types and the propagation of their effect to higher levels of the system 
stack. This is a fundamental requirement to enable improved methodologies for analyzing the 
reliability of systems built from unreliable components and process technologies. Among them 
the most challenging problem is to properly abstract information about reliability issues that 
was gained at the technology level. One key aspect is to define the correct interface to prop-
agate reliability information up in the design abstraction levels. This interface must be designed 
in such a way that important knowledge on reliability can be linked through levels. 

An overly simplified reliability description formalism often used for system level reliability 
analysis is Reliability Block Diagrams (RBDs) [1][2]. Although RBDs cannot be classified as a lan-
guage for reliability information management, they allow for simple descriptions and charac-
terization of a system. Each block in a RBD represents a system component with an associated 
failure rate. The structure of the RBD defines the logical interactions of failures within a system 
that are required to sustain correct system operation.  

Focusing on the way reliability related information could be described, we observed an in-
creased interest, within the research community, in the definition and standardization of relia-
bility oriented description languages [7]. This is an important task for the CLERECO project, 
where CLERECO is going to deliver important contributions. Representing reliability related in-
formation in a proper way is essential to distribute the reliability analysis throughout the design 
flow of a system and to propagate information across different levels of the system’s hierarchy.  

Only a few publications focus on system’s modeling for reliability analysis at the hardware 
layer [1][4][5]. A system is mainly modeled for simulation purposes in which the occurrence of a 
fault is emulated and its propagation within the system is analyzed. Relevant parameters that 
must be modeled in this scenario are limited to the fault properties  (i.e., time, feasible loca-
tions, etc.), and the final reliability metrics computed based on the simulation results. 

Some of the first attempts to model reliability information are reported in [8][9][10]. Even if 
these papers are still not working in a cross-layer scenario, the main idea is to split the system 
into a set of interrelated blocks that share information about the reliability of individual compo-
nents. While representing a first improvement, the main drawback of these approaches is that 
they oversimplify the description of a system limiting reliability related information to simple fault 
rates. 

A main step toward modeling reliability information of a system’s component has been re-
cently proposed in [6] through the Reliability Information Interchange Format (RIIF). Although 
limited to hardware components, RIIF has a set of primary characteristics that fit what is need-
ed in CLERECO for the reliability-related description of a system’s component.  

In this deliverable we aim at identifying a reliability description languages able to: 

• Describe how specific failure modes are affected by specific functional parameters of 
the component (e.g., voltage, size, etc.). 

• Enumerate the failure modes of a component. 
• Build composite components from simpler components. 
• Be scalable from cell level through to system-level. 
• Be general-purpose (not tied to a single application or system architecture). 
• Provide a mean to standardize the modeling of generic components (e.g., DRAMs) us-

ing templates. 
• Specify reliability targets that must be met. 
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Limiting the description to the hardware domain contradicts the main objective of the 
CLERECO project. Since the full system is composed of both hardware and software compo-
nents, the defined description languages must be general enough to work with both hardware 
and software components and to link information among layers in order to properly describe 
how errors propagate within the system. 

This deliverable will cover two main aspect in cross-layer reliability information description. 
First it will focus on the definition of a proper formalism to describe reliability information for 
hardware and software components of the system. Second, it will focus on an appropriate 
formalism to represent the system architecture that models how the different components are 
connected together. 
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2. System components characterization 

2.1. Taxonomy of Components Reliability Parameters 

The CLERECO project has two dedicated work packages aiming at characterizing reliability 
aspects of hardware (WP3) and software (WP4) components of a system. This section starts 
from the results of these two work packages to create a taxonomy of relevant parameters that 
characterize a component in terms of its impact on the overall system’s reliability. The main 
goal of this taxonomy is to identify similarities and differences among classes of components in 
order to be able to provide a compact and formal description of each component at the sys-
tem level. 

At a first glance, hardware and software components will be studied separately in order to 
analyze and highlight their peculiar characteristics. Common parameters of these two macro 
classes will be later merged in order to simply the system’s description formalism. The provided 
taxonomy is not meant to be exhaustive. It serves as a starting point for the definition of a ded-
icated description language, which will be flexible to enable easy updates and add-ons.  

In order to have a uniform description of the identified parameters, each reliability-related 
parameter will be described in terms of the following information items: 

• Label: a keyword identifying the parameter. 
• Description: a free text describing the meaning and use of the parameter. 
• Data Type: the parameter’s data type (e.g., integer, string, etc.) required to identify 

how the related information can be stored. 
• Domain: the set of accepted values for the parameter. 
• Unit: the measurement unit for the parameter (if applicable). 
• Mandatory: a flag indicating whether the parameter is optional or mandatory. 

2.1.1. Hardware Components Description 

Table 1 summarizes the list of parameters identified for the characterization of a hardware 
component of a system. The list includes either generic parameters required to identify the 
component as well as more specific parameters modeling reliability related aspects of the 
component.  

According to deliverable D3.1 (Report on major classes of hardware components) hard-
ware components are classified in CLERECO into five main categories: (1) Microprocessors, (2) 
Accelerators, (3) Memories, (4) Peripherals and (5) Interconnections. The Class parameter is 
used to place a component within one of these five major classes. Moreover, the Subclass pa-
rameter enables to further refine the component’s classification defining subclasses within the 
five macro-classes (e.g., within the Memory macro class, a component can be further classi-
fied into a specific memory type including flash memories, SRAM, DRAM, etc.). Technological 
information analyzed in WP2 such as the technology process, the node size and the compo-
nent area are among the most important parameters to define the reliability level of a hard-
ware component and are therefore included in the list of considered parameters together with 
higher level architectural parameters (e.g., protection mechanisms) and functional parame-
ters (e.g., set of instructions or operations implemented by the component).  
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Table 1 - Hardware Component Parameters 

Label Description Data 
Type 

Domain Unit Mandatory 

Name Component’s name String -  YES 

Vendor Component’s Vendor 
Name 

String -  YES 

Type Set to HW to identify 
hardware compo-
nents 

String {HW, SW}  YES 

Class Component’s class 
according to Deliver-
able D3.1. 

String {Microprocessor, 
Accelerator, 
Memory, Periph-
eral, Interconnec-
tion} 

 YES 

Subclass Component’s sub-
class, if needed to dis-
tinguish among com-
ponents of the same 
class 

String -  NO 

Technology Information about the 
technology process 
used to implement the 
component accord-
ing to Deliverable 
D2.1. 

String {CMOS, FinFET, …}  YES 

Node Size Technology node size 
dimension 

Number  {µm, nm, 

…} 

YES 

Area Component area. Number - {mm2, 
gates, 
bits, …} 

YES 

Word Length The number of bits 
considered as a word 
for the operations (if 
defined). According 
to D3.2.1, the wider 
the word length the 
higher is the vulnerabil-
ity of the component.  

Number - - NO 

ATPG-
difficulty 

A value to identify 
how difficult is gener-
ating ATPG test pat-
terns. According to 
D3.2.1, hard to detect 
faults can slip into 
production more easi-
ly. 

Number - - NO 
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Inherent Re-
dundancy 

The amount of occur-
rences of subcompo-
nents to identify per-se 
fault tolerant architec-
tures, according to 
D3.2.1. 

List - - NO 

Operation 
Set 

Set of all available 
operations. 

Table See Table 2 NO 

Error Rates List of error rates infor-
mation about the 
component 

Table See Table 3 YES 

Protection 
Mechanisms 

List of error protection 
mechanisms imple-
mented by the com-
ponent 

Table See Table 4 NO 

Most hardware components employed in modern digital systems are able to perform well-
defined and structured operations (e.g., instructions implemented by microprocessors and ac-
celerators, read/write operations implemented by memory blocks, data transactions imple-
mented by interconnection infrastructures, etc.). Different operations may generate different 
behaviors in case of faults, thus leading to fault masking effects or fault amplification effects. To 
properly describe the operations implemented by a component the Operation Set parameter 
describes a list of available operations each one represented according to the information 
items reported in Table 2. 

Table 2 - Operation Set Attributes 

Label Description Data 
Type 

Domain Unit Manda-
tory 

Name The operation Name String - - YES 

Type The operation type. 
Helps clustering oper-
ations (e.g., mathe-
matical operations) 

Sting - - YES 

Timing 
/Latency 

The expected timing. Number - {clock cy-
cles, se-
conds, … } 

YES 

Involved Ar-
ea 

If available the portion 
of area implementing 
the operation 

Number - {mm2, 
gates, bits, 
flip-
flops,…} 

NO 

Fault Models 
Masking 
Probabilities 

If a set of fault models 
has been investigat-
ed, masking probabili-
ties related to them 
may be available. 
They could generate 
one or more attributes 
(one for each proba-
bility) 

Number - - NO 
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When dealing with reliability related information, components are usually characterized in 
order to understand their sensitivity to a selected list of Fault Models (FMs), providing Error Rates 
for each of the considered FM. This list of error rates represents one of the most important in-
formation for systems developers to understand the impact of a component on the reliability of 
a system. Detailed and accurate error rate information for each component represents the 
starting point to identify efficient reliability evaluation strategies. The error rate is usually linked 
to a FM. Its value can be either provided as an absolute value or through the definition of a 
mathematical model that enables to compute the error rate based on a set of related varia-
bles, e.g., the area of the component, particles strike statistical rate, etc.  

