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Scope of the document 

This document is the main outcome of task T5.4 “Design optimization heuristics”, elaborated 
in the Description of Work (DoW) of the CLERECO project under Work Package 5 (WP5). 

Figure 1 depicts graphically the goal of this deliverable, its main results, the inputs it uses and 
the outputs it provides (including which WPs will use its outputs). 

 

Figure 1: The Inputs and the Outputs of this Deliverable 

The main goal and outcome of D5.4 is to define and to develop new automatic optimiza-
tion strategies and heuristics enabling to optimize the design of a complex system maximizing 
its reliability but, at the same time, trading-off other design dimensions such as area, power and 
performance.  

The optimization environment described in this deliverable resorts to information provided by 
all the characterization tools developed in the framework of the other CLERECO technical WPs, 
i.e., WP2, WP3, WP4 and WP5. In particular, the optimization process is strongly based on the 
system description and on the reliability estimation model described in deliverables D5.1.2 and 
D5.2.2. By resorting to the CLERECO Bayesian reliability estimation model developed in the pro-
ject the algorithms and tools presented in this deliverable enable to explore different design 
alternatives, and, for each of them, to quickly evaluate the reliability of the designed system, 
thus looking for the best combination of components that enable to optimize the design.  
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In this context design alternatives correspond to different combinations of hardware and 
software components whose reliability has been characterized resorting to the available 
CLERECO tool chain.  

This is a preliminary version of this document that focuses on the description of the optimiza-
tion algorithm and its implementation into an EDA tool integrated in the CLERECO tool suite. In 
its final version extended experimental results will be included to show the optimization engine 
at work on a set of real cases. 

The document is organized in the following sections: 

• The Introduction summarizes motivations of this work and briefly reviews the literature 
focusing on reliability optimization of complex systems. 

• The Reliability Optimization Strategies introduces the heuristics developed in the pro-
ject to implement a system reliability optimization engine. In this section we first focus 
on the theoretical aspects of the defined algorithm, and then we provide technical 
details regarding its actual implementation.  

• Eventually, the Conclusions summarize the main contributions of the document and 
outline the work that will be done in the remaining of the project. 

1. Introduction 

System optimization, trading-off several design dimensions is a crucial problem for system 
designers in several application domains ranging from very complex HPC systems to embed-
ded systems and consumer electronics.  

Optimizing the reliability of a digital system is a complex process that requires selecting the 
best combination of technologies, hardware components, software modules, and their related 
fault-tolerance mechanisms considering a cross-layer approach where protection against sev-
eral classes of faults can be achieved at different layers of the system stack. This is usually a 
multi-objective optimization problem since the number of parameters that have to be consid-
ered and the number of design options is huge. Moreover, reliability must be traded off with 
other dimensions such as area, timing, power, etc. [7]. Nowadays, the number of parameters 
to consider is growing very close to a level that cannot be handled any more by system de-
signers without the introduction of proper automatic optimization tools.  

Currently, system optimization is demanded to decision makers and expert system designers. 
The common practice to achieve a given reliability constraint is to build a system with large 
margins in the technology and to add several levels of redundancy, either at the hardware 
layer, or at the software layer. Regardless the different implementations, at a high-level redun-
dancy is achieved by introducing spare copies of the same components acting in parallel to 
perform the same operation, or by performing computations several times in consecutive time 
slots. In both cases, dedicated decision and voting algorithms able to take proper actions 
whenever discrepancies are detected in the multiple instances of the implemented functional-
ities are required to exploit the introduced redundancy. Unfortunately, with the increasing 
complexity of modern systems, this approach is becoming prohibitively expensive in terms of 
area, power and performance, especially for embedded computing systems [1][2][3][4]. 

