
D5.2.1: System Reliability Estimation Models (Preliminary) Page 1 of 23

Version 1.0 – 27/04/2015

Project Number: FP7-611404

D5.2.1 – System Reliability Estimation Models (preliminary)
Authors1

A. Savino (POLITO), S. Di Carlo (POLITO), A. Vallero (POLITO), G. Politano (POLITO)

Version 1.0 – 27/04/2015

Lead contractor: Politecnico di Torino

Contact person:

Alessandro Savino
Control and Computer Engineering Dep.
Politecnico di Torino, C.so Duca degli Abruzzi, 24
I-10129 Torino TO Italy

E-mail: alessandro.savino@polito.it

Involved Partners2: POLITO, UoA, CNRS, UPC,
THALES, YOGITECH

Work package: WP5

Affected tasks: T5.3

Nature of deliverable3 R P D O

Dissemination level4 PU PP RE CO

1 Authors listed here only identify persons that contributed to the writing of the document.

2 List of partners that contributed to the activities described in this deliverable.

3 R: Report, P: Prototype, D: Demonstrator, O: Other

4 PU: public, PP: Restricted to other programme participants (including the commission services), RE Restrict-
ed to a group specified by the consortium (including the Commission services), CO Confidential, only for members of
the consortium (Including the Commission services)

D5.2.1: System Reliability Estimation Models (Preliminary) Page 2 of 23

Version 1.0 – 27/04/2015

COPYRIGHT

© COPYRIGHT CLERECO Consortium consisting of:

• Politecnico di Torino (Italy) – Short name: POLITO
• National and Kapodistrian University of Athens (Greece) - Short name: UoA
• Centre National de la Recherche Scientifique - Laboratoire d'Informatique, de Ro-

botique et de Microélectronique de Montpellier (France) - Short name: CNRS
• Intel Corporation Iberia S.A. (Spain) - Short name: INTEL
• Thales SA (France) - Short name: THALES
• Yogitech s.p.a. (Italy) - Short name: YOGITECH
• ABB (Norway) - Short name: ABB
• Universitat Politècnica de Catalunya: UPC

CONFIDENTIALITY NOTE
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED, OR MODIFIED IN WHOLE OR IN

PART FOR ANY PURPOSE WITHOUT WRITTEN PERMISSION FROM THE CLERECO
CONSORTIUM. IN ADDITION TO SUCH WRITTEN PERMISSION TO COPY, REPRODUCE, OR

MODIFY THIS DOCUMENT IN WHOLE OR PART, AN ACKNOWLEDGMENT OF THE
AUTHORS OF THE DOCUMENT AND ALL APPLICABLE PORTIONS OF THE COPYRIGHT

NOTICE MUST BE CLEARLY REFERENCED

ALL RIGHTS RESERVED.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 3 of 23

Version 1.0 – 27/04/2015

 INDEX

COPYRIGHT .. 2	

INDEX .. 3	

Scope of the document ... 4	

1. Introduction ... 5	
1.1. System models for reliability analysis ... 6	

2. Bayesian Networks Basic Concepts ... 9	
2.1. Building a Bayesian Network ... 9	

2.1.1. Nodes and values ... 10	
2.1.2. Structure ... 10	
2.1.3. Conditional Probabilities .. 11	
2.1.4. The Markov property .. 12	

2.2. Reasoning with Bayesian Networks .. 12	

3. System Modeling and Reasoning with Bayesian Networks 14	
3.1. The Technology Layer ... 16	
3.2. The Hardware Layer .. 16	
3.3. The Software Layer .. 19	
3.4. Reasoning .. 21	

4. Conclusion ... 21	

5. Bibliography .. 21	

D5.2.1: System Reliability Estimation Models (Preliminary) Page 4 of 23

Version 1.0 – 27/04/2015

Scope of the document

This document is the main outcome of task T5.3 “System level statistical reliability estimation
methodology”, elaborated in the Description of Work (DoW) of the CLERECO project under
Work Package 5 (WP5).

Figure 1 depicts graphically the goal of this deliverable, its main results, the inputs it uses and
the outputs it provides (including which WPs will use its outputs).

Figure 1: The Inputs and the Outputs of this Deliverable

The main goal and outcome of D5.2.1 is to develop statistical estimation model(s) able to
analyze a full system stack from technology up to the application. The model resorts to the
characterization effort provided by all technical WPs (i.e., WP2, WP3 and W4), which aims at
assessing the reliability at the technological, hardware and software layers of the system. Each
WP has already evaluated reliability aspects of technologies and components and a library of
those is going to be built. By describing a full system in terms of the characterized components,
the statistical model described in this deliverable enables reliability evaluation at the system
level.

The document is organized in the following sections:

• Introduction. This section shortly overviews background research on statistical
models to estimate reliability of a full system and identifies the target model that
will be explored in the CLERECO model

• Bayesian Networks Basic Concepts. This section describes all aspects of the sta-
tistical model based on the Bayesian Network theory developed in CLERECO.

• System Modeling with Bayesian Networks. It includes all modeling details to
properly deal with the description and reliability evaluation of a full system.

• Conclusions. In this final section, we summarize the work done for the deliverable
and we set a roadmap to expand the model and improve actual results.

Deliverable D5.2.1

From the components analyses performed in
WP2,3,4 it defines a (preliminary) statistical model
to pursue.

IN

WP2

WP3

WP4

WP5

WP6

D2.1, D2.2.1,
D2.3, D2.4.1

D3.1, D3.2.1,
D3.3.1

D4.1, D4.3.1

•  Technology Information
•  Failure mechanisms
•  Operation modes
•  Reliability metrics

•  Classes of HW
component

•  Characterized HW
components

•  Characterized SW
components

Results

Analysis Tool
(under development)

BN rules for
characterizing the
components
(preliminary)

OUT

WP2

WP3

WP4

WP5

WP6

The CLERECO analysis tool imports
a BN model of the system and
estimates the system reliability.

System Statistical
Model
(preliminary)

D5.2.1: System Reliability Estimation Models (Preliminary) Page 5 of 23

Version 1.0 – 27/04/2015

1. Introduction

System-level reliability estimation is the main and ultimate goal for the CLERECO project.

A system is a collection of components, subsystems and/or assemblies arranged to a specif-
ic design in order to achieve desired functions with acceptable performance and reliability.
The types of components, their quantities, their qualities and the manner in which they are ar-
ranged within the system have a direct effect on the system's reliability. The relationship be-
tween a system and its components is often misunderstood or oversimplified leading to wrong
conclusions.

