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Scope of the document 

This document is the main outcome of task T5.5 “Preliminary Validation of Developed Mod-
els”, elaborated in the Description of Work (DoW) of the CLERECO project under Work Pack-
age 5 (WP5). 

Figure 1 depicts graphically the goal of this deliverable, its main results, the inputs it uses and 
the outputs it provides (including which WPs will use its outputs). 

 

Figure 1: inputs and outputs of this deliverable 

This document describes the preliminary validation environment envisioned for the valida-
tion of the models and algorithms developed in CLERECO for system level reliability evaluation. 
It takes its inputs from the results of several work packages and it is deeply connected with the 
activities and results of all WPs. 

The document is organized in the following sections: 

• Description of the problem. This section introduces the main challenges to face in 
the implementation of the validation plan 

• Set Up of the Validation Platform. This section describes the fault injection envi-
ronment used for validation. 

• Injection campaign. This section overviews problems and solutions in the setup of 
the injection campaign 

• Validation workflow. This section describes the technical steps implemented to 
perform the validation. 

• Preliminary experimental results. This section provides preliminary validation re-
sults on a set of benchmarks. 

• Next steps. This section concludes the document and highlights the next steps to 
implement until the end of the project. 
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This document is an updated version of Deliverable D5.4.1. The main update w.r.t. the previ-
ous document are: 

• Complete implementation of the validation workflow that is described in section 7. 
• Preliminary experimental results from the validation. 

This is a draft deliverable. A final version submitted during M36 will replace this document. 
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1. Introduction 

Validating system level reliability estimations obtained resorting to the high-level models de-
veloped in CLERECO requires to compare obtained results with well established industrial prac-
tices to perform reliability evaluation. 

This document details the features of the validation environment set up for the CLERECO 
project. It describes the adopted solutions, the fault injection environment and the operations 
carried out to validate the developed models, algorithms and metrics. 

2. Description of the problem 

The different models and algorithms composing the CLERECO system level reliability evalua-
tion method need a low level validation step, that enables to guarantee that the metrics 
computed with an high-level analysis are confirmed when the actual hardware and software 
structure are at play. 

Figure 2 shortly recalls the Bayesian Network model exploited in CLERECO to perform system 
level reliability analysis described in deliverable D5.2.2 – System Reliability Estimation Models. 
The CLERECO system level reliability model describes the system in terms of a Bayesian network 
whose nodes represent system technologies, hardware components and software blocks. In-
teractions among nodes represent capability of the system to propagate errors from one 
component to another component. The reliability evaluation method, estimates the rate of 
failure at the application level by propagating failure rates across nodes describing the system 
(Figure 2) using a set of conditional probabilities 𝑃!"#$ that model the probability that a failure at 
a certain level of the architecture hierarchy is propagated to the higher level. The final figure is 
the failure rate at the application level. The conditional probabilities 𝑃!"#$ characterizing the 
models are the results of a set of high-level fault injection campaigns carried out – with differ-
ent tools - at the micro architectural and at the software levels. 

It is the task of the validation to confirm the estimated failure rate at the application level by 
applying state-of-the-art injection of faults at a lower level (i.e., RTL level).  

 

Figure 2: Reliability evaluation model. 
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2.1. Complexity of the injection campaign 

The problem has a nontrivial level of complexity because of the performances of a low level 
simulation (RTL and below). A complex system can require injecting a number of faults in the 
order of the hundreds of millions, and the performances of the injection are highly dependent 
on the performances of the simulation, that can vary quite dramatically from one design to 
another. In our experience, an injection campaign can vary from tens of thousands of faults 
injected per hour to a few faults injected per hour (see also Section 6.2). 

The parameters determining these numbers are many: 

• The workload used for the fault simulation (which in turn reflects the application). 
• The size of the design. 
• The performances of the simulator. 
• The number of simulators that can be run in parallel. 
• The structure of the simulation environment. 
• The possibility to adopt techniques that make it possible to speed-up the injection 

process (e.g., avoiding to run the full simulation for each fault). 

In general, it is a safe assumption to claim that an injection campaign can require months of 
simulation even on specifically designed system.   