Along with failures investigation, components may also be designed to include dedicated 
Protection Mechanisms able to increase the component’s reliability. A protection mechanism 
(detection, diagnosis, recovery, repair) is in general able to mitigate the effect of selected 
types of fault models. Moreover, a protection mechanism could be specifically designed to 
protect only a set of operations of the component, e.g., the ones heavily affected by faults. 
The effect of the protection mechanism can in general be mathematically modeled as a 
modification of one of the raw error rates defined for the component. 

Table 3 and Table 4 show the main attributes identified to describe both the Error Rates and 
the Protection mechanisms. 

 

Table 3 - Error Rates Attributes 

Label Description Data 
Type 

Domain Unit Manda-
tory 

Fault Type The Error Rate type.  String {permanent, in-
termittent, transi-
ent} 

- YES 

Fault Model The Related Fault 
Model 

String {stuck at, single 
bit upset, …} 

- YES 

Rate Model The rate value. Usually 
a formula taking into 
account several vari-
ables to compute the 
value or a single val-
ue. 

String 
/Number 

- {FIT, 
MTBF,…} 

YES 

Timing Model Since each fault may 
introduce an effect 
not only in the output 
but also in the opera-
tion timing, a modal of 
that impact could be 
provided. 

String 
/Number 

- {clock cy-
cles, se-
conds, …} 

NO 
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Table 4 - Mitigation Mechanism Attributes 

Label Description Data 
Type 

Domain Unit Manda-
tory 

Type The Mitigation Mech-
anism type.  

Sting - - YES 

Affected 
Fault Models 

The list of all affected 
fault models 

List - - YES 

Affected 
Operations 

The list of all affected 
operations 

List - - NO 

Rate Model The Rate model of the 
mechanisms. Usually a 
formula to compute 
the effect of the 
mechanism by evalu-
ating several variables 

String / 
Table 

- - YES 

Timing Model Since the mitigation 
mechanism could in-
troduce timing effects 
(i.e., a computation 
delay), it should be 
described here 

String / 
Table 

- - NO 

 

In order to clarify the hardware description, Table 5 provides a set of available information 
for an instance of the OpenRISC 1200 microprocessor, publicly available on the Open-
cores.com website [27], organized as explained before. To keep the description short, in this 
document we only report a very small subset of instructions, two fault models and one protec-
tion mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 



D5.1.2 – Input parameters and system modeling formal representation Page 13 of 39 

 

 

Version 1.3 – 25/03/16 

Table 5 - OpenRISC 1200 Component characterization example 

Label Data  Unit 

Name OpenRISC 1200 - 

Vendor Opencores.org - 

Type HW - 

Class Microprocessor - 

Subclass RISC - 

Technology CMOS - 

Node Size 0.18 µm 

Area 0.5 mm2 

Operation Set Name Type Timing Involved Area SBU Fault 
Mask Proba-
bility 

Stuck-At 
Mask Proba-
bility 

ADD add instruc-
tion 

1 3 * Registers 
Flip-Flop Size 

0.001 0.001 

BNE branch in-
struction 

1 Registers Flip-
Flop Size 

0.015 0.015 

MULTU multiply 
instruction 

10 4 * Registers 
Flip-Flop Size 

0.25 0.10 

SLL shift instruc-
tion 

1 2 * Registers 
Flip-Flop Size 

0.001 0.001 

… … … … … … 
 

Error Rates Type Fault Model Rate Timing Model 

Permanent Stuck_At RAW Stuck_At 
Probability * (1 - 
Operation 
Stuck_At Masking 
probability) 

NA 

Transient Single Bit Upset 
(SBU) 

SBU probability * 
(Operation In-
volved Area / Mi-
croprocessor Ar-
ea)  

Operation Timing 
+ 25% 

… … … … 
 

Protection Mechanisms Type Affected Fault 
Models 

Affected Opera-
tions 

Model 

Triple Module Re-
dundancy (TMR) 

Stuck At All Operation Time + 
(TMR computation 
& voting time) 

… … … … 
 

2.1.2. Software Components Description 

Software components are quite difficult to profile. They can be characterized by static 
properties that can be obtained by statically analyzing the software code without actually ex-
ecuting it, or by dynamic properties collected during the actual execution of the software. Dy-
namic properties are particularly difficult to collect since they are strongly influenced by the 
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software workload (i.e., the set of inputs provided to the software) used during the analysis of 
the component. 

Table 6 summarizes the list of parameters identified for the characterization of a software 
component within a system, which is derived from the software characterization activities de-
scribed in Deliverable D4.2.2 (Software Characterization Methods). The reader may notice that 
some of them overlap (e.g., name, vendor, type, class, subclass, etc.) with parameters defined 
for hardware components. This goes in the direction of trying to have a uniform and coherent 
description of all system’s components. 

 

Table 6 - Software Component Parameters 

Label Description Data 
Type 

Domain Unit Mandatory 

Name Component’s 
name 

String -  YES 

Vendor Component’s Ven-
dor Name 

String -  YES 

Type Set to SW to identify 
hardware compo-
nents 

String {HW, SW}  YES 

Class Component’s class. String {Application, 
OS} 

 YES 

Subclass Component’s sub-
class, if needed to 
distinguish among 
components of the 
same class 

String {Library, De-
vice Driver, 
…} 

 NO 

Size This parameter 
characterizes the 
component size. 

Number - {Line of 
code, in-
structions, 
executable 
size, etc.} 

NO 

Reading 
Access 
Rate 

The count of 
memory read op-
erations. It can be 
retrieved either 
from static or dy-
namic analyses. Its 
actual value must 
be linked to the 
access that could 
be generated to 
memory or cache. 

Number -  NO 

Writing Ac-
cess Rate 

The count of write 
operations. As for 
the read accesses, 
this information can 
be evaluated by 

Number -  NO 
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static or a dynamic 
analysis. 

Memory 
Accesses 

The count of real 
memory accesses. 
It can be evaluat-
ed only by dynam-
ic analysis using 
several workloads. 

Number   YES 

Cache 
Misses 

The count of cache 
misses. If the infor-
mation is available 
during a dynamic 
analysis, it counts 
the cache misses in 
case of memory 
accesses 

Number   NO 

Cache Hits The count of cache 
hits. As for Cache 
misses, if available. 

Number   NO 

Touched 
Memory 
Pages 

The count of 
memory pages 
touched by the 
component’s 
memory accesses. 

Number   YES 

Loops 
number 

The number of 
loops in the soft-
ware 

Number   NO 

Variables 
Lifetime 

The expression of 
the variable life-
time. It could be an 
average value or a 
distribution function 

Number 
/ String 

- - NO 

Algorithm 
Complexity 

The complexity of 
the component, 
i.e., computing the 
number of nested 
loops… 

String   NO 

Timing Con-
straints 

The list of all possi-
ble timing con-
strains. 

List See Table 7 NO 

Software 
Faulty Be-
haviors 

The correlation be-
tween Fault Models 
and the observed 
Software Faulty Be-
haviors 

List See Table 8 YES 

The SW components often have timing constraints. A program or software routine is ex-
pected to end and to provide some outputs. Reliability issues may affect the software timing. 
Therefore, it is important to be able to define Timing Constraints when characterizing a soft-
ware component. Since the execution time of a software component always depends on the 
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software workload, timing constraints are here defined in relation to a given workload as 
shown in Table 7. They rely on two basic data: the Workload and the Expected Execution Time. 
Moreover, if margins can be accepted in the execution time the optional Max Accepted Exe-
cution Time and Average Accepted Execution Time properties can be used. 

Table 7 - Timing Constraints Attributes 

Label Description Data 
Type 

Domain Unit Manda-
tory 

Workload The Workload used as 
reference 

String - - YES 

Expected 
Execution 
Time 

The expected execu-
tion time. Usually, pro-
vided by the devel-
oper. 

Number - {clock cycles} YES 

Maximum 
Accepted 
Execution 
Time 

The maximum execu-
tion time that can let 
consider the compo-
nent as correctly 
working (even if later 
than expected). 

Number - {clock cycles} NO 

Average Ac-
cepted Exe-
cution Time 

The average execu-
tion time, computed 
resorting to several 
runs. 