Statistical models for reliability evaluation have been already studied in life data analysis
and accelerated life testing data analysis [19], as well as other testing activities of several sys-
tems where one of the primary objectives is to obtain a life distribution that describes the times-
to-failure of a component, subassembly, assembly or system [8]. This analysis is usually based on
time-to-failure data of the component, either under use conditions or from accelerated life
tests. In system reliability analysis, one constructs a "System" model from these component
models. In other words, in system reliability analysis we are concerned with the construction of
a model (life distribution) that represents the times-to-failure of the entire system based on the
life distributions of the components, subassemblies and/or assemblies ("black boxes") from
which it is composed. To accomplish that, the relationships between components are consid-
ered and analyzed to infer the overall system reliability, maintainability and/or availability.

Statistical system reliability analysis and modeling of electronic systems is gaining ever-
increasing interest given the electronic systems trend to become more complex, which pre-
vents the realization and use in a reasonable time of simulation based models [33][36][37][40].
Complex fault-injection campaigns are rapidly becoming unfeasible on real system posing a
real threat for the correct characterization of next generation systems.

However, when it comes to early reliability evaluation of electronic systems as in CLERECO,
several modeling problems must be faced. Time-to-failure data of system components, espe-
cially for new technologies and architectures are not available and classical RTL or SystemC
simulation models even for single components may be missing or already too complex to be
analyzed (e.g., in the case of complex microprocessors) in a reasonable time manner.

Within work packages WP2, WP3 and WP4 CLERECO researchers tried to cover this gap de-
veloping a set of methods to characterize technologies, hardware and software components
early in the design phase even when full models of these components are not available. In this
document we accomplish the task of developing a statistical system model able to incorpo-
rate all these component level information into a high-level reliability model of the system.

Instruments able to estimate the reliability of a complete system starting from the very early
stage of the design cycle are important to give designers an insight into comparative reliability
analysis of different components and architectures. They allow a wide range of analyses other
than a simple cause-effect analysis of the fault injection campaign, including inferences, cau-
salities analysis, effect correlations, etc. [18][19]. Such analyses have the potential to identify
those critical components that may require higher design effort to incorporate error tolerance
[3]. Fault-tolerance commonly produces bigger systems (due to hardware redundancy) and
slower software (due to error-tolerant software techniques). It must therefore be carefully used
and traded-off starting from the very early design phases.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 6 of 23

Version 1.0 – 27/04/2015

1.1. System models for reliability analysis

System level behavioral models, such as SystemC models, have been one of the first at-
tempts to move reliability analysis at a system level (the reader may refer to [7] and its refer-
enced papers for a deeper overview). These models are still simulation models that enable to
simulate the activity of the system and to perform fault injection campaigns. However the
complexity of the simulation of these systems is still high compared to the complexity of a full
designed system. Moreover early and exploratory reliability analysis using these models is un-
feasible. Exploring the effect of different design choices on the architecture requires complex
changes in the model that, in turn, require a significant design effort. Finally, while these models
are effective in modeling the hardware architecture layer of the system, they still lack enough
power to tackle with the complexity of the full software stack.

Fault Tree Analysis (FTA) is a very common statistical analysis [28][29][30]. FTA is a top down,
deductive failure analysis in which an undesired state of a system is analyzed using Boolean
logic to combine a series of lower-level events. Mainly used in the fields of safety engineering
and reliability engineering to understand how systems can fail, it is based on modeling the sys-
tem via Fault Trees Diagrams (FTDs), which are the most popular method for reliability analysis
[27]. Figure 2 reports an example of a FTD. It is basically a logic block diagram that displays the
state of a system (top event) in terms of the states of its components (basic events). It uses a
graphic model of the pathways within a system that can lead to a foreseeable, undesirable
loss event (or a failure). The pathways interconnect contributory events and conditions, using
standard logic symbols (AND, OR etc.). This type of FTD is called static FTD. Two common ap-
proaches are used in order to solve a static fault tree: Binary Decision Diagram (BDD) and Cut
sets [29][30]. Both approaches are complex and time consuming if a continuous time reliability
curve is aimed, particularly for large systems [33]. Thus, hardware-based acceleration tech-
niques are proposed to cope with the problem [32][33].

Figure 2: Example of fault-tree model

Another very similar technique that is usually employed to statistically investigate the reliabil-
ity of a system, are the Reliability Block Diagrams (RBDs). Figure 3 reports an example of RBD.
The most fundamental difference between FTDs and RBDs is that in an RBD works in the "suc-
cess space", and thus looks at system successes combinations, while a FTD works in the "failure
space" and looks at system failure combinations. Traditionally, fault trees have been used to

D5.2.1: System Reliability Estimation Models (Preliminary) Page 7 of 23

Version 1.0 – 27/04/2015

access fixed probabilities (i.e., each event that comprises the tree has a fixed probability of
occurring) while RBDs may include time-varying distributions for the success (reliability equa-
tion) and other properties, such as repair/restoration distributions.

Figure 3: Example of reliability block diagram

Both FTD and RBD do not provide any element or capability to model reliability interactions
among components or subsystems, or to represent system reliability configuration changes
(dynamics), such as: load-sharing, standby redundancy, interferences, dependencies, com-
mon cause failures, and so on [34]. Moreover, they do not allow enhancing the reliability eval-
uation in terms of the kind of effects related to the reliability issue, such as wrong execution tim-
ing, data corruption, etc., or the definition of different metrics but Failures-In-Time (FIT), or Mean
Time Between Failures (MTBF) as output of the evaluation.

Markov chains represent a significant alternative to the FTD or RBD analyses [24][25][26]. A
Markov chain (see Figure 4) is a random process that undergoes transitions from one state to
another on a state space. The probability distribution of the next state only depends on the
current state and not on the sequence of events that lead to that state. This is called the Mar-
kov property. Markov chains have several modeling issues when applied to reliability analysis.
First, the whole system needs to be modeled as a set of states, which have to differ from single
components. It means to generate a model that heavily relies on the workload more than on
its components. The workload is in fact the major responsible of the transition of the system
from one state to the next one. Second, the Markov property (i.e., the system is memory-less)
limits the possibility to fully describe the propagation of errors among layers. Moreover, the
Markov property prevents the possibility to backward analysis longer than one state. Backward
analysis is one of the main instruments in system reliability analysis that enables to locate the
sources of failure in a system. Preventing its execution strongly reduces the capability of the
model. Finally the model may suffer from state space explosion.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 8 of 23

Version 1.0 – 27/04/2015

Figure 4: Example of Markov-Chain model

Only few publications consider the application of Bayesian Networks (BN) to model system
reliability in hardware devices [39], [40]. BNs (see Figure 5) are a statistical model to represent
multivariate statistical distribution functions. They can model relationships among random vari-
ables and their respective probability density functions by means of conditional probability
functions. They have been successfully employed for reliability estimation in some application
fields [37]. In the software engineering domain, they have been employed to model software
reliability in the distributed domain [38]. They main advantage with respect to the previous
techniques is the degree of freedom they have to define input causes of failure: there is no limi-
tation in the number of variables to be defined that carry a manifestation of fault meaning.
Moreover, they can be common among other variables. Another very interesting aspect of the
BN is that variables can be either discrete (e.g., Boolean or multi-states) or continuous, allowing
the reliability analysis to cover different metrics apart from FIT or MTBF. Eventually, BNs require
studying the system with locality to populate the network: to connect two variables (in alterna-
tive, two nodes of a system) only their relationship must be defined. If a third variable is linked
to the network but connected to one of the two variables only, this single relationship will be
provided by a conditional probability.

