
D5.5: Preliminary EDA tool-suite Page 1 of 19

Version 1.0 – 25/03/2016

Project Number: FP7-611404

D5.5 – Preliminary EDA tool-suite (draft)
Authors1

A. Savino (POLITO), S. Di Carlo (POLITO), A. Vallero (POLITO), G. Politano (POLITO)

Version 1.0 – 19/03/2016

Lead contractor: Politecnico di Torino

Contact person:

Alessandro Savino
Control and Computer Engineering Dep.
Politecnico di Torino, C.so Duca degli Abruzzi, 24
I-10129 Torino TO Italy

E-mail: alessandro.savino@polito.it

Involved Partners2: POLITO

Work package: WP5

Affected tasks: T5.6

Nature of deliverable3 R P D O

Dissemination level4 PU PP RE CO

1 Authors listed here only identify persons that contributed to the writing of the document.
2 List of partners that contributed to the activities described in this deliverable.
3 R: Report, P: Prototype, D: Demonstrator, O: Other
4 PU: public, PP: Restricted to other programme participants (including the commission services), RE Restrict-

ed to a group specified by the consortium (including the Commission services), CO Confidential, only for members of the consor-
tium (Including the Commission services)

D5.5: Preliminary EDA tool-suite Page 2 of 19

Version 1.0 – 25/03/2016

COPYRIGHT

© COPYRIGHT CLERECO Consortium consisting of:

• Politecnico di Torino (Italy) – Short name: POLITO
• National and Kapodistrian University of Athens (Greece) - Short name: UoA
• Centre National de la Recherche Scientifique - Laboratoire d'Informatique, de Ro-

botique et de Microélectronique de Montpellier (France) - Short name: CNRS
• Intel Corporation Iberia S.A. (Spain) - Short name: INTEL
• Thales SA (France) - Short name: THALES
• Yogitech s.p.a. (Italy) - Short name: YOGITECH
• ABB (Norway and Sweden) - Short name: ABB
• Universitat Politècnica de Catalunya: UPC

CONFIDENTIALITY NOTE
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED, OR MODIFIED IN WHOLE OR IN

PART FOR ANY PURPOSE WITHOUT WRITTEN PERMISSION FROM THE CLERECO
CONSORTIUM. IN ADDITION TO SUCH WRITTEN PERMISSION TO COPY, REPRODUCE, OR

MODIFY THIS DOCUMENT IN WHOLE OR PART, AN ACKNOWLEDGMENT OF THE
AUTHORS OF THE DOCUMENT AND ALL APPLICABLE PORTIONS OF THE COPYRIGHT

NOTICE MUST BE CLEARLY REFERENCED

ALL RIGHTS RESERVED.

D5.5: Preliminary EDA tool-suite Page 3 of 19

Version 1.0 – 25/03/2016

 INDEX

COPYRIGHT .. 2	

INDEX .. 3	

Scope of the document ... 4	

1. Introduction ... 5	

2. RELTech Tools ... 7	
2.1. Soft Error Rate Technology Analyzer ... 7	

3. RelHW Tools .. 8	
3.1. MaFIN - Microarchitecture Level Fault Injector for x86 Intel/AMD CPUs 8	
3.2. GeFIN - Microarchitecture Level Fault Injector for ARM, Intel and AMD CPUs ... 9	
3.3. GuFI - Microarchitecture Level Reliability Evaluation of NVIDIA GPUs 10	
3.4. SIFI - Microarchitecture Level Reliability Evaluation of AMD Southern Islands

GPGPUs .. 11	
3.5. MASkIt - Soft Error Rate Predictor for Combination Circuits 12	
3.6. NANDA - A tool for the reliability analysis of NAND Flash based SSDs. 13	

4. RELSw Tools .. 14	
4.1. LIFILL - A LLVM-based software fault injector ... 14	
4.2. LICFI - A Full features C-Based Fault Injector ... 15	
4.3. ALIVE - A LLVM-based Lifetime Variable Analysis ... 16	
4.4. BaITA - Bayesian Instruction Trace Analyzer for x86 Software 17	

5. RELSys Tools ... 18	
5.1. SyRA - A full System Reliability Analyzer ... 18	
5.1. ReDO - A full System Reliability Design Optimizer ... 19	

D5.5: Preliminary EDA tool-suite Page 4 of 19

Version 1.0 – 25/03/2016

Scope of the document

This document is the main outcome of task T5.6 “Preliminary EDA tool-suite”, elaborated in
the Description of Work (DoW) of the CLERECO project under Work Package 5 (WP5).