One of the main limitations of the way systems are nowadays optimized, is that decisions are 
not driven by accurate system-level reliability estimates that take into account the peculiar in-
teraction of the hardware architecture with the specific software workload. A given protection 
mechanism is usually selected based on the knowledge of its general efficiency or based on 
regulations introduced by safety standards defined for specific application domains. Given the 
lack of analytical results, protection strategies tend to be very conservative, in the sense that 
designers resort to them ever considering worst-case scenarios. This has the general drawback 
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of overdesigning the final system. Finally, the way different protection mechanisms interact to-
gether is in general not well understood, thus limiting the optimization to very simple design de-
cisions.  

In recent years, system-level reliability estimation methodologies avoiding complex and 
computational intensive RTL fault injection (FI) campaigns are emerging and the CLERECO pro-
ject is taking a significant step forward in this direction. Most of these approaches rely on high-
level models of the system; some of them focus on a single layer of the system stack (e.g., the 
hardware layer [5]), whereas others consider all layers starting from the technology up to the 
application software [6], [9]. In all cases, the accuracy of the evaluation depends on the ac-
curacy of the model, but they all share the ability of providing reliability estimations faster than 
RTL fault injection.  

The availability of fast reliability estimation models opens new chances for the realization of 
automatic system optimization methodologies. However, performing exhaustive design explo-
ration to optimize a given system, especially in an early phase of the design cycle when the 
number of design choices and the number of degrees of freedom is high, is a complex prob-
lem that can easily turn into an exponential search problem. To deal with this complexity, 
proper heuristics able to find near-optimal solutions must be designed.  

General-purpose optimization approaches based on stochastic procedures such as the 
ones proposed in [12][13][14], or meta-heuristics methods such as simulated annealing [16] and 
genetic algorithms [17] even if demonstrated effective in solving general optimization prob-
lems are difficult to adapt to the reliability design optimization problem in which peculiar con-
straints in the architecture of the system must be carefully considered when performing the op-
timization. Moreover, these approaches are in general slow and do not properly scale with the 
complexity required to analyze a real system. 

 In the reliability domain, very few works proposing automatic system optimization solutions 
have been published. Some of them are summarized in [7] and [8], where authors review a set 
of optimization techniques focusing on finding an optimal solution to the Redundancy alloca-
tion problem (RAP). Most of them are based on genetic algorithms, but they all start from the 
assumption that data redundancy is the selected fault-tolerance mechanism of the system. 
The intrinsic resiliency of the system to selected hardware faults is not analyzed and therefore 
not considered during the optimization process that only focuses on optimizing the amount of 
redundancy with respect to area constraints. Wattanapongsakorn and Levitan propose to per-
form system optimization by considering the interaction of both hardware and software com-
ponents [9]. The technique resorts to a Simulated Annealing (SA) optimization approach [10]. 
The basic concept is evaluating random configurations of all available components, selecting 
at each iteration the best among configuration until a stop criterion is satisfied. The cost func-
tion is commonly the sum of the costs of all components, and the stopping criterion acts when 
there is no improvement in the best solution within a pre-defined number of iterations. Although 
the technique seems promising, it lacks several important features. First of all, the reliability 
model of the system is very limited, mainly based on a single probability of failure for each 
component. This does not completely takes into account the effect of a single component re-
placement with respect to the others. Second, the optimization does not guarantee to effec-
tively explore the design space due to the randomization of the selection.  The proposed cost 
function is very simple but the methodology itself seems open to more complex functions in-
cluding multi-objective functions required to trade-off reliability with other design constraints. 
Finally, Shafique at al. [19] propose a reliability optimization framework where the sole software 
layer is modified during the optimization introducing step-by-step protection mechanisms to 
certain instructions until a desired level of protection is achieved or, at best, all unprotected 
instructions are protected by some mechanism. In this case, the hardware is only considered as 
a source of errors that are propagated to the software, thus no full system optimization is really 
proposed. 
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None of the considered publications systematically takes into account all design options 
that a designer can exploit when dealing with a complex electronic system project.   

