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Scope of the document 

This document is the main outcome of task T5.3 “System level statistical reliability estimation 
methodology”, elaborated in the Description of Work (DoW) of the CLERECO project under 
Work Package 5 (WP5). 

Figure 1 depicts graphically the goal of this deliverable, its main results, the inputs it uses and 
the outputs it provides (including which WPs will use its outputs). 

 

Figure 1: The Inputs and the Outputs of this Deliverable 

The main goal and outcome of D5.2.1 is to develop statistical estimation model(s) able to 
analyze a full system stack from technology up to the application. The model resorts to the 
characterization effort provided by all technical WPs (i.e., WP2, WP3 and W4), which aims at 
assessing the reliability at the technological, hardware and software layers of the system. Each 
WP has already evaluated reliability aspects of technologies and components and a library of 
those is going to be built. By describing a full system in terms of the characterized components, 
the statistical model described in this deliverable enables reliability evaluation at the system 
level.  

The document is organized in the following sections: 

• Introduction. This section shortly overviews background research on statistical 
models to estimate reliability of a full system and identifies the target model that 
will be explored in the CLERECO model 

• Bayesian Networks Basic Concepts. This section describes all aspects of the sta-
tistical model based on the Bayesian Network theory developed in CLERECO. 

• System Modeling with Bayesian Networks. It includes all modeling details to 
properly deal with the description and reliability evaluation of a full system. 

• Conclusions. In this final section, we summarize the work done for the deliverable 
and we set a roadmap to expand the model and improve actual results. 

Deliverable D5.2.1 

From the components analyses performed in 
WP2,3,4 it defines a (preliminary) statistical model 
to pursue.  
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1. Introduction 

System-level reliability estimation is the main and ultimate goal for the CLERECO project.  

A system is a collection of components, subsystems and/or assemblies arranged to a specif-
ic design in order to achieve desired functions with acceptable performance and reliability. 
The types of components, their quantities, their qualities and the manner in which they are ar-
ranged within the system have a direct effect on the system's reliability. The relationship be-
tween a system and its components is often misunderstood or oversimplified leading to wrong 
conclusions. 

Statistical models for reliability evaluation have been already studied in life data analysis 
and accelerated life testing data analysis [19], as well as other testing activities of several sys-
tems where one of the primary objectives is to obtain a life distribution that describes the times-
to-failure of a component, subassembly, assembly or system [8]. This analysis is usually based on 
time-to-failure data of the component, either under use conditions or from accelerated life 
tests. In system reliability analysis, one constructs a "System" model from these component 
models. In other words, in system reliability analysis we are concerned with the construction of 
a model (life distribution) that represents the times-to-failure of the entire system based on the 
life distributions of the components, subassemblies and/or assemblies ("black boxes") from 
which it is composed. To accomplish that, the relationships between components are consid-
ered and analyzed to infer the overall system reliability, maintainability and/or availability.  

Statistical system reliability analysis and modeling of electronic systems is gaining ever-
increasing interest given the electronic systems trend to become more complex, which pre-
vents the realization and use in a reasonable time of simulation based models [33][36][37][40]. 
Complex fault-injection campaigns are rapidly becoming unfeasible on real system posing a 
real threat for the correct characterization of next generation systems. 

However, when it comes to early reliability evaluation of electronic systems as in CLERECO, 
several modeling problems must be faced. Time-to-failure data of system components, espe-
cially for new technologies and architectures are not available and classical RTL or SystemC 
simulation models even for single components may be missing or already too complex to be 
analyzed (e.g., in the case of complex microprocessors) in a reasonable time manner.   

Within work packages WP2, WP3 and WP4 CLERECO researchers tried to cover this gap de-
veloping a set of methods to characterize technologies, hardware and software components 
early in the design phase even when full models of these components are not available. In this 
document we accomplish the task of developing a statistical system model able to incorpo-
rate all these component level information into a high-level reliability model of the system. 