This documents gives a commercial view of all developed tools updated at the date of
submission of this document. This is a preliminary version of the deliverable and a consolidated
document will be produced at the end of the project.

D5.5: Preliminary EDA tool-suite Page 5 of 19

Version 1.0 – 25/03/2016

1. Introduction

The CLERECO EDA tool-suite offers tools, models and technologies that cover the four main
design dimensions. Figure 1 provides a high-level view of the set of available tools.

Figure 1: CLERECO EDA tool-suite

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

RelTECH
T O O L S

RelHW
T O O L S

RelSW
T O O L S

RelSYST
T O O L S

SW

HW

System

Tech.

16nm

22nm

20nm

14nm

10nm

7nm

Pla
n

a
r

Fin
FET

SRAM Cell 6T/8T/10T

DRAM Cell 1T

FLIP-FLOP D

Latch

Ring Oscillator

Predictive Models
soft errors Marssx86-Fault INjector (MaFIN)

•  Out-of-order x86-64 model
•  In-order Atom x86-64 model

Gem5-Fault Injector (GeFIN)

•  Out-of-order x86-64 model
•  ARM cortex A9 and A155 out-of-order

model
•  Extensible to other architectures

supported by GEM5

STT Cacti

•  STT MRAM integration into the CACTI uA
simulator

Reliability Characterization Tools for HW Blocks
transient, intermittent and permanent faults

LIrmm Fault Injection based on LLVM (LIFILL)

•  LLVM based fault injection model
•  ISA independent analysis

LIrmm C-based Fault Injector (LICFI)

•  Fault injector for C source code programs
•  ISA dependent analyses

Microprocessors

NVM Memories

GPGPU-SIM Fault INjector (GUFI)

•  Based on GPGPU-SIM uA simulator
•  NVIDIA’s Fermi and GT200 GPU architecture

Accelerators

GEM-NoC FI

•  Characterization of NoC based architectures

Southern Island Fault Injector (SIFI)

•  Based on Multi2Sim uA simulator
•  AMD Southern Islands architecture

ANN-Fault Injector (AFI)

•  Fault injector uA model of an ANN

NAND Analyzer

•  NAND SSD reliability analyzer

Interconnection and IP CORES

Lifting

•  Simulation based characterization of VHDL IP
cores

System Reliability Model

•  Bayesian model for fast reliability models of full
electronic systems

•  RIIF 2.0 reliability description language

System Reliability Analyzer (SyRA)

•  Fast early reliability evaluation of full system based
on CLERECO system reliability model

Reliability Design Optimizer (ReDO)

•  Design space explorator based on reliabiliability
constraints

System level reliability analysis tools

LLVM-based Lifetime Variable Analysis (ALIVE)

•  Data oriented
•  Very fast analysis (no fault injection)

Bayesian Instruction Trace Analyzer (BaITA)

•  Instruction flow oriented
•  Very fast analysis (no fault injection)

Software characterization tools

MaskIT

•  Statistical Masking Characterization of VHDL IP
cores

D5.5: Preliminary EDA tool-suite Page 6 of 19

Version 1.0 – 25/03/2016

The tools are organized into four clusters, with each cluster identified by a dedicated logo:

• RELTech Tools: offers a set of predictive models to analyze the impact of future tech-
nology nodes on specific basic design blocks. Predictive models for technologies are
very valuable for OEM and Tier 1 system designers that usually lack access to fab
technology data.

• RelHW Tools: offers a set of tools for reliability analysis of different hardware architec-
tures. These tools cover the analysis of all major hardware structures of a complex
digitals system (i.e., Microprocessors, Accelerators, Memories, Interconnections and
Custom IP Cores). A very wide set of ICT players including Tier 2 technology provid-
ers, up to OEM system’s integrators both in the embedded systems and HPC domain
are potentially interested in these tools.