To overcome limitations of current approaches, in the next section, we focus on one specif-
ic general optimization technique that has proved to be very effective in problems that are 
similar to the CLERECO design optimization task. After describing its main characteristic we de-
scribe how it has been extended and improved in order to build a system optimization engine 
based on the CLERCO system reliability estimation model.  

2. Design optimization strategies 

2.1. Extremal Optimization  

The Extremal Optimization (EO) theory [11] is a general-purpose optimization theory inspired 
by the self-organizing processes that can be observed in nature. Self-organized criticality (SOC) 
is a statistical physics concept to describe a class of dynamical systems that have a critical 
point as an attractor. Specifically, these are non-equilibrium systems that evolve through ava-
lanches of changes and dissipations that reach up to the highest scales of the system. SOC is 
said to govern the dynamics behind some natural systems that have these burst-like phenom-
ena including landscape formation, earthquakes, evolution, and the granular dynamics of rice 
and sand piles. 

One of the most important characteristic of EO is its ability to deal with complex optimization 
problems (including NP-complete problems), where near-optimum solutions are widely dis-
persed and separated by barriers in the search space causing local search algorithms to get 
stuck or severely hampered [15][18][20][21][22]. This is a typical case in the optimization of a 
system where different near-optimal solutions can be located quite far in the solution space 
due to macro-changes in the hardware or software architecture.  

To give a formal formulation of the EO algorithm let us introduce a set of basic notations 
and definitions.  

• The solution space, i.e., the space of all possible admissible solutions to the optimiza-
tion problem, is denoted with Ω. 

• 𝑆 ∈ Ω is a solution within the solution space. It can be defined as a tuple 𝑆 =
(𝑥!,⋯ , 𝑥!), where 𝑥! is one out of 𝑛 variables that must be optimized to find the opti-
mal solution.  

• 𝑁(𝑆) ⊂ Ω is the neighborhood of the solution 𝑆. It includes all solutions that can be 
reached from 𝑆 by making a single feasible modification of 𝑆. In terms of variables a 
solution 𝑆! ∈ 𝑁 𝑆  ⊆ Ω is a solution differing from S for the value of a single variable.  

• 𝐶 𝑆  is the cost function. It defines the metric to evaluate and compare different so-
lutions in order to select the best one. If the problem is a minimization problem, it is 
commonly defined to correlate better solutions to lower function values. The cost 
function can be defined accounting for the contribution of the 𝑛 variables compos-
ing the solution by defining a set of weights. Each weight 𝜆! models the contribution 
of variable 𝑥! to 𝐶(𝑆). 𝜆! corresponds to the fitness value and, typically, depends the 
state of 𝑥! in relation to other variables to which 𝑥! is connected. 

Figure 2 shows a very high-level pseudo-code describing how the EO algorithm performs its 
optimization process as described in [15]. 
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Figure 2 Extreme optimization algorithm 

One of the most significant differences between EO and other optimization meta-heuristics 
is the need of defining a local cost contribution 𝜆! for each variable, instead of defining a sin-
gle global cost function. This additional level of complexity is however extremely important dur-
ing the optimization process. The local cost contributions are used to choose local movements 
in the design space while the global cost function is used to evaluate the fitness of the best-
identified solution.  

The EO strategy is particularly suited to work with the elements composing the CLERECO sys-
tem reliability model as explained in the remaining of this section. 

Each solution 𝑆 represents a possible design alternative for the target system. Designs alter-
natives are defined as different implementations of the same system providing the same func-
tionalities by exploiting different variants of technologies, hardware and software components, 
each one in turn characterized by different reliability features.  

Since the main target is the optimization of the overall system reliability, each system and 
therefore each solution of the search space is modeled in the form of a Bayesian Network (BN) 
according to the CLERECO Bayesian Reliability model described in deliverable “D5.2.2 - System 
Reliability Estimation Models”.  