Figure 5: Bayesian model example

Table 1 provides a global comparison of all considered models with respect to main re-
quirements needed for efficient system level early reliability estimation model of complex sys-
tems.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 9 of 23

Version 1.0 – 27/04/2015

Table 1: Comparison Between Statistical Approaches

Characteristics
Statistical Approaches

Fault Tree
Analysis

Reliability Block
Diagrams

Markov
Chains

Bayesian
Networks

Top Down Analysis YES YES YES YES
Bottom Up Analysis NO NO LIMITED YES

Full propagation of events NO NO NO YES
Multiple Output NO NO NO YES

Continuous Values YES YES YES YES
Cycles Definition NO YES YES YES

Dynamic Modeling NO NO YES YES
Components as Single el-

ement of the model
YES YES NO YES

From this analysis it is clear that among the considered models, BN represent the most at-
tractive solution able to build the CLERCO reliability estimation model.

In this deliverable we propose a first model to address the reliability estimation of a full sys-
tem stack by means of BN modeling and solving. The document will guide through all con-
cepts needed for a proper description and all the information gathered from the different WPs
in the CLERECO project.

2. Bayesian Networks Basic Concepts

2.1. Building a Bayesian Network

Bayesian networks (BNs) are graphical models for reasoning under uncertainty, where the
nodes represent variables (discrete or continuous) and arcs represent direct connections
among them. These direct connections are often causal connections. More precisely, given a
set of random variables, 𝚾 = 𝑋!,⋯ ,𝑋! , ⋯ ,𝑋!, from the domain, the set of directed arcs (or links)
connecting pairs of nodes, 𝑋! → 𝑋!, represents the direct dependencies between variables.

In addition, BNs model the quantitative strength of the connections between variables, al-
lowing probabilistic beliefs about them to be updated automatically as new information be-
comes available. Assuming discrete variables, the strength of the relationship between varia-
bles is quantified by conditional probability distributions associated with each node. The only
constraint on the arcs allowed in a BN is that there must not be any directed cycle: you cannot
return to a node simply by following directed arcs. Such networks are called Directed Acyclic
Graphs (DAGs).

There are a number of steps that a knowledge engineer must undertake when building a
Bayesian network. At this stage, we will introduce these steps as a sequence; however it is im-
portant to remark that in the real world the process may be not so simple.

We will use the following simple hardware diagnosis problem: A laptop has been suffering
from sudden restarts. The technician suspects the main board is going to brake down very

D5.2.1: System Reliability Estimation Models (Preliminary) Page 10 of 23

Version 1.0 – 27/04/2015

soon. Nevertheless, he knows for a fact that the same model has been reported to show similar
behaviors for an internal fan issue or for hard drive failures. He also knows that other relevant
information includes whether the laptop has emitted strange noises (increasing the chances of
main board malfunctions or internal fan issue) and the temperature at which the laptop oper-
ates. A negative hard drive check (meaning an error detected when checking the hard drive)
would indicate either a hard drive failure or a main board malfunction.

2.1.1. Nodes and values
First, the knowledge engineer must identify the variables of interest. This involves answering

the question: what are the nodes to represent the system and what values can they take, or
what state can they assume? For now we will consider only nodes that take discrete values.
The values should be both mutually exclusive and exhaustive, which means that the variables
must assume exactly one of these values at a time. Common types of discrete nodes include:

• Boolean/Binary nodes, which represent propositions. They assume binary values,
such as true (T) and false (F). In our example, the node MainBoard represents the
proposition that the laptop has a main board malfunction.

• Ordered values. For example, the node Temperature might represent the laptop en-
vironment temperature range. It may assume the values {low, high}, where low rep-
resents the range 0-26°C and high represents the range 26-40°C.

• Integral values. For example, the node Age might represent the laptop age and
have possible values from 1 to 10.

Even at this early stage, modeling choices are being made. As instance, an alternative to
represent the Temperature might be to have it as integral value.

For our example, we will begin with the restricted set of nodes and values shown in Table 2.
This choice already limits what can be represented in the network. For instance, there is no rep-
resentation of other reliability issues, such as a hard drive failure or an internal fan issue. There-
fore, the modeled system will not be able to estimate the probability of the laptop suffering
one of these failures. Another limitation is lack of differentiation, for example between high or
low noise of the motherboard. Note that all nodes have only two values. This keeps the model
simple, but in general there is no limit to the number of discrete values.

Table 2: Preliminary choices of nodes and values for the example.

Node Name Node
Short

Name

Type Values

Noise N Boolean {T, F}

Temperature T Binary {L(ow), H(igh)}

MainBoard M Boolean {T, F}

Restarts R Boolean {T, F}

HD_Check H Binary {pos, neg}

2.1.2. Structure
The structure, or topology, of the network should capture qualitative relationships between

variables. In particular, two nodes should be connected directly if one affects or causes the
other, with the arc indicating the direction of the effect. So, in our example, we might ask what
factors affect a laptop’s chance of having a main board failure? If the answer is “High tem-
perature and noise”, then we should add arcs from Temperature and Noise to MainBoard. Simi-

D5.2.1: System Reliability Estimation Models (Preliminary) Page 11 of 23

Version 1.0 – 27/04/2015

larly, having a main board failure will affect the changes of laptop’s restart and the chances of
having a HD check negative result. So we add arcs from MainBoard to Restarts and
HD_Check. The resultant structure is shown in Figure 6. It is important to note that this is just one
possible structure for the problem.

Figure 6: A BN for the Main Board problem.