• RelSW Tools: offers capability to analyze software fault masking in isolation from the
hardware architecture. Both static and dynamic analysis of the software is support-
ed by our technology. These tools have a key value for OEM system designers that
exploit software fault tolerance solutions to enhance the reliability of their systems.

• RelSyst Tools: is the core of the CLERECO design methodology. It integrates infor-
mation from the other tools into a high-level system model and provides tools to per-
form early reliability evaluation at system level as well as tools to perform design
space exploration in order to optimize the target system given the reliability con-
straints. This is specifically devoted to OEM system’s designers that require the evalu-
ation of the reliability of their products.

This document provides a commercial overview of each developed. The same descriptions
are public on the CLERECO website. This preliminary version of the deliverable only includes the
description of those tools that reached high-level of maturity. There is a set of minor tools that
are still not included. We are currently deciding whether improving them as stand-alone tools
or as functionalities of the already completed tools.

D5.5: Preliminary EDA tool-suite Page 7 of 19

Version 1.0 – 25/03/2016

2. RELTech Tools

2.1. Soft Error Rate Technology Analyzer

Soft Error Rate Technology Analyzer March 2016

Product Overview
SERTA (SER Technology Analyzer) allows for a fast characterization of raw
failure rates of current and future technologies for a variety of
components such as memories (i.e. SRAMs) and the most common logic
gates (i.e. NAND, NOR, NOT). It also provide a sensitivity analysis to
operating conditions such as temperature, voltage and location.

FP7-CLERECO
Grant Agreement FP7-611404

“Technology

reliability is not only

about the present, it

is about the future

too”

- ARCO Research Group
(UPC)

Supported Architectures

▪ Any technology based on
SPICE description

Extensions & Tools
▪ Compliant with the Hazucha

and Svensson model
▪ Fully parametrized analysis.
▪ Full Technology fair

comparison available

Target Components

▪ Memories
▪ Logic Gates

Supported Fault Models

✓ Soft Errors

Measurements
▪ SER value across several

environmental conditions

SERTASERTA

Extra Features
▪ The tool also allows to perform

a fair comparison of these
technologies and components
using the same methodology
to compute their SER.

Contact Us

Antonio González
Phone: +34-934016988 Fax: +34-934017011

E-mail: antonio@ac.upc.edu

Universitat Politècnica de Catalunya, Dep. of Computer Architecture
Campus Nord UPC, Cr. Jordi Girona 1-3, 08034 Barcelona (ES)

D5.5: Preliminary EDA tool-suite Page 8 of 19

Version 1.0 – 25/03/2016

3. RelHW Tools

3.1. MaFIN - Microarchitecture Level Fault Injector for x86

Intel/AMD CPUs

“Fast microarchitec-

ture level framework

for Intel/AMD x86-64

early reliability assess-

ments”

- Computer Architecture Lab

University of Athens

Supported Architectures
� Embedded and high performance

x86-64 Intel and AMD architectures

Extensions & Tools
x Caches extended with the data

field (L1 data, L1 instruction and uni-
fied L2 cache)

x Prefetchers added for the first level
caches

x Fully automated tools for:
1. running the golden run
2. fault mask generation
3. fault injection in MARSSx86
4. Faults classification

Microarchitecture Level Fault Injector for x86 Intel/AMD CPUs March 2016

Contact Us
University of Athens, Department of Informatics and Telecommunications
Panepistimiopolis, Ilissia, GR 157 84, Athens, Greece
(Office A32, 1st floor, Computer Architecture Lab)

Dimitris Gizopoulos
Phone: +30 210 727 5145, Fax: +30 210 727 5214

Email: dgizop AT di DOT uoa DOT gr

Target Components
x Physical Register File (Int, FP)

x All fields of caches (L1 data and
instruction, L2, L3)

x Prefetchers of L1 data, L1 instruction

x Load/Store Queue

x Load/Store Aliasing Table

x Issue Queue

x Branch Prediction Unit, RAS, BTBs

Supported Fault Models
� Transient
� Intermittent
� Permanent

Measurements
x AVF/FIT, HVF
x Fault effect classification:

1. Masked
2. Silent Data Corruption (SDC)
3. Crash
4. Assert
5. Timeout
6. DUE

Flexible user extensible parser.