It is therefore necessary, in order to be able to bring the problem within an acceptable 
number of simulation hours, to adopt an approach that, without sacrificing the accuracy of 
the analysis permits to reduce the simulation time as much as possible. 

3. The Adopted Solution 

During the project two main courses of actions have been analyzed and discussed with the 
partners to establish a validation protocol for the project results: 

• The first option involves a divide-and-conquers approach: partitioning the systems in-
to blocks, performing fault-injection based analysis of the different blocks and then 
combining them developing an ad-hoc methodology for the composition of the 
metrics. This approach is already in the roadmap of YOGITECH’s mainstream devel-
opment.  

• The second approach is based on RTL level fault-injection on the full system using dif-
ferent techniques to reduce the fault injection time by dropping simulations for 
which the effect of the fault can be somehow predicted. 

 The discussion within the consortium has considered both approaches as interesting. 
However, the first approach requires developing methods to compose partial low-level fault 
injection results, mimicking at a lower level what the CLERECO reliability estimation model per-
forms at system level. While this is still an interesting approach, it is not well consolidated at in-
dustrial level and may bias the robustness of the validation phase. Differently, the second ap-
proach represents a consolidated method. It must also be stressed the fact that the validation 
would be more significant with an approach that, even if at a different level of abstraction, 
does not repeat steps already used by the solution to be validated. 

As a conclusion, we decided to adopt, at least for demonstrators in the embedded domain 
that will be based on ARM architecture and for the preliminary use cases, an RTL injection vali-
dation campaign. 
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4. Phases of the Validation Campaign 

The validation campaign is carried out through a fault injection on the complete hardware 
in order to validate the failure rate at the application level as estimated by the high-level relia-
bility estimation method.  

Figure 3 shows the validation workflow.  

 

Figure 3: Validation workflow 

 

The validation campaign can be partitioned into three main phases: 

1. Set up of the validation platform: this phase requires studying the target system to 
validate in order to identify the models of the different components, and to define 
the target fault models. 

2. Injection Campaign: in this phase the actual validation is performed by means of a 
low-level fault injection campaign. Due to the complexity of this task screening 
techniques to reduce the injection time must be implemented. 

3. Validation of the metrics: in this final phase, application level failure rate are com-
puted starting from the fault detection data obtained with the fault injection cam-
paign. These numbers are compared with equivalent numbers obtained through 
CLERECO early reliability estimation models in order to assess the accuracy of the 
high-level models. In case accuracy is not enough, further refinements of the models 
will be implemented and a new validation phase will be required. 

5. Set Up of the Validation Platform 

The validation approach used is summarized in Figure 4. From it exploits the YOGITECH 
commercial tool chain that is nowadays a state-of-the-art suite for the safety analysis of com-
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plex systems and in particular it exploits two main tools: the Safety Designer and the Safety Veri-
fier.  

The Safety Designer is used for two purposes: to focus the fault injection activity by selecting 
elementary parts and applying sampling factors according to the device under test and to 
provide a conservative estimation in case fault injection is not feasible (common situation for 
complex SoC and/or very complex applications).  

The Safety Verifier is used for the fault injection campaigns. As showed also in Figure 4, the 
Safety Designer provides some inputs to the Safety Verifier, in order to reduce the fault injection 
complexity. 

 

Figure 4: Overall view of validation 

The validation goal is, first of all, to show that CLERECO accuracy is close to fault injection 
results in order to drastically reduce or remove the need of fault injection and to show that 
CLERECO accuracy is less conservative than high-level safeness analysis. This concept is sum-
marized in the Figure 5 where we show, as the CLERECO system reliability analysis can be closer 
to the estimation results or to the fault injection results. 

 

Figure 5: Validation goal 
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5.1. Organization of the Platform  

It has been decided by the consortium that the preliminary validation plan is based on RTL 
injection on ARM based microprocessor, at least for the embedded demonstrators and for the 
preliminary use cases. In particular, an ARM Cortex A9 based platform has been chosen. 