Number - {clock cycles} NO 

 

Eventually, we may need information about the classes of Software Faulty Behaviors (SFB)5 
associated to the component. In this case, a list of Software Fault Models (SFM) and occurring 
SFBs must be provided. They will help, at a first glance, to define among all SFBs the ones of in-
terest during reliability estimation. The reader may refer to deliverable D4.1 for a detailed tax-
onomy of SFMs and SFBs identified in the project. 

Table 8 - Software Faulty Behaviors Attributes 

Label Description Data 
Type 

Domain Unit Manda-
tory 

Fault Type The Software Fault 
Model Type. They are 
similar to the HW ones. 

String {transient, inter-
mittent, perma-
nent} 

- YES 

Fault Model The Related Software 
Fault Model. 

String - - YES 

Occurring 
SFB 

The list of all expected 
Software Faulty Be-
haviors. 

List - - YES 

Occurring The occurrence prob- List - - YES 

                                                        

 
5 See section 4 of Deliverable D4.1 (Software Impact on system reliability: metrics and models) for more details. 
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SFB Probabili-
ties 

ability for each SFB 

In order to better understand the software component description, Table 9 provides an ex-
ample of description of a simple software application performing the sum of two vectors. Fault 
injection has been conducted on this application to extract useful reliability information6.  
Rates are calculated with respect to a maximum run of 10000 elements in the vector.  

Table 9 - Software Component Characterization example 

Label Data  Unit 

Name ADD Vector Application - 

Vendor CLERECO - 

Type SW - 

Class Application - 

Subclass Vector Operation Algorithm - 

Size 453 - 

Reading Access Rate 76 * # of vector element / 10000 - 

Writing Access Rate 75 * # of vector element / 10000 - 

Memory Accesses 151 * # of vector element / 10000 - 

Loops Number 3 - 

Algorithm Complexity N - 

Timing Constraints Workload Expected Exe-
cution Time 

Maximum Accept-
ed Execution Time 

Average Accepted 
Execution Time 

Test Bench #1 10-6 2 10-5 

…    
 

Software Faulty Behaviors Fault Type Fault Model Occurring SFB Occurring SFB 
Probabilities 

Permanent Wrong Data In-Time, Unde-
tectable, Early, 
Late, Responsive, 
Full Unresponsive, 
Partially Unrespon-
sive, Data Benign, 
No Data, EDC, 
Non-EDC 

0.893, 0.107, 0, 0, 
0.891, 0.42, 0.67, 
0.413, 0.109, 0.052, 
0.426 

Permanent Instruction Re-
placement 

In-Time, Unde-
tectable, Early, 
Late, Responsive, 
Full Unresponsive, 
Partially Unrespon-
sive, Data Benign, 
No Data, EDC, 
Non-EDC 

0.274, 0.726, 0, 0, 
0.378, 0.348, 0.274, 
0, 0.726, 0, 0.274 

 …   
 

                                                        

 
6 For further details refers to Deliverable D4.2.2 (Software Characterization Methods) 
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2.2. Components Description Language 

Once a set of relevant parameters has been identified in order to characterize reliability of 
HW and SW components in a system, these parameters must be described exploiting a de-
scription language that enables easy access of this information in the reliability evaluation EDA 
tools developed within CLERECO. 

A language for reliability information description and system interaction modeling needs to 
include certain features to enrich the description: 

• Definition of reliability oriented keywords. Reliability has well defined parameters 
that must be associated to predefined keywords in the language. Therefore, reliabil-
ity oriented languages, if available, will be preferred over general-purpose lan-
guage to build as a starting point for the activities of the project.  

• Template mechanism. HW and SW components can be in general clustered into 
classes that share similar information. Defining templates of components could be 
helpful. It can potentially reduce the time required to describe a new component 
and improve the correctness and consistency of the description. 

• Inheritance mechanism. Components can be often classified into families that share 
overall characteristics with small differences (e.g., different models of a single mi-
croprocessor). An inheritance mechanism will reduce redundancy in the description 
by describing at each hierarchical level only the information that help differentiat-
ing the component from the higher level. A clear drawback is that, resorting to in-
heritance, the readability by humans will be more complex. 

• Values as formula. While most reliability parameters assume exact values, some of 
them can be defined as function of other parameter. A reliability description lan-
guage must be able to support this.  

• Reliability related data types. General-purpose languages define very simple data 
types. To manage reliability information, reliability oriented data structures must be 
available in the language. 

• HW and SW description. Since CLERECO takes into account the whole system’s 
stack, it is mandatory to have a language general enough to describe characteris-
tics of both hardware and software components.   

This section reviews a set of already exiting languages for information modeling (both gen-
eral purpose and reliability oriented) with the goal to identify a candidate language to serve 
as a starting point for the definition of a component description language in CLERECO. Our 
analysis also takes into account the possibility of re-using tools that have already been devel-
oped, thus reducing the effort to coding effort in the project. Specifically, we look for: 

• The availability of (open source) parsers.  
• Extensive language documentation.  

The languages considered in this preliminary analysis are: 

1. The Extensible Markup Language (XML). 
2. The Unified Modeling Language (UML). 
3. The Reliability Block Diagram (RBD). 
4. The Reliability Information Interchange Format (RIIF). 

2.2.1. XML 

The Extensible Markup Language (XML) is a markup language that defines a set of rules for 
encoding documents in a format that is both human-readable and machine-readable. It is 
defined in the XML 1.0 Specification produced by the World Wide Web Consortium (W3C) [15]. 
It is a textual data format with strong support via Unicode for different human languages. The 
design goals of XML emphasize simplicity, generality, and usability, specifically addressing In-
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ternet as final platform. The design of XML focuses on documents but it is widely used for the 
representation of arbitrary data structures, [16].  

XML, as a markup language, enables to describe any type of required keyword (so called 
tags in the XML syntax). However, it does not provide any direct template or inheritance 
mechanism. The only way to introduce templates and inheritance would be resorting to some 
intermediate representation of the information, such as the Document Object Model (DOM) 
[17]. This means building the mechanisms beyond the description, which seems a rather useful 
feature. Looking at the ability of describing values and their metrics, the language supports 
complex descriptions of values by resorting to tags and tag attributes. In XML, tags can be 
freely defined, it is therefore feasible to properly describe HW and SW components and let the 
user to define its own keywords. Serious concerns arise when formulas need to be defined in-
stead of precise values. The ability of the language to describe formulas is out of discussion but 
the compliance with actual parsers must be verified. 

In terms of tools and documentation, thanks to its wide diffusion, XML is quite well supported 
and large amount of information can be found on the Internet. 

2.2.2. UML 

The Unified Modeling Language (UML) offers a way to visualize the system's architectural de-
sign in a diagram, including elements such as activities (jobs), individual components of the 
system, and the interaction among components. Although originally intended solely for object-
oriented design documentation, the UML has been extended to cover a larger set of applica-
tion fields. Its general-purpose structure makes it suitable for the description of both HW and SW 
system’s components.  Nowadays the UML is adopted and managed by the Object Man-
agement Group (OMG) and it is an ISO standard, [18]. 

Regarding the reliability context, UML is a general-purpose language and modeling ap-
proach. Therefore, no reliability keywords are defined in the language, but they can be easily 
defined in the form of variables within a component. Moreover, UML allows both templates 
and inheritance because it follows the object-oriented paradigm [19]. A huge limitation stems 
in the possibility of defining metrics as well as using formulas instead of values for given param-
eters. Within classes, variables and processes are the only elements that can be described and 
no further extension is easy to plan.  

While UML is more complex compared to XML, a very wide and active community guaran-
tees the availability of parsers, tools and abundant documentation.  

2.2.3. RBD 

Reliability Block Diagrams (RBDs) do not belong exactly to the class of description lan-
guages but since they are largely use in the reliability evaluation [20][21], the CLERECO project 
takes them into account. An RBD is a diagrammatic method to analyze large and complex 
systems using block diagrams to show network relationships and to exploit how component re-
liability contributes to the success or failure of a complex system. RBD is also known as a de-
pendence diagram (DD). Each block represents a component of the system with a failure rate. 
The structure of the RBD defines the logical interactions of failures within a system that are re-
quired to sustain system operation. 

While the application context is the reliability of systems, RBD do not offer high flexibility in 
the characterization of single components. Usually, the block description is limited to the failure 
rate of each component. The RBD simplicity also means that it does not support template and 
inheritance mechanisms, along with metrics associated to the parameters and formulas in-
stead of values. This very small set of information may require extending the RBD description, 
basically completely changing the language. Since the actual version of the language speci-
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fies failure rates only, modeling of HW and SW components within the same system is not chal-
lenging. 

There is a quite large set of commercial tools exploiting RBD descriptions while we observed 
a general lack of open source software and libraries. A set of commercial tools exploiting RBD 
for reliability analysis can be found in Section 4 of Deliverable D7.4.1 (Exploitation Plan Version 
1).  