Measurements in any unmodified work-
load.

Speedup Features
Speedup of fault injection campaigns is
based on two runtime modes:

x Early Stop on Overwrite (ESO mode):
� No loss of accuracy

� Speedup:

 2.6X for integer register file
 1.5X for LSQ (data field)
 2.9X for LSQ (address field)
 1.4X for L1 data cache
 1.5X for L1 instruction cache

x Early Stop on Overwrite or first Read
(ESOR mode):

� Negligible loss of accuracy for struc-
tures in the core

� Speedup:

 3.4X for integer register file
 3.4X for LSQ (data field)
 4.1X for LSQ (address field)
 2.1X for L1 data cache
 1.8X for L1 instruction cache

https://twitter.com/CalDiUoa

Product overview
MaFIN is a complete microarchitecture level reliability evaluation framework for high per-
formance computing systems. It is based on state-of-the-art statistical fault injection meth-
od or ACE analysis and built on MARSSx86 full-system simulator, providing accurate results
for the entire CPU and all its components.

Application

Operating System

Architecture

Micro-Architecture

apps1

Linux

Application
database

Fault mask
database

C
ontroller Interface

Output
database

Reg.
File

Instruction
& Data
cache

Core pipeline

injected
faults

error
observed

Marssx86

Fault mask
generator Fault Injection interface

injected
faults

fault
propagated

to OS

any multiple combina-
tion of model, compo-
nent, entry and cycle

FP7-CLERECO
Grant Agreement FP7-611404

D5.5: Preliminary EDA tool-suite Page 9 of 19

Version 1.0 – 25/03/2016

3.2. GeFIN - Microarchitecture Level Fault Injector for

ARM, Intel and AMD CPUs

“100 to 1000 times

faster microarchitec-

ture level reliability as-

sessments for Intel/

AMD x86 and ARM

processors”

- Computer Architecture Lab

Supported Architectures
� ARMv7, ARMv8, x86 , Alpha
� Comes with ARM Cortex-A15, Cortex-A9

and Intel Haswell presets
� Most commercial embedded and high

performance microarchitectures

Extensions & Tools
x Fully automated interface

¡ Benchmark profiling and
checkpointing

¡ Fault-injection campaign
¡ Result classification

x Extension with x86 Translation caches
x Graphical web interface

¡ Live status monitoring
¡ Early result classification

¡ Results library

Microarchitecture Level Fault Injector for ARM, Intel and AMD CPUs March 2016

Contact Us
University of Athens, Department of Informatics and Telecommunications
Panepistimiopolis, Ilissia, GR 157 84, Athens, Greece
(Office A32, 1st floor, Computer Architecture Lab)

Dimitris Gizopoulos
Phone: +30 210 727 5145, Fax: +30 210 727 5214

Email: dgizop AT di DOT uoa DOT gr

Target Components
x Physical Register File (Int, FP, CC)
x All fields of caches (L1 data and

instruction, L2, L3)
x Prefetchers of L1 data, L1 instruction,

L2
x Load/Store Queue (all data fields)
x Instruction Queue (all data fields)
x ROB (active list)
x Rename map
x TLB (Instruction and data)
x Branch Predictors, RAS, BTB
x Main memory

Supported Fault Models
� Transient
� Intermittent
� Permanent

Measurements
x AVF/FIT, HVF
x Fault effect classification:

1. Masked
2. Silent Data Corruption (SDC)
3. Crash
4. Assert
5. Timeout
6. DUE

Flexible user extensible parser.
Measurements in any unmodified work-
load.

Acceleration with effi-
cient driven simulation
Intelligent acceleration features:

x Workload analysis - Initial analysis to
effectively drive fault injection only
to crusial parts - Introduces a novel
grouping technique.

x Simulation speedup - Runtime simu-
lation speedup with several acceler-
ation techniques.

x Up to 1000x faster compared to
baseline fault-injection.