The choice of the platform and of the strategy, imply a number of requirements, such as: 

• RTL database of the full HW layer.  
• Transient fault model (bit flip of the output of memory elements / memory cells). 
• Workloads (tests) at different level of abstraction modeling the low level functions of 

the software up to the target application. 
• A test environment built in such a way to allow using the target simulator’s features 

for saving and restoring simulation snapshots.   

5.2. Modeling of the faults 

The CLERECO system level reliability estimation methodologies enables to consider several 
types of fault model. In this preliminary validation plan we focus on analysis of the effect of 
transient fault that represent a significant class of faults for reliable systems. In particular we 
model faults as Single Event Upset (SEU), where the value of a bit is flipped (0->1 or 1->0) at a 
certain point of the simulation (see also Figure 7). 

The fault is characterized by:  

• Location: where the fault takes place in the mode of the HW. 
• Time: when the fault takes place during the simulation. 

Typically, transient faults are injected at the output of memory elements, therefore, in a RTL 
model they are injected on: 

• Clocked signals. 
• Output of memories. 
• If the model of the memory makes the bit accessible, individual bits within a memory 

block. 

5.3. Modeling of the HW 

The HW is being described as a hierarchical RTL model of the platform as sketched in Figure 
6. The hierarchical organization of the RTL model – even if not mandatory – should match as 
much as possible the high level decomposition of the hardware functions. This would allow ad-
ditional benefits, such as speed up the fault injection campaigns (for further information, see 
Section 2). 
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Figure 6: Hardware layers 

The list of the subset of outputs of the functional blocks significant with respect to the detec-
tion of the fault (so called observation points) is part of the model of the functional blocks. 

5.4. Modeling of the SW 

The software functions, from the most basic to the full application, are modeled as work-
loads (test benches) for the hardware. These workloads can be either modeled with a HDL or 
can be modeled as vectors to be applied at the input of the HW.  

The vectors to be applied to the hardware are captured by strobing the application running 
on a physical platform, saving them and then formatting them as suitable inputs for the simula-
tion software. 

As for HW, also in the case of the SW, part of the model of each function is the set of signals 
(registers, contents of memories, etc.) that are significant with respect to the detection of the 
injected faults.   

6. Injection Campaign 

6.1. Fault Simulation 

The injection campaign injects transient faults (identified by the where/when pairs) into the 
HW, in order to determine whether these faults change or not the behavior of the device. 

The faults are modeled as Single event upset (SEU), i.e., bit-flips on the output of memory el-
ements (flip-flop, latches, memories). Figure 7 shows how bit-flips can be emulated at the simu-
lation level (the example relies on HDL language formalisms). 
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Figure 7: bit-flip model 

The detection takes place at the output of the hierarchical blocks and functions, i.e., a fault 
is detected if it changes the behavior of the device at the selected sets of observation points 
(see Figure 8). In our case, the observation points are those registers, memory locations and 
outputs that are significant with respect to the data produced by the application. 

 

Figure 8: Observation Points 

The actual injection platform (see Figure 9) is organized as a sequence of functional simula-
tions, one for each fault injected, where a faulty machine is instantiated together as a golden 
machine and the two simulation results are compared with respect to the observation points. 

Each fault is simulated and classified after the result of the simulation, whether detected or 
undetected. 

 

flip (s) 
input s; 
  
begin 
  if (s==1’b0) 
    flip = 1’b1; 
  elsif (s==1’b1) 
    flip = 1’b0; 
  else  
    flip ? 1’bX; 
  endif 
end 
endfunction 
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Figure 9: transient injection setup 

 

6.2. About the complexity  

As mentioned already, a fault injection campaign is a challenging task, because the num-
ber of faults to be injected in a complex system can rise rapidly to a number in the billions. 

There are a number of factors affecting the length of a fault injection: 

• The number of the faults injected. 
• The length of the simulations. 
• The frequency of the clock. 
• The possibility to parallelize the simulations on many CPUs. 
• The way the test bench is built. 

Typically, in our experience, completing an injection campaign on an ARM based micro-
controller requires 2-3 months of simulations, with up to 100 parallel simulations running in a 
computing farm.  

We can report here a few quantitative figures, from actual projects YOGITECH has been 
working on. 

 

Table 1: Quantitative examples of time required and parallelization level for different designs sizes. 