Each node of the Bayesian model and its related Conditional Probability Table (CPT) repre-
sents a variable 𝑥! of the considered solution that may impact the reliability of the full system. 
For each node of the network, i.e., for each component of the system, a set of valid design 
alternatives is defined. These design alternatives are the ones that will be evaluated during the 
optimization process. All components that do not have design alternatives due to specific de-
sign constraints are not considered as variables in the solution and are not taken into account 
during the optimization process.  

The solution space Ω is then defined upon all possible BNs that model the same kind of sys-
tem (i.e., implementing the same final application) but employing different components and 
technologies as characterized in WP2, WP3 and WP4 (for further information refer to delivera-
bles D2.1, D3.3.2, and D4.3.2).  

According to the previous definitions, the function 𝑁(𝑆) maps all possible systems that can 
be defined by changing only a single variable (i.e., a single node in the Bayesian model) 
among the 𝑛 variables defining the system. This function defines local changes in the solution 
space in which a single component of the system is modified to obtain a new design alterna-
tive. 

If only reliability is taken into account during the optimization process, the 𝜆! functions repre-
sents, at first glance, the reliability impact of a single replaceable node on the reliability of the 
full system. This impact can be estimated through the CLERECO Bayesian Reliability Model 
based on the computed belief of the contribution of a failure in a given node to the estimated 

1. Initialize a configuration 𝑆 at will and set 𝑆!"#$  =  𝑆. 𝑆!"#$ will be the best 
solution so far. 

2. For the current configuration 𝑆, 
a. Evaluate 𝜆! for each variable 𝑥!; 
b. Find 𝑗 with 𝜆! ≥  𝜆! for all 𝑖; that is, 𝑥! has the worst fitness; 
c. Choose a random 𝑆! ∈ 𝑁(𝑆) such as 𝑥! must change; 
d. If 𝐶(𝑆!)  <  𝐶(𝑆!"#$), store 𝑆!"#$ =  𝑆!; 
e. Accept 𝑆! as new 𝑆 unconditionally. 

3. Repeat at step 2 as long as desired. 
4. Return 𝑆!"#$ and 𝐶(𝑆!"#$). 
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failure of the system.  The same can be said about 𝐶 𝑆  that, when considering only the reliabil-
ity of the system, gives an estimation of the global reliability of the system computed as report-
ed in D5.2.2. 

As an example, let us consider the Bayesian model of the system reported in Figure 3. The 
figure represents a simple system whose basic implementation includes the following compo-
nents: 

• A technology layer (all <label>_22n nodes). 
• A hardware layer including a microprocessor split into some of its internal compo-

nents (x86_64, RF, L1 and L2 nodes) and connected to an external main memory 
(RAM). 

• A software layer comprising the LINUX operating system (represented by the 
LINUX_OS_FN<number> nodes) and a full application (F<number> and 
Core_C_FN<numberl> nodes). The application is further split in two parts identifying a 
set of core functions (the Core_C_FN<numberl> nodes). 

The proposed example is simple and not realistic but it is useful to explain a major limitation 
of the EO and motivating the need for the modified EO strategy introduced in CLERECO.  

According to the EO optimization algorithm, starting from the initial architecture of the sys-
tem, new design alternatives are generated by changing at each step a single node of the 
network. While this is a feasible strategy when simple components are taken into account, ma-
jor problems arise with complex components. 

Let us consider the L1 cache available the system of Figure 2. If two versions of this compo-
nent are available in the design space (e.g., a parity unprotected and a parity protected L1 
cache) one version can be easily replaced with another version and the new design option 
can be evaluated to understand this change on the reliability of the full system. However, this is 
not the case when a complex node such as a microprocessor that has different design alter-
natives is replaced. Replacing the node modeling the microprocessor requires to recursively 
replace all nodes modeling the components composing the microprocessor until a new stable 
configuration is reached.  

 

Figure 3: A BN modeled system view from the CLERECO tool. 