Product overview
GeFIN is a complete microarchitecture level reliability evaluation framework for high per-
formance and embedded computing systems. It is based on state-of-the-art statistical fault
injection and built or ACE analysis on Gem5 full-system simulator, providing accurate results
for the entire CPU and all its components.

https://twitter.com/CalDiUoa

any multiple combina-
tion of model, compo-
nent, entry and cycle

FP7-CLERECO
Grant Agreement FP7-611404

D5.5: Preliminary EDA tool-suite Page 10 of 19

Version 1.0 – 25/03/2016

3.3. GuFI - Microarchitecture Level Reliability Evaluation

of NVIDIA GPUs

“Microarchitecture

Level Reliability Evalu-

ation of NVIDIA GPU

Architectures based

on Fault Injection or

ACE-Analysis”

- Computer Architecture Lab

Supported Architectures
�G80 (Quadro FX 5600)

�GT200 (Quadro FX 5800)

�Fermi (GeForce GTX 480, Tesla C2050)

Extensions & Tools
Fully automated tools for:

x Fault Injection

1. running the golden run
2. fault mask generation
3. actual fault injection in GPGPU-Sim
4. fault classification (Configurable

parser according to user needs)

x ACE Analysis

x Both methodologies can be applied to:
� the whole CUDA application

comprehensive reliability evaluation
of a hardware component for an
application

� a specific kernel invocation
reliability evaluation of a hardware
component for a given invocation of
a CUDA kernel

Microarchitecture Level Reliability Evaluation of NVIDIA GPUs March 2016

Contact Us
University of Athens, Department of Informatics and Telecommunications
Panepistimiopolis, Ilissia, GR 157 84, Athens, Greece
(Office A32, 1st floor, Computer Architecture Lab)

Dimitris Gizopoulos
Phone: +30 210 727 5145, Fax: +30 210 727 5214

Email: dgizop AT di DOT uoa DOT gr

Target Components
x General Purpose Register file
x Shared Memory
x Single Instruction Multiple Thread (SIMT)

Stacks
x Valid bit of Instruction buffer entries

Supported Fault Models
x Transient
x Intermittent
x Permanent

Measurements
x Architectural Vulnerability Factor (AVF)
x AVF of utilized resources (AVF util)
x Failures In Time (FIT)
x Mean Instructions to Failure (MITF)
x Fault effect classification:

1. Masked
2. Detectable Unrecoverable Error (DUE)
3. Silent Data Corruption (SDC)

Ways to use GUFI
GUFI is a useful tool either for architects
(early in the design phase) or program-
mers:

x Architects may evaluate the reliabil-
ity of various GPU models.
� Hardware based protection tech-

niques may be incorporated and
also evaluated in terms of perfor-
mance and reliability.

x Programmers can break the vulnera-
bility of an entire application down
to the vulnerability of its kernels.
� Adding software based error pro-

tection only to the most vulnera-
ble kernel of an application can
deliver remarkable improvements
on its error resilience combined
with low loss in performance.

https://twitter.com/CalDiUoa

any multiple combination of
model, component, entry

and cycle

Product overview
GUFI is a tool for comprehensive reliability assessments of NVIDIA GPU Architectures. It is
built on top of a state-of-the art micro-architectural simulator GPGPU-Sim. It reports the
vulnerability of many on chip hardware components based on Fault Injection (FI) or Archi-
tectural Correct Execution (ACE) analysis.

FP7-CLERECO
Grant Agreement FP7-611404

0.
69 0.
77

1.
35

0.
34

0.
83

0.
32

0.
11 0.
15

1.
51

0.
44

0.
07 0.
11

0.
56

0.00

0.50

1.00

1.50

2.00

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD AVG

IPC / FIT

D5.5: Preliminary EDA tool-suite Page 11 of 19

Version 1.0 – 25/03/2016

3.4. SIFI - Microarchitecture Level Reliability Evaluation of

AMD Southern Islands GPGPUs

Microarchitecture Level Reliability Evaluation of AMD Southern Islands GPGPUs March 2016

Contact Us

Stefano Di Carlo
Phone: +39 011 0907080 Fax: +39 011 0907099

Email: stefano.dicarlo@polito.it

Politecnico of Turin, Department of Controls and Computer Engineering
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Product Overview
SIFI is a tool for comprehensive reliability assessments of AMD Southern
Islands GPGPU Architectures. It is built on top of a state-of-the art micro-
architectural simulator multi2sim. It can analyze architectural
vulnerability of many on chip hardware components by Fault Injection
(FI) and Architectural Correct Execution (ACE) analysis.