 Size 
(Mgates) 

Overall time to complete the 
campaign 

Parallel CPUs 

Example 1 5 2 months 10 

Example 2 15 3 months 15 

Example 3 30 3 months 100 
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For this reason, the fault injection setup must be done carefully. 

The information required to properly set-up the experiment are: 

1. Elementary Parts and Flip Flops to be injected (where to inject faults) 
2. Observation Points (in order to distinguish safe and dangerous faults) 
3. Window Of Opportunity (when to inject faults) 
4. Fault distribution 
5. Estimation of the number of faults to inject 

Inputs 1 and 2 are related to the hardware, while input 3 is related to the workload. The fault 
distribution (input 4) is Uniform. The number of transient faults to be injected (input 5) is based 
on the following formula [2]: 

 

Figure 10: Number of transient faults injected 

Where: 

• t is derived from the confidence level = 90% 
• p = 0,5 
• N is calculated based on: 

o number of elementary parts (EP) to be injected 
o duration of the WOO (Window Of Opportunity) 

• e is calculated based on the overall acceptable margin to reach the claimed met-
ric = 1% 

Using the typical parameters (e = 1% and confidence level = 90% or 99%) the number of 
faults can vary from 4106 to 13530. 

The following section presents implemented strategies to speed-up the fault injection cam-
paign.  

6.3. Improvement of the fault simulation performances 

The previous considerations make it very difficult to be able to run an exhaustive injection 
campaign in an acceptable time problematic, not only from CLERECO project perspectives. 

There are however a number of areas where it is possible to intervene to decrease dramati-
cally the number of injected faults, and, therefore, the number and the length of the simula-
tion. A set of approaches has been already considered to deal with it. 

6.3.1. Saving the vectors produced by the Golden Simulation 

The conceptual model of running the golden and faulty simulation for each fault can be 
improved by: 

• Running the golden simulation once,  
• Saving the observation signals as vector and,  
• Using these vectors for the comparison with the simulation of the faulty machine. 
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Figure 11: running the golden machine just once 

The setup is shown in Figure 11 and allows decreasing the load on the computing machine 
by practically halving the number of simulations. 

6.3.2. Excluding the faults in the non-functionally relevant 
portions of the design 

A second area of improvement requires an architectural knowledge of the platform being 
simulated, and involves removing from the list of the faults to be injected all faults that are in-
jected on portion of the hardware that is not functionally significant (e.g., test logic) or is not 
affected by the workload being simulated.   

6.3.3. Saving the snapshot of the simulation 

As mentioned in Section 5.1 one of the requirement for the validation platform is to build a 
test environment that allows using the target simulator’s features for saving and restoring simu-
lation snapshot. 

This feature is pivotal because it allows huge improvements in the simulation time, since it 
makes it possible to run just a portion of the simulation in the interval near the time of injection, 
rather than the full injection for each fault. 

When running the golden simulation, a number of snapshots will be saved at predetermined 
intervals. Once a fault will be injected at a certain time, instead of running the simulation from 
the beginning, the snapshot closest in time to the time of injection of the fault will be chosen 
(see Figure 12). 
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Figure 12: Use of snapshots 

The most significant source of optimization, however, comes from the development and use 
of the Operational Profiler, as described in the next section. 

6.3.4. Operational Profiler 

The operational profiling is a solution to dramatically reduce the number of faults to be in-
jected during a simulation and offers a big improvement in meeting the performance chal-
lenges of the low-level fault injection. 

This technique is being refined, engineered and improved, with respect to the original con-
cept [1] in order to specifically target the challenges of the CLERECO validation environment. 

The basic goal is to determine upfront in which instants a fault at a certain location may 
produce any visible consequence at output pins or not.  This information can be used to identi-
fy the Windows of Opportunity (WoO) in which it makes sense to inject a fault knowing that that 
the fault has a probability to propagate to the observation points (see Figure 13). 

 The simulation is pre-analyzed in order to identify the “inactivity windows”, i.e., all those in-
tervals where it is guaranteed that the fault is not propagated (e.g., a fault injected on a regis-
ter is not propagated to its fan-out due to the selection of a different input of a multiplexer). 