Instruments able to estimate the reliability of a complete system starting from the very early 
stage of the design cycle are important to give designers an insight into comparative reliability 
analysis of different components and architectures.  They allow a wide range of analyses other 
than a simple cause-effect analysis of the fault injection campaign, including inferences, cau-
salities analysis, effect correlations, etc. [18][19]. Such analyses have the potential to identify 
those critical components that may require higher design effort to incorporate error tolerance 
[3]. Fault-tolerance commonly produces bigger systems (due to hardware redundancy) and 
slower software (due to error-tolerant software techniques). It must therefore be carefully used 
and traded-off starting from the very early design phases. 
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1.1. System models for reliability analysis  

System level behavioral models, such as SystemC models, have been one of the first at-
tempts to move reliability analysis at a system level (the reader may refer to [7] and its refer-
enced papers for a deeper overview). These models are still simulation models that enable to 
simulate the activity of the system and to perform fault injection campaigns. However the 
complexity of the simulation of these systems is still high compared to the complexity of a full 
designed system. Moreover early and exploratory reliability analysis using these models is un-
feasible. Exploring the effect of different design choices on the architecture requires complex 
changes in the model that, in turn, require a significant design effort. Finally, while these models 
are effective in modeling the hardware architecture layer of the system, they still lack enough 
power to tackle with the complexity of the full software stack. 

Fault Tree Analysis (FTA) is a very common statistical analysis [28][29][30]. FTA is a top down, 
deductive failure analysis in which an undesired state of a system is analyzed using Boolean 
logic to combine a series of lower-level events. Mainly used in the fields of safety engineering 
and reliability engineering to understand how systems can fail, it is based on modeling the sys-
tem via Fault Trees Diagrams (FTDs), which are the most popular method for reliability analysis 
[27].  Figure 2 reports an example of a FTD. It is basically a logic block diagram that displays the 
state of a system (top event) in terms of the states of its components (basic events). It uses a 
graphic model of the pathways within a system that can lead to a foreseeable, undesirable 
loss event (or a failure). The pathways interconnect contributory events and conditions, using 
standard logic symbols (AND, OR etc.). This type of FTD is called static FTD. Two common ap-
proaches are used in order to solve a static fault tree: Binary Decision Diagram (BDD) and Cut 
sets [29][30]. Both approaches are complex and time consuming if a continuous time reliability 
curve is aimed, particularly for large systems [33]. Thus, hardware-based acceleration tech-
niques are proposed to cope with the problem [32][33]. 

 

Figure 2: Example of fault-tree model 

 

Another very similar technique that is usually employed to statistically investigate the reliabil-
ity of a system, are the Reliability Block Diagrams (RBDs). Figure 3 reports an example of RBD. 
The most fundamental difference between FTDs and RBDs is that in an RBD works in the "suc-
cess space", and thus looks at system successes combinations, while a FTD works in the "failure 
space" and looks at system failure combinations. Traditionally, fault trees have been used to 
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access fixed probabilities (i.e., each event that comprises the tree has a fixed probability of 
occurring) while RBDs may include time-varying distributions for the success (reliability equa-
tion) and other properties, such as repair/restoration distributions. 

 

 

Figure 3: Example of reliability block diagram 

 

Both FTD and RBD do not provide any element or capability to model reliability interactions 
among components or subsystems, or to represent system reliability configuration changes 
(dynamics), such as: load-sharing, standby redundancy, interferences, dependencies, com-
mon cause failures, and so on [34]. Moreover, they do not allow enhancing the reliability eval-
uation in terms of the kind of effects related to the reliability issue, such as wrong execution tim-
ing, data corruption, etc., or the definition of different metrics but Failures-In-Time (FIT), or Mean 
Time Between Failures (MTBF) as output of the evaluation. 

Markov chains represent a significant alternative to the FTD or RBD analyses [24][25][26]. A 
Markov chain  (see Figure 4) is a random process that undergoes transitions from one state to 
another on a state space. The probability distribution of the next state only depends on the 
current state and not on the sequence of events that lead to that state. This is called the Mar-
kov property. Markov chains have several modeling issues when applied to reliability analysis. 
First, the whole system needs to be modeled as a set of states, which have to differ from single 
components. It means to generate a model that heavily relies on the workload more than on 
its components. The workload is in fact the major responsible of the transition of the system 
from one state to the next one. Second, the Markov property (i.e., the system is memory-less) 
limits the possibility to fully describe the propagation of errors among layers. Moreover, the 
Markov property prevents the possibility to backward analysis longer than one state. Backward 
analysis is one of the main instruments in system reliability analysis that enables to locate the 
sources of failure in a system. Preventing its execution strongly reduces the capability of the 
model. Finally the model may suffer from state space explosion. 
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Figure 4: Example of Markov-Chain model 