2.2.4. RIIF 

The Reliability Information Interchange Format (RIIF) is an application-specific language tar-
geting the problem of modeling failure propagation in System on Chips (SoCs). RIIF was first 
proposed in [6] and was further developed during a dedicated workshop at Design and Test in 
Europe Conference 2013 (DATE’13) [24][25]. It expresses the failure mechanisms associated 
with a generic hardware component. Complex components can be built by combining sim-
pler components and the propagation of failures from lower to higher levels can be expressed.  

The language already includes reliability keywords helping the description of failure mecha-
nisms and their propagations (e.g., failure rates can be express either as a single value or a 
formula). Moreover, each parameter can be defined including the unit (keyword for metric) 
associated with, and its value can be a formula expressing it as a function of other parameters. 
Since RIIF has been developed taking into account real use cases, it offers a very rudimental 
approach to template and inheritance mechanisms. However, this mechanism is quite simple 
and may require significant improvements. The language usage is focused on HW compo-
nents, thus including SW components may require extending the language. 

Very recently a Java tool including a command-line interface to read, parse, calculate, 
navigate and write RIIF files has been released [26]. Although it is a very limited version, it 
comes under an open source license, thus it can be extended and maintained open to the 
community. On the other hand, documentation is still very poor, mainly related to the few pa-
pers already published, [1][23][24][25]. The early stage of development of the RIIF language 
brings an opportunity to the CLERECO project, which most probably must be investigated.  

2.2.5. Languages comparison 

Table 10 proposes a general comparison of the characteristics of all languages overviewed 
in the previous sections. 

Table 10 – Reliability Languages Investigation Comparison Summary 

Characteristics Language 

XML UML RBD RIIF 

Reliability Key-
words 

NO NO YES YES 

Templates NO YES NO PARTIAL 

Inheritance NO YES NO PARTIAL 

Formulas YES NO NO YES 

Metrics YES NO NO YES 

HW & SW YES YES YES NO 

Parser YES YES NO YES 

Documentation YES YES NO NO 
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From the analysis of the table it is clear that RIIF is the language that fits more requirements 
than other languages. Going into details, more than the others, RIIF conjugates the flexibility of 
a general-purpose language with the ability of dealing with specific reliability related parame-
ters (see [23] for more examples). The built-in ability of defining values as a function of other 
parameters, the possibility of specifying measurement units associated to a parameter’s value 
and the strong focus on real use cases, suggest that the language can be improved to fit all 
CLERECO requirements with reasonable effort. Moreover, since the reliability community seems 
to support RIIF as the new generation language to model and describe systems and compo-
nents in the reliability context [23], RIIF seems to be a very good candidate as base language 
for the CLERECO project. The lack of documentation is of course a main obstacle to the use of 
this language that may impact on the learning curve compared to other languages. Never-
theless, the current version of the language is in a very early development stage and further 
documentation can be expected with the next release possibly including improvements de-
veloped within the CLERECO project. To mitigate this risk a strict collaboration with iROC Tech-
nologies, which has first presented the RIIF language has been established in order to work on 
a joined extension to the language. 

Since CLERECO is going to investigate reliability estimation models with a larger scope com-
pared to the one considered in RIIF (e.g., RIIF focuses on HW components only) within task T5.1 
there was an effort to improve the original language with a set of extensions to meet the spe-
cific CLERECO need. The resulting language has been named RIIF-2. This extended language 
will be described in the following sections 

2.3. RIIF-2 definition  

The goal of the RIIF-2 language is twofold: (i) enabling new, powerful language structures 
able to cope with the complexity of the full system stack, and (ii) extending the RIIF description 
capability to the software components of the system. The RIIF language is extended in order to 
provide additional flexibility in the description by introducing new keywords and statements 
and by broadening the usage of some already defined language mechanisms. In particular, 
the following extensions have been introduced:  

• An advanced template mechanism. In order to exploit modularity and reuse for ge-
neric components, it is important to ensure that description of similar modules (e.g., 
SRAMs from different suppliers) is consistent. RIIF already includes a simple template 
mechanism to accomplish this goal, which is extended with dedicated statements 
to improve the readability of the language and to allow for complex uses such as 
implementation of multiple templates from a single component.  

• A full inheritance mechanism. Components can be often classified into families that 
share overall characteristics with small differences (e.g., different models of a single 
microprocessor). The availability of an inheritance mechanism will significantly re-
duce redundancy in the description of families of components enabling for opti-
mized information management, and reduced risk of modeling errors.  

Complex data structures. Reliability information may require data aggregation to ease re-
current operations during computational activities such as failure rates evaluations. Complex 
data structures introduced in the RIIF-2 language include associative arrays and clustered data 
in the form of tables. Moreover a new indexing operator to easily access subsets of data in a 
table is proposed. 

2.3.1. Brief RIIF Overview 

This section reviews the basic RIIF concepts. Interested readers may refer to [6] for a detailed 
description of the initial language. In RIIF, the keyword component is used to model a system 
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component representing the main RIIF entity. Together with the component two additional 
types of entities are available:  

1. the reliability requirements that a component needs to meet (requirement keyword),  
2. the environment under which the component is going to operate (environment 

keyword).  

Figure 2 reports the RIIF syntax to define components, requirements and environments 
where <LABEL> is a unique name to identify the instance of the entity. 

 
component <LABEL>; 
  … 
endcomponent 

requirement <LABEL>; 
  … 
endrequirement 

environment <LABEL>; 
  … 
endenvironment 

Figure 2 RIIF component, requirement and environment definitions 

To parameterize entities, RIIF offers two alternatives (keywords): constants (constant key-
word) and parameters (parameter keyword).  

The main difference is that constants express static values whereas parameters express vari-
able values computed as a function of other constants and parameters. Constants are in gen-
eral used to describe constant internal information of the component while parameters are in 
general used to describe information exposed by the component to the other components.  

In terms of reliability, within a component, the user is able to declare different failure modes 
(fail_mode keyword) and their rate of occurrence can be expressed as a function of any other 
already defined parameters or other failure modes.  

The following RIIF snapshot proposes an example of basic usage of constants and parame-
ters applied to the description of a register file component. 

component REGISTER_FILE; 
… 

 parameter NUMBER_REGISTERS: integer := 8; 
 parameter FF_PER_REG: integer := NUMBER_REGISTERS * 32; 
 constant SBU_TEMPERATURE_EFFECT_COEFF: float := 5.6e-12; 
endcomponent 

Both parameters and constants must define the type of the associated information. The syn-
tax to define a parameter or a constant is based on the following code: 

 <keyword> <label>: <type> [:= <value>]; 

Basic data types defined by RIIF are: boolean, integer, float, enum (as for an enumerative of 
items), and time (to define timing related information). The value of is optional. It can be set 
later in the definition and the actual value can be either explicit or a formula (FF_PER_REG in 
the example is expressed in terms of NUMBER_OF REGISTER value). 

Each RIIF entity (component, environment, requirement) offer a getValue function that can 
be used to retrieve the falue of constant and parameters for the component as reported in the 
following code: 

parameter CURR_TEMPERATURE: float; 
assign CURR_TEMPERATURE'value = environment.getValue(TEMPERATURE); 

In this case, the parameter CURR_TEMPERATURE is linked to the environment (defined else-
where), which owns a parameter TEMPERATURE. The example also highlights how values to pa-
rameters can be associated after their definition suing the assign keyword: 

 assign <label>’<attribute> = <value>; 
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The assign keyword set a value to an attribute of a parameter (referred through its label). 
Attributes are open, and allow specifying aggregated information, such as units (metrics) for a 
parameter value: 

 parameter NODE_SIZE: float := 0.18; 
 assign NODE_SIZE'unit = um; 

Eventually, users define failure modes almost in the same way they define parameters. As in-
stance, if a user wants to define a Single Bit Upset failure mode he may resort to the following 
snippet of code: 

 fail_mode SBU; 
 assign SBU'description = "Single bit upset" ; 
 assign SBU'unit = FITS; 

The fail_mode keyword helps distinguish between general parameters and failure modes, 
but the way attributes are defined is the same for parameters:  

assign SBU'rate = NUMBER_REGISTERS*FF_PER_REG/pow(2,20); 

In this example, the rate of the SBU is a formula taking into account two (previously) defined 
parameters. 

Environments and Requirements follow the same syntax of components. As an example, we 
propose the following “cold” environment: 

environment COLD_COMPONENT_ENV;  
 // Temperature   
 parameter TEMPERATURE: float; 
 assign TEMPERATURE'unit = C; 
 assign TEMPERATURE'VALUE = 30; 
 
 // Voltage  
 parameter VOLTAGE : float; 

assign VOLTAGE'VALUE = 1.0; 
endenvironment 

In the environment we set two parameters: the temperature and the (reference) voltage. If 
needed, units can be defined as well. The concept of environment is particularly important in 
CLERECO to model the concept of operation mode defined in deliverable D2.3 (Definition of 
operation modes for future systems). 