 

 

Figure 13: Identifying the WoO 
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The technique combines both static (analysis of the design database) and dynamic (simu-
lation) analysis to identify the “inactivity windows”. This analysis allows detecting the masking 
condition of the device without having to actually run a full simulation and allows a fairly good 
level of simplification. 

This mechanism can be made hierarchical, starting from sub-blocks and propagating the 
faults to the HW top, enlarging the non-propagation intervals as the analysis moves up the 
stack. 

 

Operational Profiler Concept 

The idea behind the technique works on a concept called “parasitic simulation”: given a 
particular test bench or set of stimuli driving an RTL design, the related fault tolerance is as-
sessed using data generated by the RTL simulation – the vectors u and x – in order to check the 
observability conditions and hence screening unobservable faults and potentially observable 
faults. 

The vectors u and v can be explained considering a logic module as a Mealy machine, ex-
pressed as a pair of logic equations as reported in Figure 14. 

x k + 1 = f x k ; u k  

𝐲 𝑘 = 𝐠 𝐱 𝑘 ;𝐮 𝑘  

Figure 14: logic equation - Mealy machine 

Where:  

• x(k) is the space-state array, i.e., the array of flip flops included in the module. 
• u(k) is the array of input Boolean variables. 
• y(k) is the array of output Boolean variables. 

f and g are combinational functions.  

 

Figure 15: mealy machine 

If we know f, g, u(k) and x(k) at a certain instant k of the simulation, a sufficient condition or 
the non-observability of a fault affecting a certain state at the k-th instant is: 

 
f 0,x2(k)…xN(k);u1(k),u2(k),…,uM(k) =f 1,x2 k ,…xN(k);u1(k),u2(k),…,uM(k)  

Expression 1 

while a necessary condition of the observability of the same fault at the same instant is:  
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𝒈 0,x2(k)…xN(k);u1(k),u2(k),…,uM(k) ≠g 1,x2 k ,…xN(k);u1(k),u2(k),…,uM(k)  

Expression 2 

 

These logic conditions are those used to separate observable and unobservable faults oc-
curring at the instant k. It is enough to just solve combinational expressions, under the condition 
the f and g are known. 

• If Expression 1 is satisfied and Expression 2 is not satisfied, the fault does not propa-
gates at instant k. 

• If Expression 2 is satisfied, the fault may or may not be observable depending on 
how it propagates outside the module. 

• If Expression 1 is satisfied and Expression 2 is not satisfied, the fault does not propa-
gates at instant k. 

The faults satisfying the second conditions are called potentially observable. 

The “parasitic simulation” will determine the vectors u and v at each instant of a RTL simula-
tion, which will be used, together with f and g, to evaluate the logic expressions. 

Operational Profiler Flow 

• The Operational Profile analyzes the RTL code and calculates the functions f and g 
for each module in the model and creates a list of relevant signals that are part of u 
and v 

• An RTL simulation is run – using a standard functional simulator. For each module in 
the RTL model, u and x are stored in vector files (named with a .vcd file extension).  

o A single simulation is needed. 
o Relevant data are stored at clock edges 

• Using x, u, the observability conditions are checked using f and g. 
• Unobservable faults are set apart. 
• Potentially observable faults are propagated, using the f and g functions, until they 

reach any output port at the top level (or any observation point), until the discarded 
during the process. 

The process turns out to be very fast: 

• The observability conditions for each fault (i.e., a pair x, k) are checked “locally” 
within the module the injection point belongs to, by solving f and g, and using the 
data stored after the RTL simulation. 

• When a fault is potentially observable, it is checked for actual observability by prop-
agating it only to neighbor modules, again using the simulation data, and solving f 
and g.  

• The check only takes place at clock edges. 
• Simulation may be limited to a subset of all the clock instants. 

Inactivity Windows 

In a complex system, there are many components interconnected one another, but it is un-
likely that all these components are active at the same time. In general, only a subset of these 
components is switching at a certain instant. Moreover, we may encounter periods when the 
state vector x(k) and the input vector u(k) do not change. Consequently, during these inter-
vals no changes may occur at the outputs y(k) or the next state vector x(k+1). 