Only few publications consider the application of Bayesian Networks (BN) to model system 
reliability in hardware devices [39], [40]. BNs (see Figure 5) are a statistical model to represent 
multivariate statistical distribution functions. They can model relationships among random vari-
ables and their respective probability density functions by means of conditional probability 
functions. They have been successfully employed for reliability estimation in some application 
fields [37]. In the software engineering domain, they have been employed to model software 
reliability in the distributed domain [38]. They main advantage with respect to the previous 
techniques is the degree of freedom they have to define input causes of failure: there is no limi-
tation in the number of variables to be defined that carry a manifestation of fault meaning. 
Moreover, they can be common among other variables. Another very interesting aspect of the 
BN is that variables can be either discrete (e.g., Boolean or multi-states) or continuous, allowing 
the reliability analysis to cover different metrics apart from FIT or MTBF. Eventually, BNs require 
studying the system with locality to populate the network: to connect two variables (in alterna-
tive, two nodes of a system) only their relationship must be defined. If a third variable is linked 
to the network but connected to one of the two variables only, this single relationship will be 
provided by a conditional probability. 

 

Figure 5: Bayesian model example 

 

Table 1 provides a global comparison of all considered models with respect to main re-
quirements needed for efficient system level early reliability estimation model of complex sys-
tems.  
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Table 1: Comparison Between Statistical Approaches 

Characteristics 
Statistical Approaches 

Fault Tree 
Analysis 

Reliability Block 
Diagrams 

Markov 
Chains 

Bayesian 
Networks 

Top Down Analysis YES YES YES YES 
Bottom Up Analysis NO NO LIMITED YES 

Full propagation of events NO NO NO YES 
Multiple Output NO NO NO YES 

Continuous Values YES YES YES YES 
Cycles Definition NO YES YES YES 

Dynamic Modeling NO NO YES YES 
Components as Single el-

ement of the model 
YES YES NO YES 

 
 

From this analysis it is clear that among the considered models, BN represent the most at-
tractive solution able to build the CLERCO reliability estimation model. 

In this deliverable we propose a first model to address the reliability estimation of a full sys-
tem stack by means of BN modeling and solving. The document will guide through all con-
cepts needed for a proper description and all the information gathered from the different WPs 
in the CLERECO project. 

 

2. Bayesian Networks Basic Concepts  

2.1. Building a Bayesian Network 

Bayesian networks (BNs) are graphical models for reasoning under uncertainty, where the 
nodes represent variables (discrete or continuous) and arcs represent direct connections 
among them. These direct connections are often causal connections. More precisely, given a 
set of random variables, 𝚾   =   𝑋!,⋯ ,𝑋! , ⋯ ,𝑋!, from the domain, the set of directed arcs (or links) 
connecting pairs of nodes, 𝑋!   →   𝑋!, represents the direct dependencies between variables.  

In addition, BNs model the quantitative strength of the connections between variables, al-
lowing probabilistic beliefs about them to be updated automatically as new information be-
comes available. Assuming discrete variables, the strength of the relationship between varia-
bles is quantified by conditional probability distributions associated with each node. The only 
constraint on the arcs allowed in a BN is that there must not be any directed cycle: you cannot 
return to a node simply by following directed arcs. Such networks are called Directed Acyclic 
Graphs (DAGs). 

There are a number of steps that a knowledge engineer must undertake when building a 
Bayesian network. At this stage, we will introduce these steps as a sequence; however it is im-
portant to remark that in the real world the process may be not so simple.  

We will use the following simple hardware diagnosis problem: A laptop has been suffering 
from sudden restarts. The technician suspects the main board is going to brake down very 
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soon. Nevertheless, he knows for a fact that the same model has been reported to show similar 
behaviors for an internal fan issue or for hard drive failures. He also knows that other relevant 
information includes whether the laptop has emitted strange noises (increasing the chances of 
main board malfunctions or internal fan issue) and the temperature at which the laptop oper-
ates. A negative hard drive check (meaning an error detected when checking the hard drive) 
would indicate either a hard drive failure or a main board malfunction. 