As an additional example, Figure 3 shows the basic usage of constants and parameters ap-
plied to the definition of a simple SRAM component.  
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Figure 3: RIIF description of a simple SRAM component 

The following section will introduce the RIIF-2 extensions introduced in CLERECO 

2.3.2. RIIF-2 Extensions 

In RIIF, the possibility to define templates is limited to the definition of a hardware compo-
nent in which common desired information items are listed without providing their values. While 
this mechanism is effective for small libraries of components, an explicit set of statements to 
define and manipulate templates is desirable to improve the robustness of RIIF descriptions in 
case of large libraries and to ease the implementation of automatic verification tools. In order 
to implement a full template mechanism (such as in most high-level programming languages), 
RIIF-2 introduces a new template statement. A template enables one to define a set of con-
stants, parameters and failure modes that must be defined in all components implementing 
the template. The example of Figure 4 defines a template for an SRAM (lines 1-24) and one for 
a flip-chip package (lines 33-44). Predefined values for parameters and constants can be de-
fined directly in the template as for instance PACKAGE_TEMP’UNITS (line 39). In a template, 
predefined values can be assigned either inline or through the new introduced keyword im-
pose. The value of predefined parameters and constants does not need to be reassigned in 
those components implementing the template. Undefined values can be defined through the 
use of the abstract keyword. Within a template, each definition identified with the abstract 

01:component SIMPLE_SRAM; 
02: 
03:   // Parameter Declaration 
04:   parameter VOLTAGE : float := 1.0; 
05:   assign CORE_VOLTAGE'UNITS = VOLTS; 
06:   parameter DIE_TEMP : float := 25.0; 
07:   assign VOLTAGE'UNITS = CELSIUS; 
08: 
09:   // Parameter to be modified by user 
10:   parameter NUM_BITS : integer := 1024*1024; //number of bits 
11: 
12:   // Constants specific to modeling this SRAM 
13:   constant A_DIFF : float    := 3.2; 
14:   constant Q_COL_EFF : float := 0.6; 
15:   constant MBU_RATIO : float := 0.25; 
16: 
17:   // Define Radiation Induced Failure Modes 
18:   fail_mode SBU;  // Rad. induced single bit error 
19:   fail_mode MBU;  // Rad. induced multiple bit error (same 
word) 
20:   fail_mode SEFI; // Radiation induced failure of entire device 
21:    
22:   assign SBU'UNITS = FITS; 
23:   assign MBU'UNITS = FITS; 
24:   assign SEFI'UNITS = FITS; 
25: 
26:   // Equations to specify rate of defined failure modes 
27:   assign SBU'RATE = NUM_BITS * A_DIFF * EXP( - CORE_VOLTAGE /  
                        Q_COL_EFF );  
28:   assign MBU'RATE = SBE'RATE * MBU_RATIO; 
29:   assign SEFI'RATE = 10; // obtained from testing 
30: 
31:endcomponent SIMPLE_SRAM 
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keyword simply includes a label and a data type as for instance the definition of the 
CORE_VOLTAGE parameter (lines 4-7). Abstract parameters identify mandatory information 
that must be defined in all components implementing the template. Once a template is ap-
plied to a component, the user is required to define the actual values for all abstract items de-
scribed within the template. The application of a template to a component is described 
through the new keyword implements as for example at line 46 where a flip-chip SRAM is de-
fined. Multiple templates can be implemented by the same components, thus allowing com-
plex usages when a complex hierarchy of components must be described. In our example the 
defined component implements both the SRAM and the package template. 

 

01:template SRAM_TEMPLATE; 
02: 
03:  // All SRAMs must voltage, temperature and size information 
04:  abstract constant          NAME : string; 
05:  abstract constant  MANUFACTURER : string; 
06:  abstract parameter CORE_VOLTAGE : float; 
07:  abstract parameter     NUM_BITS : integer; 
08: 
09:  // All SRAMs must have radiation induced failure modes 
10:  fail_mode RAD_FM[]; 
11:  // All SRAMs must have permanent failure modes 
12:  fail_mode PER_FM[]; 
13: 
14:  abstract        RAD_FM[SBU]’RATE;  // single bit upset 
15:  impose          RAD_FM[SBU]’UNITS  = FITS;   
16:  abstract        RAD_FM[MBU]’RATE;  // multiple bit upset 
17:  impose          RAD_FM[MBU]’UNITS  = FITS;  
18:  abstract        RAD_FM[SEFI]’RATE;  // control logic errors 
19:  impose          RAD_FM[SEFI]’UNITS = FITS;  
20:  abstract        RAD_FM[SEL]’RATE;  // single event latchup 
21:  impose          RAD_FM[SEL]’UNITS = FITS;  
22:  abstract        PER_FM[SSAF]’RATE;  // single stuck-at 
fault  
23:  impose          PER_FM[SSAF]’UNITS = FITS;  
24:endtemplate 
25: 
26:template SYNCSRAM_TEMPLATE extends SRAM_TEMPLATE; 
27:  //All synchronous SRAM must specify the clock speed. 
28:  abstract parameter CLK_Speed      : integer; 
29:  impose   CLK_Speed’UNITS= MHZ; 
30:   ..... 
31:endtemplate 
32: 
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Figure 4: RIIF-2 description of a flip-chip synchronous SRAM. 

The expression power of the improved template mechanism is further increased when cou-
pled with the introduction of the inheritance capability of RIIF-2. Inheritance is described by 
redefining the use of the extends keyword used in RIIF to denote the implementation of com-
ponents from templates. 

Through inheritance, both templates and components can be redefined, thus creating new 
templates or components that inherit all the definitions contained in their parent and modify 
only those portions that differ. Lines 26-31 of Figure 4 define a synchronous SRAM template that 
extends the basic SRAM definition. This refined template defines the SRAM clock frequency as 
an additional parameter required to characterize the component. Together with the extends 
keyword the new keyword self is used whenever a child template/component needs to rede-
fine the value of a constant/parameter based on the value of the same constant/parameter 
defined in the parent template/component. An example of usage of this mechanism is pre-
sented subsequently in Figure 5 later in this section.  

Further language extensions proposed in RIIF-2 focus on the introduction of complex data 
structures. The RIIF language only supports the definition of fixed size numerically indexed ar-
rays. However, several cases do exist in which information must be associated to a set of labels 
to make it easy for retrieval during automated system reliability analysis. For this reason, the RIIF-
2 language includes a new associative array data type. An example of an associative array is 
the definition of the SRAM failure modes in Figure 4. In order to group them into radiation in-
duced failure modes and permanent failure modes they are defined through two associative 
arrays (RAD_FM and PER_FM at lines 10 and 12). The empty brackets are used to denote the 
associative arrays. In particular they indicate that the number of elements is undefined and 
new elements can be freely appended to the array. The index of each element is defined 

33:template FLIP_CHIP_TEMPLATE; 
34: 
35:// All flip-chip packages must contain the following info. 
36: abstract constant                NAME : string; 
37: abstract parameter          NUM_BUMPS : integer; 
38: abstract parameter       PACKAGE_TEMP : float; 
39: impose     PACKAGE_TEMP’UNITS = C; 
40: 
41: // All Flip-Chip packages have these failure mechanisms 
42: abstract fail_mode       OPEN_BUMP; 
43: abstract fail_mode       DIE_CRACK; 
44:endtemplate 
45: 
46:component CY7C1263XV18 implements 
SYNCSRAM_TEMPLATE,FLIP_CHIP_TEMPLATE; 
47: 
48: set SYNCSRAM_TEMPLATE.NAME  = "CY7C1263VX18"; 
49: set MANUFACTURER            = "CYPRESS"; 
50: set CORE_VOLTAGE            = 1.8; 
51: set NUM_BITS                = 37748736;   // 36 Mbit 
52: set CLK_Speed               = 633; 
53: set FLIP_CHIP_TEMPLATE.NAME = “165-LBGA”; 
54: set NUM_BUMPS    = 165; 
55: set PACKAGE_TEMP’MIN   = 0; 
56: set PACKAGE_TEMP’MAX   = 70; 
 
57: set RAD_FM[SBU]’RATE    = .....; 
58: set PER_FM[SSAF]’RATE       = .....; 
59: endcomponent  
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when the element is created: <VECTOR_NAME>[<element_label>] = <value>. In this way, there 
is no need to number the vector elements and the access is based on the label used as an 
index. 