Finally, considering complex tasks executed by the system over a long period of time, involv-
ing the cooperation of many components, it is likely that for most components, each of them 
will be working for a small fraction of the whole system activity (see Figure 16). 
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Figure 16: Inactivity Windows 

Based on these considerations, we can introduce a great simplification: observability condi-
tions need to be checked only when some changes occur, at u or at x. 

The boundaries of inactivity windows are a limited subset of the whole set of clock cycles. If 
the process limits its computations only to those windows, we have a significant simplification 
with respect to the standard RTL simulation. 

It is also worth noticing that a .vcd file, given its structure intended to store differential infor-
mation, automatically provides a simple way of building the inactivity windows of a certain 
module. 

Computation of f and g  

We introduce the concept of “leaf component” and “grey component”. 

A “leaf component” (Figure 17) is a module in the design hierarchy that includes: 

• Input signals. 
• Output signals. 
• State elements (flip-flops). 
• Combinational logic. 
• No instances of sub modules. 

A grey component (Figure 18) also includes instances of sub modules. In this case: 

• The inputs of the sub modules are considered as output of the including module.  
• Dually the output of the sub modules are considered as inputs of the including mod-

ule. 

 

 

Figure 17: leaf component 
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Figure 18: grey component 

 

 

Figure 19: Substitution 

Each module can be reduced to a piece of standalone combinational logic by removing 
internal sub modules and internal states (clocked process). In order to guarantee logic equiva-
lence, the removed parts need to be replaced by the related signals at their boundaries 
(Figure 19 and Figure 20). During this process, some new I/O ports are added while others may 
be removed. I/O ports directly mapped to other I/O ports, without any combinational functions 
in the middle, may be removed. 

The remaining logic is combinational logic and it is used to build the functions f and g: 
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• The union of the fan-in of all the registers is used to build f (state function). 
• The union of the fan-in of all the output ports is used to build g (output function). 

 

 

Figure 20: Actual Example 

 

f and g are built with a manipulation of the original RTL code (Figure 21) by:  

• Removing the sub modules,  
• Adding the related I/O ports,  
• Reducing all the clocked processes to the related combinational logic, and, 
• Adding the related I/O ports to module definition. 

Some attention must be paid to the transformation where asynchronous signals are present, 
because the logic is transformed into the equivalent of a synchronous reset. 

At the end of the process f and g are simple and purely combinational chunks of RTL code 
that can be solved individually by a simple logic expression solver. 

 

 

Figure 21: transformation of the clocked processes. 
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7. Validation workflow 

Figure 22 provides the detailed validation work workflow, with the detail of all used tools. 

 

Figure 22: Methodology flow and tools 

1. Failure Mode Distribution and FMEDA   

The step 1 is performed using the YOGITECH Safety Designer (SD) tool. It consists into the 
computation of soft-error distribution (from Elementary Parts to Failure modes) and FMEDA. The 
SD takes as input the CPU netlist and provides as output all the needed safety metrics. The out-
put comes from the association between Elementary Parts (EP, flip-flop + logic cone) and Fail-
ure Modes (FM). Figure 23 and Figure 24 show the FMEDA analysis performed on the ARM Cor-
tex A9, respectively, including and excluding L1 caches. The output of this step is also called 
CPU FMEDA. 

 

 

Figure 23: FMEDA analysis including L1 caches 
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Figure 24: FMEDA analysis excluding L1 caches 

2 & 3. C code adaptation 

The original workloads written in C code must be adapted in order to fulfill simulation re-
quirements, e.g.: I/O operations are replaced with in-memory operations and input parameters 
are hard-coded. After these negligible modifications the code is compiled and linked using the 
ARM tool chain. 

4. Disassembling code using fromelf 

ELF file generated by the previous step is disassembled using ARM fromelf utility. The resulting 
output is fed to the YOGITECH codeprofiler tool. This tool performs a static code analysis, count-
ing the instruction used by the algorithm. 