In talking about network structure it is useful to employ a family metaphor: a node is a par-
ent of a child, if there is an arc from the former to the latter. Extending the metaphor, if there is
a directed chain of nodes, one node is an ancestor of another if it appears earlier in the chain,
whereas a node is a descendant of another node if it comes later in the chain. In our example,
the MainBoard node has two parents, Temperature and Noises, while Noise is an ancestor of
both HD_Check and Restarts. Similarly, HD_Check is a child of MainBoard and descendant of
Temperature and Noises. The set of parent nodes of a node X is given by Parents(X).

Another useful terminology commonly used comes from the “tree” analogy (even though
Bayesian networks in general are graphs rather than trees): any node without parents is called
a root node, while any node without children is called a leaf node. Any other node (non-leaf
and non-root) is called an intermediate node. Given a causal understanding of the BN struc-
ture, this means that root nodes represent original causes, while leaf nodes represent final ef-
fects. In our laptop description example, the causes Temperature and Noise are root nodes,
while the effects HD_Check and Restarts are leaf nodes.

By convention, for easier visual examination, networks are usually laid out so that the arcs
generally point from top to bottom. This means that the BN “tree” is usually depicted upside
down, with roots at the top and leaves at the bottom.

2.1.3. Conditional Probabilities
Once the topology of the BN is specified, the next step is to quantify the relationships be-

tween connected nodes: specifying a Conditional Probability Distribution (CPD) for each node
does this. As we are only considering discrete variables at this stage, this takes the form of a
Conditional Probability Table (CPT).

First, for each node we need to look at all possible combinations of values of its parent
nodes. Each such combination is called an instantiation of the parent set. For each distinct in-
stantiation of parent node values, we need to specify the probability that the child will take
each of its values.

Noises

MainBoard

HD_Check

Temperature

Restarts

P(T=L)

0.90

P(N=T)

0.30

N T P(M=T|N,T)

T H 0.05

T L 0.03

F H 0.02

F L 0.001

M P(H=pos|M)

T 0.90

F 0.20

M P(R=T|M)

T 0.65

F 0.30

D5.2.1: System Reliability Estimation Models (Preliminary) Page 12 of 23

Version 1.0 – 27/04/2015

For example, consider the MainBoard node of Figure 6. Its parents are Temperature and
Noise and take the possible joint values {< H,T >, < H,F >, < L,T >, < L,F >}. The conditional proba-
bility table reported in Figure 6 specifies the probability of MainBoard failure for each of these
cases to be: < 0.05, 0.02, 0.03, 0.001 >. Since these are probabilities, and must sum to 1 over all
possible states of the MainBoard variable, the probability of no MainBoard malfunction is al-
ready implicitly given as one minus the above probabilities in each case; i.e., the probability of
no MainBoard malfunction in the four possible parent instantiations is < 0.95, 0.98, 0.97, 0.999 >.

Root nodes also have an associated CPT, although it is degenerate, containing only one
row representing its prior probabilities. In our example, the prior for a laptop emitting strange
noises is given as 0.3, indicating that 30% of the population that the technician sees emits
strange noises, while 90% of the population are exposed to only low temperature in their work-
ing environment.

Clearly, if a node has many parents or if the parents can take a large number of values, the
CPT can grow very large. The size of the CPT is, in fact, exponential in the number of parents.
Thus, for networks wit Boolean states a variable with n parents requires a CPT with 2!!! probabil-
ities. Several solutions are already proposed in literature to cope with the exponential grow of
probabilities in CPT. Among them, one seems very promising: the Noisy-MAX ap-
proach[42][43][44][45]. The Noisy-Max is a generalization of the interaction of a child node and
its direct ancestors in a BN based on three assumptions [45]:

1. The child node and all its ancestors must be variables indicating the degree of pres-
ence of an anomaly.

2. Each of the ancestor nodes must represent a cause that can produce the effect (one
of the child node state) in absence of other cause.

3. There may be no significant synergies among the causes.

If all assumptions are met, the generalization allows replacing the CPT with a smaller and
simpler table, in which each child node state reflects only the single effect of all ancestors’
alone. In [44], authors demonstrated the effectiveness of this technique comparing results
against a set of known problems described with CPTs and proved how the actual complexity
reduction is logarithmic.

2.1.4. The Markov property
In general, modeling with Bayesian networks requires the assumption of the Markov proper-

ty: there are no direct dependencies in the system being modeled that are not already explic-
itly shown via arcs. In our example, as instance, there is no way for Noise to influence Restarts
except by being related to a main board malfunction. Bayesian networks that have the Mar-
kov property are also called Independence-maps (or, I-maps for short), since all independ-
ences suggested by the lack of an arc are real in the system.

Nevertheless, it is important to remember that this is only a construction property that simpli-
fies the construction of the network. As stated before, differently from Markov chains, once the
network is built, full back trace analysis is then possible as will be explained later in the docu-
ment.

2.2. Reasoning with Bayesian Networks

Now that we know how a domain and its uncertainty may be represented in a Bayesian
network, we will look at how to use the Bayesian network to reason about the domain. In par-
ticular, when we observe the value of some variable, we would like to condition upon the new
information. The process of conditioning (also called probability propagation or inference or
belief updating) is performed via a “flow of information” through the network. Note that this

D5.2.1: System Reliability Estimation Models (Preliminary) Page 13 of 23

Version 1.0 – 27/04/2015

information flow is not limited to the directions of the arcs. In our probabilistic system, this be-
comes the task of computing the posterior probability distribution for a set of query nodes, giv-
en values for some evidence (or observation) nodes.

Bayesian networks provide full representations of probability distributions over their variables.
That implies that they can be conditioned upon any subset of their variables, supporting any
direction of reasoning. For example, one can perform diagnostic reasoning, i.e., reasoning
from symptoms to cause, such as when the technician observes the Restarts and then updates
his belief about a MainBoard malfunction and whether the laptop emits strange Noise. Note
that this reasoning occurs in the opposite direction to the network arcs. Or again, one can per-
form predictive reasoning, reasoning from new information about causes to new beliefs about
effects, following the directions of the network arcs. For example, the laptop’s owner may tell
his technician that he has listen to some noise; even before any symptoms have been as-
sessed, the technician knows this will increase the chances of the laptop having a main board
malfunction. It will also change the technician’s expectations that the laptop will exhibit other
symptoms, such as restarts or having a negative HD check result.