FP7-CLERECO
Grant Agreement FP7-611404

“SIFI is tailored on

hardware architects

and programmers“

- Testgroup (Polito)
Supported Architectures
▪ AMD Southern Islands

GPGPU Architectures

Extensions & Tools
▪ Fully automated tools for:

▪ Fault injection
▪ ACE Analysis

▪ Fully customizable GPGPU
architectures for design
exploration

▪ Reliability-related vulnerable
code analysis

Target Components
▪ General Purpose Vector

Register File
▪ General Purpose Scalar

Register File
▪ Special Registers of the

Scalar Register File
▪ Local Memory

Supported Fault Models

✓ Transient
✓ Intermittent
✓ Permanent

Measurements
▪ Architectural Vulnerability Factor (AVF)
▪ AVF of utilized resources (AVF Util)
▪ Failure In Time (FIT)
▪ Mean Instruction To Failure (MITF)
▪ Fault effect classification:

1. Masked
2. Detectable Unrecoverable Error (DUE)
3. Silent Data Corruption (SDC)

SIFISIFI

How To Use SIFI
▪ Fault injection campaign

can run in two different
modes:

1. by components
2. by internal specific

internal resources of
each component

D5.5: Preliminary EDA tool-suite Page 12 of 19

Version 1.0 – 25/03/2016

3.5. MASkIt - Soft Error Rate Predictor for Combination

Circuits

Soft Error Rate Predictor for Combination Circuits March 2016

Contact Us

Martí Anglada
Phone: +34-934016988

Email: manglada@ac.upc.edu

Universitat Politècnica de Catalunya, Dep. of Computer Architecture
Campus Nord UPC, Cr. Jordi Girona 1-3, 08034 Barcelona (ES)

Product Overview
MASkIt is a tool that quickly and accurately predicts the Soft Error Rate in
combinational circuits. It uses as inputs a netlist of the circuit and the
signal probability distribution of its primary inputs to compute the circuit’s
vulnerability: the probability that a particle strike at any node of the
circuit results in a bit flip in one or more primary outputs.

FP7-CLERECO
Grant Agreement FP7-611404

“MASkIt

development has

been made with a

great tool flow in

mind “

- ARCO Research Group
(UPC)

Supported Architectures
▪ Any combinational circuits

described in the format
produced by popular
synthesis tools, such as RTL
Compiler and Yosys

Extensions & Tools
▪ Precise reliability estimation

avoiding RTL fault-injection
campaigns.
⁃ Speedup from 170x to

800x
▪ Estimation accounts

Technology node, Supply
voltage and Temperature

Target Components
▪ All gates in the model

⁃ Gate models are
automatically
extracted from the
technology library

Supported Fault Models

✓ Transient

Measurements
▪ Vulnerability factor for each

node of the circuit

MASkItMASkIt

Analysis Enhancements

MASkIt can be connected to any
architecture-level simulator tool,
providing models of micro
architectural components
otherwise totally missing

D5.5: Preliminary EDA tool-suite Page 13 of 19

Version 1.0 – 25/03/2016

3.6. NANDA - A tool for the reliability analysis of NAND

Flash based SSDs.

 A tool for the reliability analysis of NAND Flash based SSDs. March 2016

Contact Us

Stefano Di Carlo
Phone: +39 011 0907080 Fax: +39 011 0907099

Email: stefano.dicarlo@polito.it

Politecnico of Turin, Department of Controls and Computer Engineering
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Product Overview
NAND Analyzer is a product for design analysis of NAND Flash based Sol-
id State Drives (SSDs). In includes models to assess:

• Flash memory error rate prediction based on the workload
• Wear-out analysis
• ECC scheme analysis.