Finally, the extended RIIF language introduces a new data type: table. Tables are the per-
fect data structure whenever groups of heterogeneous information must be aggregated to-
gether to maintain their informative content. The definition of a table includes the definition of 
a header defining the columns of the table and the definition of the table content. An exam-
ple of its use is provided in Figure 5 and Figure 6 later in the document. Together with the table 
data type a new operator denoted with the symbol [#] is introduced. When applied to a table 
column it denotes an iterative access to all rows of the table. It is particularly useful whenever 
the value of a parameter must be expressed as a function of values contained in a table. 

The proposed RIIF-2 extensions can be efficiently used to describe software componentts. 
Software components are in general difficult to profile. They can be characterized statically 
(i.e., without execution), or dynamically (i.e., collecting run-time information). Dynamic proper-
ties are particularly difficult to collect since they are strongly related to the input data sets.  

We show here how the expression power of RIIF-2 can be efficiently used to model and 
manage reliability related information for software components, thus addressing the full system 
stack. We start from the set of software parameters described in Table 6, Table 7 and Table 8. 

One of the main information to describe when dealing with software components is that 
hardware level failure modes (e.g., SBU) may deviate the correct software execution generat-
ing a set of possible software faulty behaviors (SFBs). As reported before we model this through 
the definition of a set of software fault models (SFMs). Each SFM translates the effect of a 
hardware failure model into the software domain (e.g., an SBU translates into a wrong data of 
an instruction). SFMs represent the link between the hardware and the software layer of a full 
system stack. The SFBs describe how a software component reacts to a given SFM.  

Figure 5 shows an example of how RIIF-2 can be used to model a system including hard-
ware and software. For brevity, the model of the full hardware layer is reduced to a single 
hardware component VECTORCALC_CORE able to execute vector computations. In this 
component we assume that fault injection experiments have been used to measure the occur-
rence rate of a set of SFMs in the presence of hardware failure modes and this information has 
been modeled by the SW_FM table (lines 5-9). Lines 12-32 define a high-level SW_COMPONENT 
template modeling the above-mentioned basic information items characterizing a software 
module. It uses the extended RIIF-2 template formalism. In this template the constant SFB_ITEMS 
defines a set of labels that identify 11 SFBs expressing the time properties of the module 
(IN_TIME, UNDETECTABLE, EARLY, LATE), the responsiveness of the module (FULL_UNRESPONSIVE, 
PARTIAL_UNRESPONSIVE, RESPONSIVE) and the data integrity of the module (DATA_BENIGN, 
NO_DATA, EDC, NON-EDC). Egregious Data Corruptions (EDCs) indicate software outcomes 
that significantly deviate from the error-free outcomes while NON-EDC indicate small or no de-
viations in the obtained results.  

Line 20 introduces a key information for the template. Each instance of SW_COMPONENT 
must define the target hardware execution platform through the new RIIF-2 keyword platform 
thus establishing a link between the software and the hardware layer as explained later in this 
section. Lines 23-30 show instead an example of the use of the newly introduced table data 
structure to describe both time constraints and SFBs. Both items cannot be described as simple 
single-value parameters, but require an aggregation of a set of heterogeneous information. In 
particular the template declares the two tables and their headers that in turn define the infor-
mation that will be stored when the template will be implemented by a component. A table 
header is a vector whose elements are defined inline with a comma separated list enclosed 
within {} brackets. The number of elements of the vector sets the header dimension dynamical-
ly.  
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To further emphasize on the capability of the table data structure, let us consider the im-
plementation of the SW_COMPONENT template reported in lines 34-54 of Figure 5. In this com-
ponent besides setting the basic information defined in the template line 43 sets the value of 
the target platform and links this software to the VECTORCALC_CORE. Through the SW_FM ta-
ble of the VECTORCALC_CORE component that links its failure modes to the SFMs, and through 
the SFB table of the VADD component that links each SFM to the SFB reliability information can 
be efficiently propagated from the hardware to the software layer of the stack. Moreover, line 
44 shows how the RIIF child_component keyword already available in the initial version of the 
language can be used to model the software hierarchy. 

In the VADD component, the use of the new table data type can be appreciated. Lines 46-
48 define the items (rows) of the TIME_CONSTRAINTS table. Each item reports the execution 
time (EXEC_TIME column), the average and the maximum time (AVG_TIME, MAX_TIME col-
umns) for a given workload (WORKLOAD column). An even more complex use of the table da-
ta type is used in lines 48-52 to define the items of the SFB table. In this case, each row of the 
table identifies an SFM. The probabilities of occurrence of each SFB in the presence of the SFM 
are defined. This is accomplished through the two columns named OCCURRING_SFB represent-
ing the list of SFBs and OCCURRING_SFB_RATE representing the associated probabilities. These 
two elements are two arrays defined within a column of a table. Resorting to the flexibility of 
these new data structures we have been able to represent complex data in a very compact 
and expressive manner.  

Figure 6 (lines 1-12) shows instead an example of how inheritance can be easily used to de-
fine a modified version of the same software application implementing a software error detec-
tion mechanism based on variable duplication. In this example we show how the self operator 
can be used to easily model the time overhead introduced by the inserted protection mecha-
nism w.r.t. the timing of the original application. For the sake of readability, the definition of the 
improved masking probabilities is not reported.  

Finally, Figure 6  (lines 13-20) shows another way to describe the component proposed in 
Figure 6. In this case we use the iterative operator [#] introduced in RIIF-2 to redefine all entries 
of the TIME_CONSTRAINTS table with a single definition. The operator applies the same formula 
to all entries of a given table. This feature is particularly useful when managing big tables 
whose lines must be processed according to the same criteria, for example, scaling of all fail-
ure rates. 
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01:component VECTORCALC_CORE; 
02:  // An hardware component performing vectorial calculations 
  ... 
03:  parameter fail_mode SBU; 
04:  assign SBU’RATE = 10; //obtained from radiation tests 
  ... 
05:  parameter SW_FM: table; 
06:  assign SW_FM’HEADERS = {FAILMODE, SFM, RATE}; 
07:  assign SW_FM’ITEMS = { // Obtained from fault injection 
08: [ “SBU”, “WRONG_DATA”, 0.3 * SBU’RATE ], 
09: [ “SBU”, “WRONG_INSTRUCTION”, 0.2 * SBU’RATE ], ... }; 
10:endcomponent 
11: 
12:template SW_COMPONENT; 
13:  // All programs must define the name, size, … 
14:  abstract parameter         NAME : string; 
15:  abstract parameter         SIZE : integer; 
16:  abstract parameter        LOOPS : integer ;  
17:  abstract parameter   PROTECTION : enum {NONE, VAR_DUP, ...};  
18:  abstract parameter  READ_ACCESS : integer ; 
19:  abstract parameter WRITE_ACCESS : integer ; 
20:  abstract platform   executed_on; 
 
21:  // List of possible SFB considered in our library  
22:  abstract constant    SFB_LIST:= {IN_TIME,DETECTABLE, EARLY,  
     LATE, FULL_UNRESPONSIVE, PARTIAL_UNRESPONSIVE, RESPONSIVE,  
     DATA_BENIGN, NO_DATA,EDC, NON-EDC}; 
24: 
25:  // Timing constraints depending on the workload 
26:  abstract parameter TIMING_CONSTRAINTS   : table; 
27:  impose             TIMING_CONSTRAINTS’HEADERS = {WORKLOAD,  
                        EXEC_TIM, MAX_TIME, AVG_TIME}; 
28: 
29:  // Software faulty behaviors table defining the probability  
     of occurrence of each SFB given the occurrence of each SFM. 
30:  abstract parameter SFB             : table; 
31:  impose             SFB’HEADERS = {SFM_TYPE, SFM,  
                        OCCURING_SFB, OCCURRING_SFB_RATE}; 
32:endtemplate 
33: 
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Figure 5: RIIF-2 System modeling with both hardware and software components 

 

Figure 6: RIIF-2 Vector_ADD software with protection mechanisms. 