A further form of reasoning involves reasoning about the mutual causes of a common ef-
fect; this has been called inter-causal reasoning. A particular type called explaining away is of
some interest. Suppose that there are exactly two possible causes of a particular effect, repre-
sented by a v-structure in the BN. This situation occurs in our model of Figure 6 with the causes
Temperature and Noise, which have a common effect, MainBoard malfunction. According to
the model, these two causes should be independent of each other; that is, a laptop emitting
noise (or not) does not change the probability of the laptop to be exposed to some high tem-
perature. Suppose, however, that we learn that a laptop main board is malfunctioning. This will
raise our probability for both possible causes of a main board malfunction, increasing the
chances both that it emits noises and that he has been exposed to some very high tempera-
ture. Suppose then that we discover that its owner has listened to some noise without taking
care of them. This new information explains the observed main board malfunction, which in
turn lowers the probability that he has been exposed to high temperatures. So, even though
the two causes are initially independent, with knowledge of the effect the presence of one
explanatory cause renders an alternative cause less likely. In other words, the alternative cause
has been explained away.

Figure 7: Types of reasoning.

N

M

H

T

R

Query

Query

Evidence

D
ire

c
tio

n
 o

f R
e

a
so

n
in

g

Diagnostic

Query
N

M

H

T

R

Query Query

Evidence

D
ire

c
tio

n
 o

f R
e

a
so

n
in

g

Predictive

N

M

H

T

R

Query Evidence

Evidence

Intercasual

N

M

H

T

R

Query

Evidence

Evidence

Combined

D5.2.1: System Reliability Estimation Models (Preliminary) Page 14 of 23

Version 1.0 – 27/04/2015

Since any node may be s query node or a evidence node, sometimes the reasoning does
not fit neatly into one of the types described above. Indeed, we can combine the above
types of reasoning in several ways. Figure 7 shows the different varieties of reasoning using the
provided example. Note that the last combination shows the simultaneous use of diagnostic
and predictive reasoning.

It should be now clear how Bayesian networks could be used for calculating new beliefs
when new information is available. The evidence might be that a node 𝑌 has the value 𝑦! or 𝑦!
(implying that all other values are impossible). Or the evidence might be that 𝑌 is not in state 𝑦!
(but may take any of its other values). In fact, the new information might simply be any new
probability distribution over 𝑌.

Looking at the example, let us suppose that the technician who has performed the HD
check is uncertain. He thinks that the HD check could be right, but is only 80% sure. Such infor-
mation can be incorporated, and it would correspond to adopting a new posterior distribution
for the node in question. In Bayesian networks this is also known as virtual evidence. Since it is
handled via likelihood information, it is also known as likelihood evidence.

Eventually, belief updating can be done using a number of exact and approximate infer-
ence algorithms. A set of algorithms are widely know to provide it, and choosing among them
usually put particular emphasis on how the different algorithms can affect the efficiency of
both the knowledge engineering process and the automated reasoning in the deployed sys-
tem [18][19]. However, since the mathematical modeling is quite complex and its explanation
requires a lot of information and since most existing BN software libraries allow the select and
use essentially the same algorithms, we do not enter into such details, demanding it to refer-
ences. Moreover, it also means that, in general, it is quite possible to build and use BNs without
knowing the details of the belief updating algorithms.

In the following chapter we focus on resorting to BN towards the full system modeling.

3. System Modeling and Reasoning with Bayesian

Networks

System modeling using a BN starts by identifying the nodes that compose the network iden-
tifying the main players (components of the system) that influence the system reliability.

In order to work with a realistic use case let us consider the design of an image processing
embedded system designed for identification of artifacts in an image. The general characteris-
tics of the system are as follows:

• Hardware architecture: a x86 out-of-order single core microprocessor
• A 1T DRAM main memory
• Both microprocessor and memory are realized in a 14nm FinFET technological pro-

cess
• The architecture executes the Susan edge algorithm from the MiBench test benches

[46] executed on top of the Linux operating system.
• Mass storage memory, and external devices such as I/O devices are not considered

to reduce the complexity of the example.

Figure 8 shows a Bayesian network model of the considered system. For each layer of the
system stack (i.e., technology layer, HW layer, SW layer), a set of nodes represents players of
the reliability problem coming from that layer.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 15 of 23

Version 1.0 – 27/04/2015

Figure 8: System Level Reliability Evaluation Using a Bayesian Model of the System.

The technology layer plays an active input role. Depending on the technologies employed
in the system, the reliability of the system is affected. Nodes at this layer are root nodes. They
represent technologies for building the hardware structures of the system.

The hardware layer defines the set of hardware resources assembled together to provide
hardware functionalities to the system. Since they are built around specific technologies, they
are topologically connected to the technology layer nodes. Depending on the internal organ-
ization of the hardware subsystem, edges represent interactions among them. The output of
the hardware layer is able to follow up to the software layer typically through the system mi-
croprocessor.

Eventually, the software layer includes the very last players in the reliability evaluation. While
reliability hazards arise into the technological layer, they usually propagate through the hard-
ware components, and, affect the system depending on how the software interacts with the
affected hardware components. This interaction is mainly based on how the software manipu-
lates data or on the way the flow of execution follows its proper path. In BN terms, we can
identify the functions of the system software as players (the nodes) of the problem. The way
they are linked each other depends on the SW functionalities, while the connection to the
hardware layer is going to be discussed in the following sections.

Looking at the final BN model, it should be clear why BNs are a very good candidate to
model the system stack, where failures at technology level propagate (or mask) at hardware
layer or, furthermore, at software layer.

Tech. Layer

HW Layer

SW Layer

Predictive Models:
•  DRAM Cell 1T
•  Latch
•  …

Reliability
Characterization Tools for
HW Blocks
•  Marssx86-Fautl Injector
•  Ge5-Fault Injector
•  NAND Analyzer

Reliability Characterization
Tools for SW Blocks
•  LLVM Fault Injector
•  BN Software Analyzer

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

D5.2.1: System Reliability Estimation Models (Preliminary) Page 16 of 23

Version 1.0 – 27/04/2015

3.1. The Technology Layer

In WP2 several models have been developed to study failure mechanisms of a representa-
tive set of current and future technologies. These models enable us to compute failure proba-
bility distributions for several types of faults also depending on the environmental conditions.

Figure 9: Technology nodes

Figure 9 shows how technology in our use case is modeled at system level. Models defined
in WP2 enable to characterize these nodes with proper failure probabilities depending on the
considered failure mechanism. As an example, if we limit the analysis to soft-errors, models de-
veloped in WP2 enable us to compute the Raw Error Rate (i.e., the Soft Error Rate) of the tech-
nology. It expresses the rate at which the technology is predicted to encounter errors. It is typi-
cally expressed as either number of FIT or MTBF. The rate can be easily converted into a proba-
bility (or a distribution of probability) [36].