In its basic formulation the EO algorithm is unable to deal with replacements based on clus-
ters of variables. The optimization strategy always analyzes a single variable at a time. Given 
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this limitation, in the framework of the CLERECO project we have worked to define a new im-
proved EO algorithm named Multi-Level Multi-Objective Extremal Design Optimization strategy 
that extends the classical EO strategy considering different levels of replacement including 
both single nodes or clusters of nodes. This extended strategy has been particularly optimized 
for its application to systems modeled using the CLERECO Bayesian model.  

Finally, while our examples focus to reliability based cost functions, the proposed optimiza-
tion approach can easily deal with multi-objective cost functions [23][24][25] that enable to 
drive the optimization not only based on the reliability level estimated for the system but also 
considering other design parameters such as area, power, performance, etc. 

2.2. Multi-Level Multi-Objective EO 

As introduced in the previous section, when applying the EO strategy to the optimization of 
the design of an electronic system the designer has to deal with a hierarchical set of design 
decisions each one influencing the available design space when moving to the lower hierar-
chical level.  

In general terms, the designer needs to start from the selection of a set of macro-
components defining the general architecture of the system. This includes selecting a given 
microprocessor architecture, the main memory architecture, the operating system and the 
functions the application software must provide.  However, each macro-component is in gen-
eral a complex element of system that can be hierarchically split into additional sub-
components each one characterized by different available implementations. These subcom-
ponents can be themselves complex components that can be further split into simpler com-
ponents, and this process can be repeated until the desired level of detail for the system is 
reached. 

All macro and micro modifications of the system might lead to changes both positive and 
negative on the reliability of the full system. For the sake of simplicity let us consider a system 
described with two levels of hierarchy differentiating macro-components from micro-
components. The same approach can be then extended to any number of levels of hierarchy. 
With this hierarchical organization of the system, the optimization process can be split in two 
steps: 

1. First, evaluate and select one “architectural” configuration of macro-components to 
maximize the reliability. 

2. Second, for the actual configuration, evaluate possible micro-modifications to fur-
ther improve reliability. 

Anytime the second step reaches an end, thus no improvement in the reliability can be 
found, the designer should be able to go back to step one and try to start over with a different 
macro-architectural configuration. It is quite clear how this approach can be effective but also 
endless as soon as the set of macro- and micro- components grows. Moreover, since the dif-
ferent macro-components may have a different number of configuration/implementation al-
ternatives, the number of design alternatives to explore is not constant and may be difficult to 
evaluate. 

Based on these considerations we have defined an extended EO strategy named Multi-
Level Multi-Objective Extremal Optimization (MLMOEO) that extends the general EO theory 
enabling to consider multiple levels of hierarchical optimizations defining different objective 
functions for each hierarchical level, each functions built considering multiple parameters and 
multiple objectives. The approach tries to combine the ability to improve the system towards 
large replacements of its macro-components and the possibility of further tuning each macro-
component to reach a better optimization of the system design.  

To define the MLMOEO let us introduce some additional definitions: 
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• The solution space Ω = 𝜔!,⋯𝜔!  is split in sub-solutions spaces (𝜔!), each of them in-
cluding only a portion of all feasible solutions.  

• S! ∈ 𝜔! is a solution within sub-space 𝜔!. Since all solutions still belong to the same 
global solution space Ω, we do not need to define a best solution S!!"#$ for each sub-
space 𝜔!. A single global solution S!"#$ is always considered according to the EO 
theory.  

• 𝑁!(S) ⊂ 𝜔! ⊂ Ω is still the neighborhood solution space but it identifies only solutions in 
𝜔!. 

• 𝐶! 𝑆  is the cost function associated to the solutions in the sub-solution space 𝜔!. 