 

 

34:component VADD implements SW_COMPONENT; 
35:  set NAME                  = “Vector ADD”; 
36:  set SIZE            = 524; 
37:  set SIZE’UNITS            = instructions; 
38:  set PROTECTION            = NONE; 
39:  constant NUMBER_OF_ITEMS := 10000; 
40:  set READ_ACCESS           = 76 * NUMBER_OF_ITEMS / 10000; 
41:  set WRITE_ACCESS          = 75 * NUMBER_OF_ITEMS / 10000; 
42:  set LOOPS                 = 3; 
43:  set executed_on           = VECTORCALC_CORE;  
44:  child_component  VPRINT; 
45:  ..... 
46:  assign TIMING_CONSTRAINTS’ITEMS = { 
47:    [ TEST_BENCH1, 0.0000001, 2, 0.000001 ], 
48:    [ TEST_BENCH2, 0.0000003, 2.1, 0.0000004 ] }; 
49:  assign SFB’ITEMS = { 
50:    [ "permanent", "WRONG_DATA", SFB_ITEMS, { 0.893, 0.107, 0,  
       0, 0.891, 0.42, 0.67, 0.413, 0.109, 0.052, 0.426 } ], 
51:    [ "permanent", "INSTR_REPLACEMENT", SFB_ITEMS, { 0.274,  
       0.726, 0, 0, 0.378, 0.348, 0.274, 0, 0.726, 0, 0.274 } ], 
52:    [ "transient", "WRONG_DATA", SFB_ITEMS, { 0.893, 0.009, 0,  
       0.098, 0.987, 0.001, 0.012, 0.968, 0.013, 0, 0.019 } ],  
53:    [ "transient", "INSTR_REPLACEMENT", SFB_ITEMS, { 0.614,  
       0.309, 0, 0.077, 0.309, 0, 0.691, 0.691, 0.309, 0, 0 } ]}; 
54:endcomponent 

 

01:component VADD_VARIABLE_DUPLICATION_VER1 extends VADD;  
02:  set NAME = "Vector ADD with Variable Duplication";  
03:  set PROTECTION = VAR_DUP;  
04:  assign TIMING_CONSTRAINS’ITEMS = {  
05:   (PROTECTION == VAR_DUP)? 
06:    [ "TEST_BENCH1", self+0.001, self+0.2, self+0.0015] :  
07:   [ "TEST_BENCH1", self , self , self ],  
08:   (PROTECTION == VAR_DUP)?  
09:   [ "TEST_BENCH2", self+0.001, self+0.2, self+0.0015] :  
10:   [ "TEST_BENCH2", self , self , self ] };   
11:endcomponent 
12: 
13:component VADD_VARIABLE_DUPLICATION_VER2 extends VADD;  
  ... 
14:  assign TIMING_CONSTRAINS’ITEMS[#][EXEC_TIME]=  
15:   (PROTECTION == VAR_DUP)? self + 0.001 : self ;  
16:  assign TIMING_CONSTRAINS’ITEMS [#][MAX_TIME]=  
17:   (PROTECTION == VAR_DUP)? self + 0.2 : self ;  
18:  assign TIMING_CONSTRAINS’ITEMS[#][AVG_TIME]=  
19:   (PROTECTION == VAR_DUP)? self + 0.0015 : self ; };  
  ...  
20:endcomponent 
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2.3.3. Implementation 

A prototype C++ parser able to read and process RIIF-2 models has been developed as 
part of the CLERECO-toolsuite. It integrates the basic Antlrr37 specification of the RIIF grammar 
with the new constructs and data types.  

3. System Description Language 

Differently from the internal characterization of a component, the formalism used to de-
scribe the system architecture is strictly related to the model introduced in CLERECO to perform 
system level reliability estimations. In deliverable D5.2.2 we introduced the CLERECO system re-
liability model. It is a Component-Based (CB) reliability model. In CB reliability modeling, reliabil-
ity at system level is estimated using reliability information and other properties (e.g., size, com-
plexity, etc.) of its individual components that are described using the RIIF-2 language and 
their interconnections, the system architecture, whose description language is introduced in 
this section.  

 

Figure 7: The Bayesian model of a system. The system is split into four domains: technology domain 

(TD), hardware domain (HwD), software domain (SwD) and system domain (SD). The topology of the net-

work provides the qualitative description of the system. Conditional probability tables (CPT) associated to 

each node of the network provide the quantitative description of the system. 

                                                        

 
7 http://www.antlr.org 
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Figure 7 summarizes the idea of the system reliability model introduced in D5.2.2. The model 
is a Bayesian model in which a full system is described in terms of a Bayesian Networks (BNs), 
i.e., a direct graph. Each node represents a component or subcomponent of the system, while 
arcs define paths in which errors can propagate.  Nodes are hierarchically organized into a set 
of four domains (TD, HwD, SwD and SD) directly mapped to the different layers composing the 
system. The domain hierarchy follows the error propagation flow within the system.  

Each node must be characterized with information expressed in the form of conditional 
probabilities that quantitatively describe how errors propagate from one component to the 
other component.  

Bayesian Networks are exploited in several application domains. Therefore, description lan-
guages to formally describe the structure of a BN and its quantitative model (i.e., the set of 
conditional probabilities characterizing each node) are already available: 

• XDSL File Format is a open XML Domain Specific Language developed for the de-
scription of Bayesian networks. 

• DSL File Format is a open Domain Specific Language developed for the description 
of Bayesian networks. 

• Ergo File Format: it is a simple file format for Bayesian networks used by Noetic Inc. in 
their program Ergo, Version 1.0. The format has become popular in the Uncertainty in 
Artificial Intelligence community because several example networks were saved in 
this format and shared among various researchers. The format includes only node 
identifiers, state names, conditional probability tables, and locations of the node 
centers. No other information can be included. Moreover Noetic Inc. has now 
changed its file format for new releases of the software and the old format is no 
longer supported. 

• Netica File Format: it is a closed format used by Norsys Inc.  
• BN interchange Format: this format is an attempt to design a common format for 

graphical probabilistic models. The format has not yet been established as a stand-
ard and different implementations in different tools do exist. 

• Hugin File Format. This is a close format used by Hugin A.G. in their program Hugin. 
• KI File Format: a format used by Knowledge Industries (www.kic.com), Inc., in their 

program DExpress.  

Unfortunately, a standard for the representation of BNs has not been yet established and 
the different file formats have been created in order to work with several software and APIs.  

Among the available option in CLERECO we focus on open language definition that are 
can be freely used and integrated and commercialized in our tools. This limits our decision to 
the three options: XDSL, DSL and BN interchange Format. Among them our choice was to base 
our system descriptions on a modified version of the XDSL language. The main reason for 
choosing the XDSL language is that it is based on a XML scheme and generic open-source XML 
parsers are available for several programming languages and can be easily extended, modi-
fied and integrated in the CLERECO tools.  

In particular, we improved the XDSL language to include the following features: 

• The system description must include a way to link each component to its RIIF-2 de-
scription containing reliability related information on which the conditional probabil-
ity table of the node is compiled. 

• A mechanism to cluster nodes in order to express hierarchical relations among com-
ponents in a system (i.e., a microprocessor and its sub components). 

• A mechanism to describe extended architectural constraints among the node of 
the network. This constraint is particularly important in order to support the system op-
timization heuristic described in deliverable D5.3 that require to explore the design 
space by modifying the architecture of the system (i.e., the topology on the net-
work) according to user defined design constraints. 
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3.1. XDSL basic definitions 

The SMILE (Structural Modeling Inference, and Learning Engine) is a fully platform independ-
ent library of functions implementing graphical probabilistic and decision-theoretic models, 
such as Bayesian networks, influence diagrams, and structural equation models. It has been 
developed at Decision Systems Laboratory in Pittsburg. Its individual functions, defined in SMILE 
Application Programmer Interface, allow to create, edit, save, and load graphical models, 
and use them for probabilistic reasoning and decision making under uncertainty. SMILE sup-
ports directly object oriented methodology. SMILE is implemented in C++ and is platform inde-
pendent. Individual classes of SMILE are accessible from C++ or (as functions) from C pro-
gramming languages.  

CLERECO exploits the SMILE library as a core function to perform Bayesian network reason-
ing. SMILE fully supports the CDSL format targeted in the project to describe the architecture of 
the system in terms of BNs.  

Figure 8 shows a simple example of a generic BN that will be used in the remaining of this 
section to shortly summarize the XDSL description. It is a very simple network, including only 
three nodes. Each node has two states: Error or Correct. Nodes ID1 and ID2 are associated to 
probability tables that define the probability of being in one of the two states. For node ID3, the 
probability table is a Conditional Probability Table (CPT). According to BN theory, The CPT de-
scribes the probability of each state of ID3 with respect to all the combinations of state of the 
parent nodes (ID1 and ID2). 

 

Figure 8 - A generic BN 

 

The XDSL format describes the network as a collection of nodes identified through the use 
od the nodes tag. 

<nodes> 
  ... 
</nodes> 

Each node as associated a set of basic information: 

• A textual unique identifier of the node. 
• The set of states defined for the node (see D5.2.2 to further details) 
• The probabilities associated to the states of the node. 
• The list of parents of the node. This describes the topology of the network.  
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These information items are described in XML through the generic cpt tag that defines a 
Conditional Probability Table:  

<cpt id=”<textual node ID>” 
 <state id=”<State ID #1>” /> 
 ... 
 <state id=”<State ID #n>” /> 
 <parents>...</parents> 
 <probabilities>...</probabilities> 
</cpt> 

Each state is defined through a unique ID, whereas parents is a list of space-separated 
node IDs. The same applies for  the conditional probabilities that are described as a space-
separated list.  