3.2. The Hardware Layer

The hardware layer introduces how errors in the technology propagate and, eventually,
can be masked during the systems run. The BN model of the hardware layer is built resorting to
a hardware analysis, which should express how data are propagated among HW components
of the system, in order to understand where the probability of an error propagate. A feasible
hardware layer model for our use case is shown on Figure 10. It represents the model of the in-
ternal structure of an x86-out-of-order microprocessor architecture.

Figure 10: The x86_64 BN model

When defining nodes at this level it is important to consider that, for each node, we must be
able to compute the probability of failure in that node given a failure in its direct ancestors.

Looking at the nodes composing the hardware layer we can identify three different cases.

1. Root nodes for the layer

They are nodes with a single direct ancestor, coming from the technology layer. For the sa-
ke of simplicity we can consider them as Binary nodes, with two possible states:

1. Error Masked. An error generated in the technology does not propagate through
the outputs of the component

2. Error. The output of the component differs from the expected one.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 17 of 23

Version 1.0 – 27/04/2015

As explained in Section 2.1.3, from a BN perspective, these hardware nodes are described
by a 2x2 CPT, as reported in Figure 11.

Figure 11: Propagation of Error from a Technology node to an HW node.

2. Intermediate nodes

Intermediate nodes model components directly connected to other components. The cor-
rectness of the output of these nodes depends on the correctness of their direct ancestors, as
well as on their inner capability of masking incoming errors.

In the example of Figure 12, we show a very small structure, where a first HW component
feeds a second one (e.g., cache L2 provides input for the cache L1 of a microprocessor).
Since intermediate components have several direct ancestors, their CPTs require additional
rows and columns to represent probabilities for all instantiations of the states of the direct an-
cestor nodes.

Figure 12: HW node with more than one direct ancestor.

Tech #1
Raw Error

HW
component

Error No Error

Pfail
 1- Pfail

Conditional Probability Table

Fail No Fail

Masked P(Masked|Fail) P(Masked | No Fail)

Error P(Error| Fail) =
1 - P(Masked|Fail)

P(Error| No Fail) =
1 - P(Masked| No Fail)

Conditional Probability Table

Tech #1
Raw Error

HW
component

#2

Fail No Fail

Pfail
 1- Pfail

Conditional Probability Table

Tech #1 Fail No Fail

HW Comp. #1 Masked Error Masked Error

Masked !

Failure

Conditional Probability Table

HW
component

#1

Fail No Fail

Masked P(Masked|Fail) P(Masked | No Fail)

Error P(Error| Fail) P(Error| No Fail)

Conditional Probability Table

P(HW comp. #2 Masked|Tech #1 Fail, HW comp. #1 Masked)

D5.2.1: System Reliability Estimation Models (Preliminary) Page 18 of 23

Version 1.0 – 27/04/2015

As already stated before, with the growth of the number of ancestors the number of proba-
bilities to compute increases. This issue is a very frequent problem when employing BN models
and solutions are already proposed. The application of the Noisy-Max generalization described
earlier, is currently under investigation. Figure 13 shows how the previous CPT table of Figure 12
would be simplified when resorting to the Noisy-MAX approach.

Figure 13: CPT vs. Noisy-MAX

3. Nodes connected to the software layer

These are leaves nodes of the hardware layer. As explained in previous deliverables, to en-
able analysis of software and hardware in isolation it is mandatory to strongly decouple the
hardware and the software layers.

We propose to define a meta-node that projects the propagation of error from the hard-
ware to the software layer. Figure 14 shows an example of this meta-node for the selected use
case. The µPC node represents the only node connected to the part of the BN modeling the
Software Layer (which will be addressed by Section 3.3), and, therefore, needs to be charac-
terized in a proper way.

First of all, its direct ancestors must be all HW components that manifest their output at in-
struction level. In fact, the way HW and SW are linked is through the Instruction Set Architecture
(ISA) of the microprocessor in the system. It means that if their state directly affects the outputs,
the inputs, or the computation of an instruction of the microprocessor, they will be direct an-
cestors of the µPC node. Moreover, the states of the µPC node can be the same of any other
HW component: error Masked or not. It represents the final propagation of errors in the hard-
ware layer.

Figure 14: The µPC meta-node

Tech #1 Fail No Fail

HW Comp. #1 Masked Error Masked Error

Masked !

Failure

Conditional Probability Table

Tech #1 HW Comp. #1

Fail No Fail Masked Error

Masked ! !

Failure

Noisy-MAX Table

P(HW comp. #2 Masked|Tech #1 Fail, HW comp. #1 Masked) P(HW comp. #2 Masked|Tech #1 Fail)

P(HW comp. #2 Masked|HW comp. #1 Masked)

µPC

HW Layer BN Model

D5.2.1: System Reliability Estimation Models (Preliminary) Page 19 of 23

Version 1.0 – 27/04/2015

WP3 of CLERECO developed several tools mainly based on architectural fault injectors that
enable to compute the probabilities that characterize hardware nodes. Fault injection cam-
paign implemented with these tools can be either performed considering the specific software
workload of the system to obtain very precise results or with generic workloads reused in multi-
ple designs to enable fast early estimation with reduced accuracy.

It is important to point out that fault injection campaigns performed using CLERECO tools do
not employ complex RTL level models but high-level architectural models that strongly reduce
the computation time. Moreover, since the hardware and the software layer are decoupled,
simulations do not require executing the full workload but can stop as soon as an error is ob-
served at the ISA level. This further reduces the complexity of the analysis.

3.3. The Software Layer

In order to be able to characterize every SW without knowing the actual HW platform, De-
liverable D4.1 defines a set of Software Fault Models (SFMs), which model how hardware errors
propagate to software. They mainly rely on alterations that have an impact on the Instruction
Set Architecture (ISA) of the microprocessor executing the code, e.g., a change in the content
of an operand or a switch in the op-code bits leading to a different instruction, etc.

Since these data represent what the µPC node is expected to deliver, we introduce a SFMs
layer of nodes to further connect the HW layer to the SW one. From the HW perspective, these
nodes represent the probability of the ISA level manifestation of each SFM when an error from
the HW is reported.

Figure 15: SFM Nodes

 In order to populate the BN correctly, we need to define one node for each SFM the de-
signer is going to investigate and to define the related CPT expressing the probability of that
fault model given the possible states of the µPC node.

Again these probabilities can be computed by the tools developed in WP3, since as soon as
the error is propagated (and noticed) to the ISA level, it is possible to enhance it with the SFMs
manifested. Figure 15 shows the SFM nodes (in orange) and the CPT table to be built.