2.1.1. Nodes and values 
First, the knowledge engineer must identify the variables of interest. This involves answering 

the question: what are the nodes to represent the system and what values can they take, or 
what state can they assume? For now we will consider only nodes that take discrete values. 
The values should be both mutually exclusive and exhaustive, which means that the variables 
must assume exactly one of these values at a time. Common types of discrete nodes include: 

• Boolean/Binary nodes, which represent propositions. They assume binary values, 
such as true (T) and false (F). In our example, the node MainBoard represents the 
proposition that the laptop has a main board malfunction. 

• Ordered values. For example, the node Temperature might represent the laptop en-
vironment temperature range. It may assume the values {low, high}, where low rep-
resents the range 0-26°C and high represents the range 26-40°C. 

• Integral values. For example, the node Age might represent the laptop age and 
have possible values from 1 to 10. 

Even at this early stage, modeling choices are being made. As instance, an alternative to 
represent the Temperature might be to have it as integral value. 

For our example, we will begin with the restricted set of nodes and values shown in Table 2. 
This choice already limits what can be represented in the network. For instance, there is no rep-
resentation of other reliability issues, such as a hard drive failure or an internal fan issue. There-
fore, the modeled system will not be able to estimate the probability of the laptop suffering 
one of these failures. Another limitation is lack of differentiation, for example between high or 
low noise of the motherboard. Note that all nodes have only two values. This keeps the model 
simple, but in general there is no limit to the number of discrete values. 

Table 2: Preliminary choices of nodes and values for the example. 

Node Name Node 
Short 

Name 

Type Values 

Noise N Boolean {T, F} 

Temperature T Binary {L(ow), H(igh)} 

MainBoard M Boolean {T, F} 

Restarts R Boolean {T, F} 

HD_Check H Binary {pos, neg} 

 

2.1.2. Structure 
The structure, or topology, of the network should capture qualitative relationships between 

variables. In particular, two nodes should be connected directly if one affects or causes the 
other, with the arc indicating the direction of the effect. So, in our example, we might ask what 
factors affect a laptop’s chance of having a main board failure? If the answer is “High tem-
perature and noise”, then we should add arcs from Temperature and Noise to MainBoard. Simi-
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larly, having a main board failure will affect the changes of laptop’s restart and the chances of 
having a HD check negative result. So we add arcs from MainBoard to Restarts and 
HD_Check. The resultant structure is shown in Figure 6. It is important to note that this is just one 
possible structure for the problem. 

 

Figure 6: A BN for the Main Board problem. 

In talking about network structure it is useful to employ a family metaphor: a node is a par-
ent of a child, if there is an arc from the former to the latter. Extending the metaphor, if there is 
a directed chain of nodes, one node is an ancestor of another if it appears earlier in the chain, 
whereas a node is a descendant of another node if it comes later in the chain. In our example, 
the MainBoard node has two parents, Temperature and Noises, while Noise is an ancestor of 
both HD_Check and Restarts. Similarly, HD_Check is a child of MainBoard and descendant of 
Temperature and Noises. The set of parent nodes of a node X is given by Parents(X). 

Another useful terminology commonly used comes from the “tree” analogy (even though 
Bayesian networks in general are graphs rather than trees): any node without parents is called 
a root node, while any node without children is called a leaf node. Any other node (non-leaf 
and non-root) is called an intermediate node. Given a causal understanding of the BN struc-
ture, this means that root nodes represent original causes, while leaf nodes represent final ef-
fects. In our laptop description example, the causes Temperature and Noise are root nodes, 
while the effects HD_Check and Restarts are leaf nodes. 

By convention, for easier visual examination, networks are usually laid out so that the arcs 
generally point from top to bottom. This means that the BN “tree” is usually depicted upside 
down, with roots at the top and leaves at the bottom. 

2.1.3. Conditional Probabilities 
Once the topology of the BN is specified, the next step is to quantify the relationships be-

tween connected nodes: specifying a Conditional Probability Distribution (CPD) for each node 
does this. As we are only considering discrete variables at this stage, this takes the form of a 
Conditional Probability Table (CPT). 

First, for each node we need to look at all possible combinations of values of its parent 
nodes. Each such combination is called an instantiation of the parent set. For each distinct in-
stantiation of parent node values, we need to specify the probability that the child will take 
each of its values. 