Resorting to this extension, each 𝜔! can address a different subset of solutions. This allows us 
to separately explore the solution space, assigning each subset to the concept of a different 
level of optimization. We define a level of optimization as a specific optimization goal, i.e., op-
timizing the system by selecting the best operating system available or looking for the best 
hardware platform. In such schema, the level owns a set of peculiar information and defini-
tions: 

• 𝑆! expresses either a system where a macro-component replacement takes place 
or a system where a micro-component has been replaced in some of the macro-
components already in place. Discriminating between these two scenarios can be 
easily implemented by defining a proper 𝑁!(S) function. 

• 𝑁!(S) changes level by level, in order to properly select solutions within the 𝜔! sub-
solution space associated with it. 

• 𝐶! 𝑆  can be different for each level. Thus, cost functions can cover different aspects 
of the optimization and be customized with respect to the purpose of the level. 

When the concept of different levels in the design is introduced, an operator enabling the 
search process to move across levels is required. This operator called next-level function is de-
fined as follows:  

• 𝑛𝐿(𝑘, 𝑆! , 𝑆!"#$) ⊂ 1, 𝑙  denotes the next-level function. Given the current optimization 
level, the current solution and the best solution it computes the next optimization 
level to reach. 

Based on these definitions Figure 4 shows the MLMOEO algorithm. 
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Figure 4 Multi-Level Multi-Objective Extremal Optimization  

When applied to the design optimization problem the MLMOEO enables to obtain some 
significant goals: 

1. Partitioning the solution space not only allows us to deal with replacements of full 
hierarchies of components but also enables to split the optimization process in dif-
ferent steps each driven by a different cost function thus giving priority during the 
optimization to certain design decision (e.g., optimizing the system by working first 
on the hardware architecture and resorting to software optimization only as fine 
grained solutions). 

2. Working with variable solution spaces that adapt themselves based on the decision 
taken at the higher optimization levels enables to optimize the search time. 

3. Working with different variable lambda functions 𝜆!! depending on the level allows 
the evaluation of each design alternative in a different way, depending on the op-
timization objective set for that level.  

 

2.3. Reliability Design Optimizer (ReDO) implementation 

The MLMOEO strategy has been implemented into an Electronic Design Automation (EDA) 
tool integrated with the whole CLERECO reliability design tool suite. As for all other CLERECO 
tools, the development follows the Object Oriented Programming paradigm and it is provided 
with a cross-platform GUI. The implemented optimization engine includes a set of advanced 
features: 

• The different steps of the algorithm have been developed with a modular architec-
ture, in order to be able to exploit a multi-thread implementation and to take ad-
vantage of modern multi-core microprocessors. This is a critical feature given the 
complexity of the optimization process. 

• All functions (i.e., all 𝐶!(𝑆), 𝜆!!, etc.) are defined through a virtual C++ evaluation 
class. This enables to have a general implementation of the algorithm that is not lim-
ited to a specific optimization function. The cost function can be easily defined at 
run-time to allow run-time adaptation of the design objectives.  

• The trajectory followed by the optimization process (i.e., all generated design ver-
sions generated during the optimization) is stored in order to allow backtrack analy-

1. Initialize the starting level 𝑘.  
2. Initialize a configuration 𝑆! at will and set 𝑆!"#$  =  𝑆!. 𝑆!"#$ will be the best 

solution so far. 
3. For the current configuration 𝑆!, 

a. Evaluate 𝜆!! for each variable 𝑥!!; 
b. Find 𝑗 with 𝜆!!  ≥  𝜆!!  for all 𝑖; that is, 𝑥!! has the worst fitness; 
c. Choose a random 𝑆!! ∈ 𝑁!(𝑆!) such as 𝑥!! must change; 
d. If 𝐶!(𝑆!! )  <  𝐶!(𝑆!"#$), store 𝑆!"#$ =  𝑆!! ; 
e. Accept 𝑆!!  as new 𝑆! unconditionally. 
f. Evaluate the 𝑘! = 𝑛𝐿(𝑘, 𝑆!, 𝑆!"#$) and let 𝑘! be the new 𝑘. 