HW
component

#x

µPC

HW
component

#y

SFM
#1

SFM
#2

Masked Error

Masked P(Masked | Masked) P(Masked | Error)

Manifested P(Manifested | Masked) P(Manifested | Error)

Conditional Probability Table

D5.2.1: System Reliability Estimation Models (Preliminary) Page 20 of 23

Version 1.0 – 27/04/2015

This extra layer feeds the nodes modeling the software employed in the system. The idea is
to generate one node for each function of the software and then relate them to build a DAG
modeling the propagation of errors as already described for HW. The task requires tracing the
software execution to extract its function call graph (FCG). The FCG extractor usually performs
the operations described in Figure 16. In this case, for the sake of simplicity, a very simple soft-
ware evaluating if two consecutive numbers (1 and 2) are even or odd (and printing a label
about that classification on screen) is considered. When the software is executed and its traces
analyzed, the main function is split into several chunks, which identify different parts of the main
function and then each printf function call is treated as a different call. The obtained FCG is an
acyclic graph where each main chunk represents a node, as well as each different printf in-
stantiation instantiate a node.

Figure 16: FCG extraction

 Each node must be completed with a related CPT table accounting for the events of an
error in the ancestor nodes. This way a complete propagation of the error through the software
is modeled.

Similarly to the hardware layer, tools developed in WP4 that enable to model software rou-
tines on top of the LLVM virtual environment, are also able to perform very fast high-level fault
injection campaigns that can be used to fill the software level CPTs.

int main () {
 int index;

 printf(“Even or odd?\n”);

 for (index = 1; index <= 2; index++) {

 if (index % 2 == 0)

 printf (“Number is even\n”);

 else

 printf(“Number is odd\n”);

 }

 return 0;
}

main
@

part 1

printf
#1

printf
#2

printf
#3

main
@

part 2

main
@

part 3

main
@

part 4

main @ part 1

printf #1

main @ part 2

printf #2

printf #3

main @ part 3

main @ part 4

D5.2.1: System Reliability Estimation Models (Preliminary) Page 21 of 23

Version 1.0 – 27/04/2015

Figure 17: The Susan algorithm BN model

3.4. Reasoning

Once the full model of the system is completely designed and all CPTs filled with related
conditional probabilities, BN reasoning approaches as the ones introduced in Section 2.2 can
be applied in order to perform system reliability analysis on the modeled system.

4. Conclusion

This deliverable overviews the preliminary version of the CLERECO system level reliability
model. We focused on modeling of the structure of the system and on the integration of relat-
ed information produced by the other work-packages. The next version of this deliverable, that
will be released at M36, will include a detailed description of how this model links to all other
tools developed in CLERECO, as well as a detailed description of the algorithms to analyze the
systems and produce early reliability estimations.

A preliminary version of the modeling and analysis software is already under development
and a very preliminary demo prototype is already running. A validation activity has also started
to compare results provided by this model with low-level fault injection campaigns on small sys-
tems. This is important to assess the accuracy of the developed model.

5. Bibliography

[1] D. Brooks et al. Power, thermal, and reliability modeling in nanometer-scale microprocessors. IEEE Micro, 27:49-62,
2007.

[2] R. A. Sahner et al. Performance and reliability analysis of computer systems: an example-based approach using
the SHARPE software package. Kluwer Academic Publishers, Norwell, MA, USA, 1996.

[3] J. B. Bernstein et al. Electronic circuit reliability modeling. Microelectronics and Reliability, 46(12):1957-1979, 2006.

D5.2.1: System Reliability Estimation Models (Preliminary) Page 22 of 23

Version 1.0 – 27/04/2015

[4] N. Miskov-Zivanov and D. Marculescu. Circuit reliability analysis using symbolic techniques. IEEE Trans. on CAD,
25(12):2638-2649, Dec. 2006.

[5] J. Srinivasan et al. The case for lifetime reliability-aware microprocessors. In Proc. of the 31st Int. Symposium on
Computer Arch., ISCA '04, pages 276-, Washington, DC, USA, 2004.

[6] A. Israr and S. A. Huss. Specification and design considerations for reliable embedded systems. In Proc. DATE'08,
pages 1111-1116, NY, USA, 2008.

[7] Rishad A. Shafik, Bashir M. Al-Hashimi, Jimson Mathew, Dhiraj Pradhan, Saraju P. Mohanty, "RAEF: A Power Normal-
ized System-Level Reliability Analysis and Estimation Framework," 2014 IEEE Computer Society Annual Symposium
on VLSI, pp. 189-194, 2012 IEEE Computer Society Annual Symposium on VLSI, 2012

[8] R. Baumann, “Soft errors in advanced computer systems,” Design & Test of Computers, IEEE, vol. 22, no. 3, pp. 258
266, 2005.

[9] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges in nanometer technologies,” in Proceedings of the
41st annual Design Automation Conference. ACM, 2004, pp. 75–75.

[10] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A systematic methodology to compute the
architectural vulnerability factors for a high-performance microprocessor,” in Proceedings of the 36th annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 2003, p. 29.

[11] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner, “Razor: circuit-level correction of
timing errors for low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[12] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, “Multicore soft error rate stabilization using adaptive dual modu-
lar redundancy,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010. IEEE, 2010, pp. 27–
32.

[13] M. Dimitrov and H. Zhou, “Unified architectural support for soft-error protection or software bug detection,” in Pro-
ceedings of the 16th International Conference on Parallel Architecture and Compilation Techniques. IEEE Com-
puter Society, 2007, pp. 73–82.

[14] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer, “An architectural framework for detecting process
hangs/crashes,” in Dependable Computing-EDCC 5. Springer, 2005, pp. 103–121.

[15] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, L. Tagliaferri, and C. Tibaldi, “Promon: a profile monitor of software
applications,” in 8th IEEE International Workshop on Design and Diagnostics of Electronic Circuits and Systems
2005. DDECS 2005. IEEE, 13-16 April 2005, pp. 81–86.

[16] L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Towards under- standing the effects of intermittent hardware
faults on programs,” in Dependable Systems and Networks Workshops (DSN-W), 2010 International Conference on,
June 2010, pp. 101–106.

[17] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou, “Understanding the propagation of
hard errors to software and implications for resilient system design,” SIGOPS Oper. Syst. Rev., vol. 42, no. 2, pp. 265–
276, Mar. 2008.