5. Linking functions, instructions and FMs 

The step 5 is the most critical one. In this step is performed the link between functions, in-
structions and failure modes. The link is based on: 

1. Identifying instructions used in each function and “counting” how many times each in-
struction occurs in that function; 

2. Associate each instruction to the failure modes (FMs) identified in the CPU FMEDA 
3. Link functions and failure modes by combining the previous steps (1+2 à 3) 

6. Architecture Vulnerability Factor (AVF) 

The step 6 provides an estimation of the Architecture Vulnerability Factor (AVF) combining 
three factors: architectural safeness, application safeness and Frequency of Use (i.e. exposure 
or lifetime).  

The architectural safeness is determined by Safety Designer and is related to the hardware 
(i.e., it is independent of the workload). The application safeness is a predetermined amount of 
safeness assigned to each function. For example, a not safety relevant function can have a 
high application safeness. The Frequency of Use describes the amount of time each failure 
mode is exposed to soft-errors, derived from the link between functions, instructions and failure 
modes established in the previous steps. It also considers the expected pipeline performance 
(i.e. the duration of pipeline stage, in terms of clock cycles) and the fact that certain logic has 
a longer “life time”, i.e. it causes errors and failures even if not activated by a certain instruc-
tion. 
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7 & 8 & 9. Updated FMEDA  

The results of the previous steps are read back into Safety Designer in order to combine HW 
and SW workload metrics. In other words, the CPU FMEDA analysis (hardware related) is com-
bined with the code analysis (software related). An example is shown in Figure 25. 

 

Figure 25: FMEDA combining HW and SW metrics 

10 & 11. Verification & Validation (V&V) 

In the V&V step the workload is simulated with CPU RTL and soft-errors are fault injected by 
using YOGITECH Safety Verifier (SV). A Safety Verification Plan (SVP) is created by Safety De-
signer based on the updated FMEDA. At the end of the fault injection campaign, the Safety 
Verifier results are then back-annotated into Safety Designer for comparison with estimations. 

8. Preliminary experimental setup 

As a preliminary validation setup we set-up and experiment working on a system based on 
the ARM Cortex A9 running a set MiBench applications [3] often as benchmarks for reliability 
analysis. In this preliminary experiment the validation campaigns focuses on faults in the L1 
cache memory and in the Register File, composed of, respectively, 32 Kb of memory and 56 
integer registers.  

The fault injection campaign is conducted using 194.7E-7 FIT/bit as raw FIT (single bit FIT rate) 
for both logic and memory, extracted from the CLERECO technology library for a 22nm Bulk 
Planar technology node. Moreover, the observation points used are the output of the related 
modules (outputs of L1 and outputs of Register File). 

The number of injected faults is computed using these parameters:  

1. Confidence level: 90% 
2. Error margin: 1% 

After the computations, the injected faults are 4161 and 4352 for, respectively, the Register 
File and the L1 cache memory. 

The analyzed MIBench applications are: 

1. String search 
2. Susan smooth 
3. Susan edges 
4. Susan corner 
5. Aes encryption 
6. Quick sort 
7. Fft 
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8. Sha     

8.1. Safety Verifier setup 

The YOGITECH Safety Verifier tool allows setting a great number of parameters. One of the 
most relevant is T1. T1 represents the number of clock cycles, starting from the injection time, 
which there will be visible effects on the observation points. If after T1 clock cycles there are no 
visible effects on the observation points than the injected fault is considered safe. For the Regis-
ter File fault injection campaign T1 is set to 1000 while for the L1 cache case T1 is set to 2000. 
This difference is due to the delay introduced by the memory access. Is clear that these num-
bers follow a conservative approach.  

8.2. Results 

Figure 26 shows failure rates for the different benchmarks computed using the YOGITECH 
workflow (identified with the YT label) for each workload, while Figure 27 focuses on the Regis-
ter File injected (YT3) given that it is out of scale on Figure 26. 