Noises 

MainBoard 

HD_Check 

Temperature 

Restarts 

P(T=L) 

0.90 

P(N=T) 

0.30 

N T P(M=T|N,T) 

T H 0.05 

T L 0.03 

F H 0.02 

F L 0.001 

M P(H=pos|M) 

T 0.90 

F 0.20 

M P(R=T|M) 

T 0.65 

F 0.30 
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For example, consider the MainBoard node of Figure 6. Its parents are Temperature and 
Noise and take the possible joint values {< H,T >, < H,F >, < L,T >, < L,F >}. The conditional proba-
bility table reported in Figure 6 specifies the probability of MainBoard failure for each of these 
cases to be: < 0.05, 0.02, 0.03, 0.001 >. Since these are probabilities, and must sum to 1 over all 
possible states of the MainBoard variable, the probability of no MainBoard malfunction is al-
ready implicitly given as one minus the above probabilities in each case; i.e., the probability of 
no MainBoard malfunction in the four possible parent instantiations is < 0.95, 0.98, 0.97, 0.999 >. 

Root nodes also have an associated CPT, although it is degenerate, containing only one 
row representing its prior probabilities. In our example, the prior for a laptop emitting strange 
noises is given as 0.3, indicating that 30% of the population that the technician sees emits 
strange noises, while 90% of the population are exposed to only low temperature in their work-
ing environment. 

Clearly, if a node has many parents or if the parents can take a large number of values, the 
CPT can grow very large. The size of the CPT is, in fact, exponential in the number of parents. 
Thus, for networks wit Boolean states a variable with n parents requires a CPT with 2!!! probabil-
ities. Several solutions are already proposed in literature to cope with the exponential grow of 
probabilities in CPT. Among them, one seems very promising: the Noisy-MAX ap-
proach[42][43][44][45]. The Noisy-Max is a generalization of the interaction of a child node and 
its direct ancestors in a BN based on three assumptions [45]: 

1. The child node and all its ancestors must be variables indicating the degree of pres-
ence of an anomaly. 

2. Each of the ancestor nodes must represent a cause that can produce the effect (one 
of the child node state) in absence of other cause. 

3. There may be no significant synergies among the causes. 

If all assumptions are met, the generalization allows replacing the CPT with a smaller and 
simpler table, in which each child node state reflects only the single effect of all ancestors’ 
alone. In [44], authors demonstrated the effectiveness of this technique comparing results 
against a set of known problems described with CPTs and proved how the actual complexity 
reduction is logarithmic. 

2.1.4. The Markov property 
In general, modeling with Bayesian networks requires the assumption of the Markov proper-

ty: there are no direct dependencies in the system being modeled that are not already explic-
itly shown via arcs. In our example, as instance, there is no way for Noise to influence Restarts 
except by being related to a main board malfunction. Bayesian networks that have the Mar-
kov property are also called Independence-maps (or, I-maps for short), since all independ-
ences suggested by the lack of an arc are real in the system. 

Nevertheless, it is important to remember that this is only a construction property that simpli-
fies the construction of the network. As stated before, differently from Markov chains, once the 
network is built, full back trace analysis is then possible as will be explained later in the docu-
ment. 

2.2. Reasoning with Bayesian Networks 

Now that we know how a domain and its uncertainty may be represented in a Bayesian 
network, we will look at how to use the Bayesian network to reason about the domain. In par-
ticular, when we observe the value of some variable, we would like to condition upon the new 
information. The process of conditioning (also called probability propagation or inference or 
belief updating) is performed via a “flow of information” through the network. Note that this 
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information flow is not limited to the directions of the arcs. In our probabilistic system, this be-
comes the task of computing the posterior probability distribution for a set of query nodes, giv-
en values for some evidence (or observation) nodes. 

Bayesian networks provide full representations of probability distributions over their variables. 
That implies that they can be conditioned upon any subset of their variables, supporting any 
direction of reasoning. For example, one can perform diagnostic reasoning, i.e., reasoning 
from symptoms to cause, such as when the technician observes the Restarts and then updates 
his belief about a MainBoard malfunction and whether the laptop emits strange Noise. Note 
that this reasoning occurs in the opposite direction to the network arcs. Or again, one can per-
form predictive reasoning, reasoning from new information about causes to new beliefs about 
effects, following the directions of the network arcs. For example, the laptop’s owner may tell 
his technician that he has listen to some noise; even before any symptoms have been as-
sessed, the technician knows this will increase the chances of the laptop having a main board 
malfunction. It will also change the technician’s expectations that the laptop will exhibit other 
symptoms, such as restarts or having a negative HD check result. 