[18] F. V. Jensen. "Bayesian Networks and Decision Diagrams". Springer. 2001.
[19] D. Edwards. "Introduction to Graphical Modelling", 2nd ed. Springer-Verlag. 2000.
[20] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting application-level fault equivalence

to analyze application resiliency to transient faults,” SIGPLAN Not., vol. 47, no. 4, pp. 123– 134, Mar. 2012.
[21] M.-L. Li, P. Ramachandran, U. Karpuzcu, S. K. S. Hari, and S. Adve, “Accurate microarchitecture-level fault model-

ing for studying hardware faults,” in High Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th Interna-
tional Symposium on, Feb 2009, pp. 105–116.

[22] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency from architectural vulnerability,” in High
Performance Computer Ar- chitecture, 2009. HPCA 2009. IEEE 15th International Symposium on, Feb 2009, pp. 117–
128.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building
customized program analysis tools with dynamic instrumentation,” ACM Sigplan Notices, vol. 40, no. 6, pp. 190–
200, 2005.

[24] M. G. Thomson J. A. Wittaker "Rare Failure State in a Markov Chain Model for Software Reliability" IEEE Trans. Reliab.
48(2) pp. 107-115 1996.

[25] J. G. Konery J. L. Snell "Finite Markov Chains" Springer-Verlang NY 1996.
[26] Ciufudean, C.; Satco, B.; Filote, C., "Reliability Markov Chains for Security Data Transmitter Analysis," Availability,

Reliability and Security, 2007. ARES 2007. The Second International Conference on , vol., no., pp.886,894, 10-13 April
2007 doi: 10.1109/ARES.2007.122

[27] R. Gulati and J. B. Dugan "A modular approach for analyzing static and dynamic fault trees " in Proc. Annu. Relia-
bility And Maintainability Symposium (RAMS) Philadelphia Pennsylvania USA January 1997 pp. 57-63.

[28] J. B. Dugan S.J. Bavuso and M. A. Boyd "Dynamic fault-tree models for fault-tolerant computer systems" IEEE Trans.
Reliability Vol. 41 No. 3 pp. 363-377 October 1992.

[29] 3. R. Sinnamon and J. D. Andrews "Fault tree analysis and binary decision diagrams" in Proc. Annu. Reliability And
Maintainability Symposium (RAMS) Las Vegas Nevada USA January 1996 pp. 215-222.

[30] 4. I. Koren and C. M. Krishna Fault tolerant systems Morgan Kaufmann 500 Sansome Street Suite 400 San Francisco
CA 94111 2007 pp. 13-41.

[31] 5. H. Boudali and J. B. Dugan "A new bayesian network approach to solve dynamic fault trees" in Proc. Annu. Reli-
ability And Maintainability Symposium (RAMS) 2005 pp. 451-456.

[32] Kara-Zaitri, C.; Ever, E., "A Hardware Accelerated Semi Analytic Approach for Fault Trees with Repairable Compo-
nents," Computer Modelling and Simulation, 2009. UKSIM '09. 11th International Conference on, vol., no.,
pp.146,151, 25-27 March 2009, doi: 10.1109/UKSIM.2009.83

D5.2.1: System Reliability Estimation Models (Preliminary) Page 23 of 23

Version 1.0 – 27/04/2015

[33] Rajabzadeh, A.; Jahangiry, M.S., "Hardware-based Reliability Tree (HRT) for fault tree analysis," Computer Architec-
ture and Digital Systems (CADS), 2010 15th CSI International Symposium on , vol., no., pp.171,172, 23-24 Sept. 2010
doi: 10.1109/CADS.2010.5623587

[34] Distefano, S.; Puliafito, A., "Dynamic Reliability Block Diagrams VS Dynamic Fault Trees," Reliability and Maintainabil-
ity Symposium, 2007. RAMS '07. Annual , vol., no., pp.71,76, 22-25 Jan. 2007, doi: 10.1109/RAMS.2007.328095

[35] C. Weaver, J. Emer, S. Mukherjee, and S. Reinhardt, “Reducing the soft-error rate of a high-performance micro-
processor,” Micro, IEEE, vol. 24, no. 6, pp. 30–37, Nov 2004.

[36] A. Savino, S. Carlo, G. Politano, A. Benso, A. Bosio, and G. Di Natale, “Statistical reliability estimation of micropro-
cessor-based systems,” Computers, IEEE Transactions on, vol. 61, no. 11, pp. 1521–1534, Nov 2012.

[37] H. Langseth and L. Portinale, “Bayesian networks in reliability,” Reliability Engineering & System Safety, vol. 92, no. 1,
pp. 92–108, 2007.

[38] L. Yuan-Shun Dai and K. Trivedi, “Performance and Reliability of Tree- Structured Grid Services Considering Data
Dependence and Failure Correlation,” Computers, IEEE Transactions on, vol. 56, no. 7, pp. 925– 936, 2007.

[39] S. Zhai and S. Z. Lin, “Bayesian networks application in multi-state system reliability analysis,” Applied Mechanics
and Materials, vol. 347, pp. 2590–2595, 2013.

[40] A. Bobbio, L. Portinale, M. Minichino, and E. Ciancamerla, “Improving the analysis of dependable systems by
mapping fault trees into bayesian networks.” Rel. Eng. & Sys. Safety, vol. 71, no. 3, pp. 249–260, 2001.

[41] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection: Quantified error and confi-
dence,” in Design, Automation Test in Europe Conference Exhibition, 2009. DATE ’09., April 2009, pp. 502–506.

[42] Max Henrion, Practical Issues in Constructing a Bayes' Belief Network, Eprint 1304.2725, Url:
http://arxiv.org/abs/1304.2725

[43] Francisco Javier Diez, Parameter Adjustment in Bayes Networks. The generalized noisy OR-gate, CoRR, 2013, Vol-
ume abs/1303.1465, Url: http://arxiv.org/abs/1303.1465

[44] Zagorecki, Adam and Druzdzel, Marek J. (2013) Knowledge engineering for Bayesian networks: How common are
noisy-MAX distributions in practice? IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43 (1). pp. 186-
195.

[45] F.J. Díez, J. Mira, E. Iturralde, S. Zubillaga, DIAVAL, a Bayesian expert system for echocardiography, Artificial Intelli-
gence in Medicine, Volume 10, Issue 1, May 1997, Pages 59-73, ISSN 0933-3657, http://dx.doi.org/10.1016/S0933-
3657(97)00384-9.

[46] University of Michigan at Ann Arbor. Mibench version 1.0. [Online]. Available:
http://www.eecs.umich.edu/mibench/

[47] N. Foutris, M. Kaliorakis, S. Tselonis, and D. Gizopoulos, “Versatile architecture-level fault injection framework for
reliability evaluation: A first report,” in On-Line Testing Symposium (IOLTS), 2014 IEEE 20th International. IEEE, 2014,
pp. 140–145.