The network of Figure 8, corresponds to the following XDSL code: 

<nodes> 
  <cpt id=”ID1”> 
 <state id=”Error” /> 
 <state id=”Correct” /> 
 <probabilities>0.1 0.9</probabilities> 
  </cpt> 
  <cpt id=”ID2”> 
 <state id=”Error” /> 
 <state id=”Correct” /> 
 <probabilities>0.3 0.7</probabilities> 
  </cpt> 
  <cpt id=”ID3”> 
 <state id=”Error” /> 
 <state id=”Correct” /> 
 <parents>ID1 ID2</parents> 
 <probabilities>0.99 0.01 0.87 0.13 0.89 0.11 0.02 
0.98</probabilities> 
  </cpt> 
</nodes> 

One of the main limitations of the XDSL format is that probabilities are expressed in proba-
bilities tag based on the order of the parent nodes reported parents tag. This is a major 
limitation for the application of this format in the CLERECO reliability model and in particular in 
the optimization heuristics described in deliverable D5.3. In fact during system design explora-
tion the topology of the network is often modified to find the best architecture maximizing the 
reliability of the system. Next sections will address this problem introducing an extended format 
that better suits the reliability modeling developed in the project.  

3.2. XDSL CLERECO meta-information schema 

The XDLS format introduced in the previous section is a very effective format to formally de-
scribe the basic information required to build a generic BN. This information is the minimum re-
quired by generic BN solvers to perform Bayesian reasoning on the network. In this section we 
want to extend this format adding additional information required by the CLERECO system lev-
el analysis algorithms to perform reliability analysis. 

When working with XML based languages, two different approaches can be followed to ex-
tend a description schema: 

1. Defining a new set of custom tags able to model the required information, 
2. Using general tags whose meaning is modified resorting to the attributes of the tag. 
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The first approach has the advantage of adding expression power to the language but, at 
the same time, it requires introducing significant changes in the parsers in order to recognize 
the new tags. This is a major problem especially when revisions or extensions of the language 
are introduced to deal with new requirements. 

The second approach is instead more generic. It makes human reading of the produced 
files less intuitive but, at the same time, requires minimum modifications to the parsers and en-
ables easy extensions of the language. 

Given the need of having a very generic language, easy to modify based on the new re-
quirements that we faced during the development of our tools and models we decided to opt 
for the second extension mode. Extra information are included in the description of the model 
resorting to the use of generic property tags to enrich the description of a node inside the  
cpt tag. A general definition of a property is as follows: 

<property id=”<property unique ID”>property value</property> 

By using several property tag, we are able to add any type of information to each node.  

This solves one of the first requirements of our system description format, that is the possibility 
of directly introducing in the model component information described in the RIIF-2 description 
of the competent. In order to keep the model light, the number of RIIF-2 information migrated 
directly in the model must be reduced at a minimum. At the same time a property defining the 
filename containing the full RIIF-2 description of the component must be introduced in the def-
inition of each node. This establish a link between the system model and the description of the 
component that can be browsed by the developed tools in order to have access to all re-
quired information when needed.  

The second main extension required in our system description is the possibility of clustering 
different nodes of the system into macro-components. This is required during design exploration 
to enable automatic modification of the system architecture (e.g., replacing a set of nodes 
modeling the architecture of a given microprocessor with another set of node modeling a dif-
ferent architecture). We therefore introduce the concept of cluster in a node. A Cluster is a 
set of nodes belonging to the same macro-component. Practically, by introducing the cluster 
property in the definition of each node as follows 

<property id=”Cluster”>Cluster label</property> 

we can easily group set of nodes. 

However, the simple introduction of the cluster property does not completely solve the 
problem of enabling design exploration algorithms to automatically replace a macro-
component with another macro-component. In fact, when a cluster of nodes in unplugged 
from the model and a new one is introduced, the nodes of the new cluster must be properly 
connected to the other nodes of the system.  

To better understand this problem let us consider the system depicted in Figure 9 that shows 
a small BN representing, on the left side, the architecture of a simplified version of x86 micro-
processor connected to a main memory (RAM) and its replacement with the model of a simpli-
fied version of an ARM microprocessor, on the right side. Each node is annotated with the clus-
ter information in purple. The blue labels in the center of the node represent the ID of the node. 
The reader may notice that, when the x86 cluster is removed and the ARM cluster is intro-
duced, the RAM node requires to be correctly connected to some of the nodes of the new 
cluster. In this case the RAM must be connected to the L2 cache of the microprocessor.  

In order to cope with this problem we need to introduce additional meta-information in the 
model to virtually define the role of each node in the system. Red labels Figure 9 represent this 
extra information. They define classes of equivalence among nodes in different clusters.  
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Figure 9 - A macro-component replacement with meta-information annotated for each node. 

This is translated in the description by introducing an additional property for each node as 
follows:  

<property id=”VID”> [value] </property> 

We call the property Virtual ID (VID) because it represents a unique identifier across similar 
clusters of node.  

Both Cluster and VID can be omitted if not necessary. In the example of Figure 9 the 
main memory RAM has a VID property but, being a simple element it does not required the 
definition of the Cluster property. 

The VID property has another important role in the description of the system. As explained 
before in the original version of the XDSL schema, the definition of the parents defines a fixed 
orders used to define the orders in which probabilities are represented in the probability tag. 
This is effective when the structure of the network is fixed but creates problems when cluster 
replacements are performed since this may change the order of the parents. 

To cope with this problem we exploit the VID property to create two different parents order-
ing in a node. The XDSL parents tag is used to define the structure of the network as in the 
standard XDSL description, and the order of the parents can be freerly modified during the re-
placement process.  At the same time a new parents property is defined as follows:  

<property id=”parents”> [VID of all parents] </property> 

This property defines the order of the parents not based on the parentis but based on the 
VID. Since the VID is not related to a specific node but is related to a role in a cluster, this order-
ing is persistent among different clusters. Probabilities are then defined according to this order-
ing that remains fixed among clusters instead of the XDSL parent ordering, thus enabling to ef-
ficiently implement the replacement process. 

With the proposed extensions to the original XDSL format we are able to efficiently define 
the architecture of a complex digital system including all meta-information required to support 
the CLERECO tools described in deliverables D5.2.2 and D5.3.  

It is important to remark here that, by the use of the generic property tag we have been 
able to keep full syntactic compatibility with the original XDSL format. This is particularly im-
portant since the SMILE library is still able to properly parse the CLERECO extended XDSL models 
thus allowing to save resources in the development of the parsers required to integrate this de-
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scription format in the developed tools.  

3.3. The SMILE Wrapper Implementation 

The SMILE library is public available library that comes without sources. It is one of the most 
used libraries, due to its performance and the large set of implemented BN solving algorithm. 
For this reason, we rely on this library for all statistical CLERECO tool. However, the library has a 
set of limitations that prevent its directly use in our developed tools, and in particular it does not 
support the XDSL extensions introduced in this document. 

To overcome these limitations, we developed a full C++ wrapper based on the QT Frame-
work. The wrapper allows to quickly implement all previously discussed enhancement, together 
with bridge functions to connect the BN generation to the RIIF-2 description of single compo-
nents. Moreover, it introduces some new capabilities that SMILE does not provide: 

1. Network replacement. SMILE only provides simple methods to add or remove single 
nodes and edges. The wrapper supports dynamic reconfiguration / replacements of 
clusters of nodes resorting to Clust and VID properties defined for each node. 

2. Simplified methods for data access. The wrapper includes methods to access all 
properties of a node by their keys (strings) in place of the indexed access provided 
by SMILE. Moreover, it also supports automated full data recovery and store that is 
not present in the library (thus all properties can be stored or retrieved at once). 

3. Full parents’ management. Together with the network replacement the wrapper 
provides methods to add, remove or change parents of a node also considering the 
coherency of the CPT. In fact, the SMILE library automatically modifies the nodes CPT 
when one of its parent is removed or added (in this cases the CPT is reduced or ex-
panded without relating with the parents so that probabilities could be wrong). In-
stead all methods to change parents order do not change the CPT order. The 
wrapper fully supports all this operations.  

To conclude, the introduction of the wrapper also decouples the developed tools from the 
SMILE library itself. If in the future different libraries supporting optimize BN solvers will be availa-
ble, they can be easily plugged in the CLERECO tools by sampling updating the wrapper to 
support the new libraries, without any modification to the remaining parts of the tools. As an 
example, a GPGPU based library implementing accelerated solvers for BNs is under develop-
ment by partner POLITO. Once ready, this library will be easily exploitable by the CLERECO 
tools. 

4. Conclusion 

This deliverable represents the steps performed in CLERECO toward the definition of well-
defined formalism to describe reliability information of a full system. In particular, the document 
covers the definition of a formalism to describe reliability information of hardware and software 
components of a system through the new RIIF-2 format, and a formalism to describe the archi-
tecture of the system through the extended XDSL format. The defined languages represent the 
first building block for all system level reliability analysis tools developed in CLERECO. 
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