4. Evaluate the 𝑒𝑆!(𝑆!"#$) function: 
a. If false, repeat at step 2 unless the desired repetitions reached.  
b. If true, proceed with step 5. 

Return 𝑆!"#$. 
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sis. This positively impacts the amount of design alternatives the designer can further 
evaluate once the engine completes its elaboration by suggesting the best solution. 

• An optional asynchronous timeout policy has been implemented. Since the compu-
tation time required to perform a full optimization campaign may be unknown, we 
decided to implement a time search constraint that defines the maximum amount 
of time the engine can spend to optimize the system. The characteristic of the im-
plemented optimization procedure guarantees that at any time a local best solution 
is always available and therefore, whatever is the time limit set by the user, the tool 
guarantees to provide a locally optimized solution.  

• Different from the timeout policy, the end of the optimization can be also defined 
based on predefined contracts on selected parameters, e.g., the optimization stops 
when a solution able to guarantee a given failure rate for the system is identified, re-
gardless if other solutions with better characteristics are available,  

Figure 5 shows the preliminary implementation of the GUI with all parameters that can be 
set before running the engine.  

 

Figure 5: The EO engine configuration GUI 

 

The optimization engine has been preliminarily validated with a set of experiments on simple 
benchmarks. In Table 1 we report information regarding the computation time based on some 
worst-case scenario test cases where: 

• 4 levels of optimization have been defined: 
o Level 1 searches for the best technology layer between 2 available technol-

ogies. 
o Level 2 further searches for some reliability improvements based on different 

alternatives within the current technological layer. 
o Level 3 moves to hardware and software investigation by searching among: 

§ 3 microprocessor architectures (x86, ARM11 and ARM15). 
§ 2 different operating systems (Linux and Windows XP). 
§ 2 sets of different implementations of the core function of the appli-

cation (developed using C or Python languages). 
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They are all clusters of components since they include more then one com-
ponent. 

o Level 4 exploits some further reliability optimization by exploring alternative 
configurations/implementations of internal components of one of the clusters 
replaced at level 3. 

All 𝐶!(𝑆) and 𝜆!! functions have been designed to take into account the reliability of the full 
system and the area required by the hardware layer. Data (i.e., areas, probabilities, etc.) have 
been randomly generated to stress the engine as much as possible. As an example, the next 
level policy applied for the data reported in Table 1 imposes to move back to level 1 after 50 
evaluation steps and to level 3 after 10 evaluation steps. Remaining steps are equally distribut-
ed among level 2 and 4. This is a very drastic scenario where several movements among levels 
are performed. We believe that best policies should be more conservative avoiding a large 
number of drastic changes in the architecture of the system 

. 

Table 1: EO Engine preliminary computation times 

Number of Evaluation Steps 500 1000 5000 

Initialization Time (ms) 5 5 5 

Evolution Time (ms) 4247 9860 53040 

 

Figure 6 shows the system view tab of the ReDO tool, depicting the system selected by the 
optimization engine. Dark red nodes represent the updated nodes with respect to the original 
system that was reported in Figure 3. We can appreciate both the replacement of a full por-
tion of the system (the technology layer and the microprocessor) and smaller improvements of 
the system by selecting different configurations/implementations of the components (i.e., the 
Core_C_FN2_DUP that represents the same function with duplication of variables and voting). 

 

Figure 6: An optimized version of the system 
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3. Conclusion 

This deliverable reported a general description of the reliability optimization heuristics devel-
oped on top of the CLERECO reliability estimation model. The majority of the work described in 
this deliverable was focused on the identification of the best optimization algorithm and on its 
implementation and integration in the overall CLERECO tool-suite. 

Preliminary experiment performed on selected benchmarks provided interesting and prom-
ising results. In the remaining of the project an extensive campaign will be conducted both on 
benchmark applications and on the final CLERECO demonstrators to better assess the capabil-
ity of this tools when dealing with complex real systems.  
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