A further form of reasoning involves reasoning about the mutual causes of a common ef-
fect; this has been called inter-causal reasoning. A particular type called explaining away is of 
some interest. Suppose that there are exactly two possible causes of a particular effect, repre-
sented by a v-structure in the BN. This situation occurs in our model of Figure 6 with the causes 
Temperature and Noise, which have a common effect, MainBoard malfunction. According to 
the model, these two causes should be independent of each other; that is, a laptop emitting 
noise (or not) does not change the probability of the laptop to be exposed to some high tem-
perature. Suppose, however, that we learn that a laptop main board is malfunctioning. This will 
raise our probability for both possible causes of a main board malfunction, increasing the 
chances both that it emits noises and that he has been exposed to some very high tempera-
ture. Suppose then that we discover that its owner has listened to some noise without taking 
care of them. This new information explains the observed main board malfunction, which in 
turn lowers the probability that he has been exposed to high temperatures. So, even though 
the two causes are initially independent, with knowledge of the effect the presence of one 
explanatory cause renders an alternative cause less likely. In other words, the alternative cause 
has been explained away. 

 

Figure 7: Types of reasoning. 
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Since any node may be s query node or a evidence node, sometimes the reasoning does 
not fit neatly into one of the types described above. Indeed, we can combine the above 
types of reasoning in several ways. Figure 7 shows the different varieties of reasoning using the 
provided example. Note that the last combination shows the simultaneous use of diagnostic 
and predictive reasoning. 

It should be now clear how Bayesian networks could be used for calculating new beliefs 
when new information is available. The evidence might be that a node 𝑌 has the value 𝑦! or 𝑦! 
(implying that all other values are impossible). Or the evidence might be that 𝑌 is not in state 𝑦! 
(but may take any of its other values). In fact, the new information might simply be any new 
probability distribution over 𝑌.  

Looking at the example, let us suppose that the technician who has performed the HD 
check is uncertain. He thinks that the HD check could be right, but is only 80% sure. Such infor-
mation can be incorporated, and it would correspond to adopting a new posterior distribution 
for the node in question. In Bayesian networks this is also known as virtual evidence. Since it is 
handled via likelihood information, it is also known as likelihood evidence.  

Eventually, belief updating can be done using a number of exact and approximate infer-
ence algorithms. A set of algorithms are widely know to provide it, and choosing among them 
usually put particular emphasis on how the different algorithms can affect the efficiency of 
both the knowledge engineering process and the automated reasoning in the deployed sys-
tem [18][19]. However, since the mathematical modeling is quite complex and its explanation 
requires a lot of information and since most existing BN software libraries allow the select and 
use essentially the same algorithms, we do not enter into such details, demanding it to refer-
ences. Moreover, it also means that, in general, it is quite possible to build and use BNs without 
knowing the details of the belief updating algorithms. 

In the following chapter we focus on resorting to BN towards the full system modeling. 

3. System Modeling and Reasoning with Bayesian 

Networks  

System modeling using a BN starts by identifying the nodes that compose the network iden-
tifying the main players (components of the system) that influence the system reliability.  

In order to work with a realistic use case let us consider the design of an image processing 
embedded system designed for identification of artifacts in an image. The general characteris-
tics of the system are as follows: 

• Hardware architecture: a x86 out-of-order single core microprocessor 
• A 1T DRAM main memory 
• Both microprocessor and memory are realized in a 14nm FinFET technological pro-

cess 
• The architecture executes the Susan edge algorithm from the MiBench test benches 

[46] executed on top of the Linux operating system. 
• Mass storage memory, and external devices such as I/O devices are not considered 

to reduce the complexity of the example. 

Figure 8 shows a Bayesian network model of the considered system. For each layer of the 
system stack (i.e., technology layer, HW layer, SW layer), a set of nodes represents players of 
the reliability problem coming from that layer.  
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Figure 8: System Level Reliability Evaluation Using a Bayesian Model of the System. 