For each benchmark the figures show: 

1. YT1: L1 cache and Register File injected 
2. YT2: L1 cache injected 

o Logic is not considered (its FIT is removed) 
3. YT3: Register File injected 

o L1 cache and logic is not considered (their FIT is removed) 

 

Figure 26: Fault injection results with Safety Verifier (overall view) 
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Figure 27: Fault injection results with Safety Verifier (zoom for Register File – YT3) 

 

8.3. RTL Injection vs. CLERECO system level analysis 

This section compares results obtained by performing RTL injection using YOGITECH workflow 
and the results provided by CLERECO System Reliability Analyzer described in deliverable 
D5.2.2. There are some differences between YOGITECH setup and CLERECO setup. Actually, 
the observation points used by YOGITECH are measuring the masking factor related to the us-
age of the module under test while CLERECO System Reliability Analyzer the overall masking 
factor at the end of the algorithm. Moreover the Register Files under test have different sizes: 

4. YOGITECH: 56 integer registers 
5. CLERECO: 256 integer registers 

Figure 28 shows that the trend between the two methods is the same, which is a very positive 
result. The figure also confirms that results obtained using the YOGITECH workflow are greater 
(most pessimistic) than CLERECO values, as expected, due to the different masking factor. 
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Figure 28: Comparison YT1 vs. “results RF + L1D” 

Figure 29 is quite similar to Figure 28 because the L1 contribution is dominant. As Figure 28, 
the trend is preserved among algorithms. 

 

Figure 29: Comparison YT2 vs. "results L1D" 

Given that the Register File injected by CLERECO and YOGITECH are different the following 
comparison provides two figures: Figure 30 shows the comparison between numbers as is, while 
Figure 31 shows a normalized version of the CLERECO numbers. The normalized version is com-
puted as RF/ (256/56). Obviously, this is a simplification given that the FIT is considered linear 
with respect to the hardware size.  

The trend showed by Figure 28 and Figure 29 is confirmed also in Figure 30 and Figure 31, as 
expected. However, in this case the difference between YOGITECH and CLERECO numbers is 
lower than the previous case (in terms of absolute FIT) because the size of the Register File is 
some order of magnitude lower than L1 cache size. This means that a small variation on meas-
urements implies a great variation on final FIT.  
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Figure 30: Comparison YT3 vs. "results RF" 

 

Figure 31: Comparison YT3 vs. "results RF" – normalized 

As last comparison session, Figure 32 and Figure 33 show the estimation computed by the 
YOGITECH Safety Designer tool vs. Register File injected (YT3) vs. CLERECO RF. The estimation is 
performed, mixing code analysis with hardware considerations. The time required by the Safety 
Designer estimation is very small compared with the time required by a fault injection cam-
paign. As for the previous case, there is the as is version (Figure 32) and the normalized version 
(Figure 33). 
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Figure 32: Comparison Safety Designer (estimation) vs. YT3 vs. “results RF” 

 

Figure 33: Comparison Safety Designer vs. YT3 vs. "results RF" – normalized 

9. Next steps 

The results provided in this document shows that there is a small distance between the FIT 
computed by YOGITECH and CLERECO. The main causes of those differences are the observa-
tion points. For this reason, the fault injection campaign conducted by YOGITECH will be per-
formed again using different observations points: 

1. CPU overall outputs 
2. Algorithm overall outputs 

The step 1 can be performed changing the observation points and using the YOGITECH 
methodology as is, while the step 2 introduces some issues due to the modification of the ap-
proach. The implementation of the Step 2 implies that the simulation must run until the end, on 
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faulty cases. This means that the injection time increases abnormally. For example, for the string 
search algorithm, the injection time (per fault) changes from few seconds to several minutes. 

Using this new setup, YOGITECH results should be closer to CLERECO results. Figure 34 shows 
the link among the methodology and the final FIT. The fault injection case can provide different 
values based on the chosen observation points. 

 

 

Figure 34: Summary view of results (to be confirmed by final injections) 

 

Figure 35 shows an estimation of the simulation time / effort with respect to the results accu-
racy. The figure indicates that the time required by the fault injection campaign is exponential 
with respect to the provided accuracy, while the time required by CLERECO should be order of 
magnitude lower than the fault injection methodology ensuring, however, an elevated accu-
racy. Lastly, the time required by the Safety Designer (estimation) is the smallest of all, as its ac-
curacy.  

 

Figure 35: Simulation time / effort vs. accuracy 
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