The technology layer plays an active input role. Depending on the technologies employed 
in the system, the reliability of the system is affected. Nodes at this layer are root nodes. They 
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hardware functionalities to the system. Since they are built around specific technologies, they 
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croprocessor. 
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lates data or on the way the flow of execution follows its proper path. In BN terms, we can 
identify the functions of the system software as players (the nodes) of the problem. The way 
they are linked each other depends on the SW functionalities, while the connection to the 
hardware layer is going to be discussed in the following sections. 

Looking at the final BN model, it should be clear why BNs are a very good candidate to 
model the system stack, where failures at technology level propagate (or mask) at hardware 
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3.1. The Technology Layer 

In WP2 several models have been developed to study failure mechanisms of a representa-
tive set of current and future technologies. These models enable us to compute failure proba-
bility distributions for several types of faults also depending on the environmental conditions.  

 

Figure 9: Technology nodes 

Figure 9 shows how technology in our use case is modeled at system level. Models defined 
in WP2 enable to characterize these nodes with proper failure probabilities depending on the 
considered failure mechanism. As an example, if we limit the analysis to soft-errors, models de-
veloped in WP2 enable us to compute the Raw Error Rate (i.e., the Soft Error Rate) of the tech-
nology. It expresses the rate at which the technology is predicted to encounter errors. It is typi-
cally expressed as either number of FIT or MTBF. The rate can be easily converted into a proba-
bility (or a distribution of probability) [36].  

3.2. The Hardware Layer 

The hardware layer introduces how errors in the technology propagate and, eventually, 
can be masked during the systems run. The BN model of the hardware layer is built resorting to 
a hardware analysis, which should express how data are propagated among HW components 
of the system, in order to understand where the probability of an error propagate. A feasible 
hardware layer model for our use case is shown on Figure 10. It represents the model of the in-
ternal structure of an x86-out-of-order microprocessor architecture. 

 

Figure 10: The x86_64 BN model 

When defining nodes at this level it is important to consider that, for each node, we must be 
able to compute the probability of failure in that node given a failure in its direct ancestors.  

Looking at the nodes composing the hardware layer we can identify three different cases.  

1. Root nodes for the layer  

They are nodes with a single direct ancestor, coming from the technology layer. For the sa-
ke of simplicity we can consider them as Binary nodes, with two possible states: 

1. Error Masked. An error generated in the technology does not propagate through 
the outputs of the component 

2. Error. The output of the component differs from the expected one. 
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As explained in Section 2.1.3, from a BN perspective, these hardware nodes are described 
by a 2x2 CPT, as reported in Figure 11.  

 

Figure 11: Propagation of Error from a Technology node to an HW node. 

 

2. Intermediate nodes  

Intermediate nodes model components directly connected to other components. The cor-
rectness of the output of these nodes depends on the correctness of their direct ancestors, as 
well as on their inner capability of masking incoming errors. 

In the example of Figure 12, we show a very small structure, where a first HW component 
feeds a second one (e.g., cache L2 provides input for the cache L1 of a microprocessor). 
Since intermediate components have several direct ancestors, their CPTs require additional 
rows and columns to represent probabilities for all instantiations of the states of the direct an-
cestor nodes.  

 

Figure 12: HW node with more than one direct ancestor. 
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As already stated before, with the growth of the number of ancestors the number of proba-
bilities to compute increases. This issue is a very frequent problem when employing BN models 
and solutions are already proposed. The application of the Noisy-Max generalization described 
earlier, is currently under investigation. Figure 13 shows how the previous CPT table of Figure 12 
would be simplified when resorting to the Noisy-MAX approach.  

 

Figure 13: CPT vs. Noisy-MAX 

3. Nodes connected to the software layer 

These are leaves nodes of the hardware layer. As explained in previous deliverables, to en-
able analysis of software and hardware in isolation it is mandatory to strongly decouple the 
hardware and the software layers. 

We propose to define a meta-node that projects the propagation of error from the hard-
ware to the software layer. Figure 14 shows an example of this meta-node for the selected use 
case. The µPC node represents the only node connected to the part of the BN modeling the 
Software Layer (which will be addressed by Section 3.3), and, therefore, needs to be charac-
terized in a proper way.  

First of all, its direct ancestors must be all HW components that manifest their output at in-
struction level. In fact, the way HW and SW are linked is through the Instruction Set Architecture 
(ISA) of the microprocessor in the system. It means that if their state directly affects the outputs, 
the inputs, or the computation of an instruction of the microprocessor, they will be direct an-
cestors of the µPC node. Moreover, the states of the µPC node can be the same of any other 
HW component: error Masked or not. It represents the final propagation of errors in the hard-
ware layer.  

 

Figure 14: The µPC meta-node 
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WP3 of CLERECO developed several tools mainly based on architectural fault injectors that 
enable to compute the probabilities that characterize hardware nodes. Fault injection cam-
paign implemented with these tools can be either performed considering the specific software 
workload of the system to obtain very precise results or with generic workloads reused in multi-
ple designs to enable fast early estimation with reduced accuracy. 

It is important to point out that fault injection campaigns performed using CLERECO tools do 
not employ complex RTL level models but high-level architectural models that strongly reduce 
the computation time. Moreover, since the hardware and the software layer are decoupled, 
simulations do not require executing the full workload but can stop as soon as an error is ob-
served at the ISA level. This further reduces the complexity of the analysis. 

3.3. The Software Layer 

In order to be able to characterize every SW without knowing the actual HW platform, De-
liverable D4.1 defines a set of Software Fault Models (SFMs), which model how hardware errors 
propagate to software. They mainly rely on alterations that have an impact on the Instruction 
Set Architecture (ISA) of the microprocessor executing the code, e.g., a change in the content 
of an operand or a switch in the op-code bits leading to a different instruction, etc.  

Since these data represent what the µPC node is expected to deliver, we introduce a SFMs 
layer of nodes to further connect the HW layer to the SW one. From the HW perspective, these 
nodes represent the probability of the ISA level manifestation of each SFM when an error from 
the HW is reported. 

 

Figure 15: SFM Nodes 

 In order to populate the BN correctly, we need to define one node for each SFM the de-
signer is going to investigate and to define the related CPT expressing the probability of that 
fault model given the possible states of the µPC node. 

Again these probabilities can be computed by the tools developed in WP3, since as soon as 
the error is propagated (and noticed) to the ISA level, it is possible to enhance it with the SFMs 
manifested. Figure 15 shows the SFM nodes (in orange) and the CPT table to be built. 
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This extra layer feeds the nodes modeling the software employed in the system. The idea is 
to generate one node for each function of the software and then relate them to build a DAG 
modeling the propagation of errors as already described for HW. The task requires tracing the 
software execution to extract its function call graph (FCG). The FCG extractor usually performs 
the operations described in Figure 16. In this case, for the sake of simplicity, a very simple soft-
ware evaluating if two consecutive numbers (1 and 2) are even or odd (and printing a label 
about that classification on screen) is considered. When the software is executed and its traces 
analyzed, the main function is split into several chunks, which identify different parts of the main 
function and then each printf function call is treated as a different call. The obtained FCG is an 
acyclic graph where each main chunk represents a node, as well as each different printf in-
stantiation instantiate a node. 

 

Figure 16: FCG extraction 

 Each node must be completed with a related CPT table accounting for the events of an 
error in the ancestor nodes. This way a complete propagation of the error through the software 
is modeled.  

Similarly to the hardware layer, tools developed in WP4 that enable to model software rou-
tines on top of the LLVM virtual environment, are also able to perform very fast high-level fault 
injection campaigns that can be used to fill the software level CPTs.  
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Figure 17: The Susan algorithm BN model 

3.4. Reasoning 

Once the full model of the system is completely designed and all CPTs filled with related 
conditional probabilities, BN reasoning approaches as the ones introduced in Section 2.2 can 
be applied in order to perform system reliability analysis on the modeled system.  

4. Conclusion 

This deliverable overviews the preliminary version of the CLERECO system level reliability 
model. We focused on modeling of the structure of the system and on the integration of relat-
ed information produced by the other work-packages. The next version of this deliverable, that 
will be released at M36, will include a detailed description of how this model links to all other 
tools developed in CLERECO, as well as a detailed description of the algorithms to analyze the 
systems and produce early reliability estimations. 

A preliminary version of the modeling and analysis software is already under development 
and a very preliminary demo prototype is already running. A validation activity has also started 
to compare results provided by this model with low-level fault injection campaigns on small sys-
tems. This is important to assess the accuracy of the developed model. 
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