FP7-CLERECO
Grant Agreement FP7-611404

“Evaluate error-rate

and lifetime of your

SSD storage system “

- Testgroup (Polito)
Extensions & Tools

▪ Workload based characteri-
zation

▪ Different ISPP programming
algorithms

▪ Different ECC configurations
▪ Support for YAFFS2 file

system

Target Components
▪ SLC NAND Flash Memories
▪ MLC NAND Flash Memories

Supported Fault Models

✓ Intermittent
✓ Permanent

Measurements
▪ Bit Error Rates
▪ Timing
▪ Power consumption
▪ Full statistics report

NANDANANDA

How To Use NAND Analyzer
• Configure your SSD charac-

teristics
• Explore different design di-

mensions

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:21

1 10 100 1000 10000 1e+005
PE cycles

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

ISPP - SV, UBER=1e-11
ISPP - SV, UBER=1e-13
ISPP - SV, UBER=1e-15

Fig. 17. Videoserver throughput with ISPP-SV program. t at different target UBER

1 10 100 1000 10000 1e+005
PE cycles

3500

4000

4500

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

] ISPP - DV, UBER=1e-11
ISPP - DV, UBER=1e-13
ISPP - DV, UBER=1e-15

Fig. 18. Videoserver throughput with ISPP-DV program. t at different target UBER

exploiting the ISPP-RV prog. t (Fig. 16) and the ISPP-SV prog. t (Fig. 17) writing al-
gorithms, that provide reduced reliability compared to the ISPP-DV prog. t algorithm,
the ECC subsystem is particularly stressed to guarantee error-free data during the
intensive read activity of the application. Since the ECC correction capability must be
increased with the flash aging, the throughput of the application with these two al-
gorithms decreases over time. Differently, when considering the ISPP-DV prog. t, the
high reliability of this algorithm strongly relaxes the ECC requirements. This strongly
improves the read throughput of the flash at the cost of a decreased write through-
put. Write operations become therefore critical for this operation mode and overall the
throughput of the application decreases. Nevertheless, it is interesting to note that
since the write performance of the flash increases with aging (see Fig. 4e) we observe
a slight improvement in the performance of the application at the end of the flash life-
time. Considering the increased reliability service the target choice will be between
ISPP-SV prog. t and ISPP-DV prog. t. In both cases switching to a higher reliability
level does not introduce major penalties in the performances. However, ISPP-DV prog.
t guarantees performances that are more constant over the full flash lifetime. This
could be a benefit especially when real-time applications are considered. When mov-
ing to the reduced reliability service, instead the choice can be between the ISPP-RV
prog. t and ISPP-SV prog. t. In this case however the choice is a trade-off between
performance and memory endurance.

Finally, Fig. 19 reports how the reliability of the memory sub-system can now be
traded for the reduced power consumption. In power savings scenarios the function-
alities of the system need to be preserved in order to either prolong battery life for
portable and embedded systems or to reduce cooling issues in high performance com-
puting systems. Under such conditions the quality of service (QoS) of a target appli-
cation (i.e., video playback) can be degraded to a minimum acceptance level. This is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 21 of 25 Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:17

cide which memory access mode to use at run-time is mandatory. While a complete
discussion of this topic is out of the scope of this paper a set of preliminary insights
can be provided here. There are essentially two factors that must be considered, at
run-time, to properly select the optimal flash storage options: (i) the application relia-
bility/performance/power requirements, and (ii) the memory aging.

The first factor is static for a given application or for selected portions of data of
an application. Even if not straightforward, applications can be carefully profiled in
order to assign different reliability/performance/power requirements to the different
set of data they manage. The application profile can be then exploited to choose the
best storage service for each type of information.

We envision in this paper to split the flash memory into different partitions provid-
ing different storage services according to Fig. 12.

StorageI/O
requests$

Storage$service$

Flash&file&system&

R/W$flash$API$ PagePEstatus$cache$

PE$vs.$ECC$correcQon$
capability$hash$table$

OS&

Applica8on&

Driver&
Flash$access$

mode$

Access$mode:$
Write$alg.$
ECC$corr.$cap.$

Flash&controller&
ECC$correcQon$capability$

Flash$write$algorithm$

PageECCPE$

PageECCPE$

PageECCPE$

High<performance$
Low<reliability$
ISPP<RV$

Low<performance$
High<reliability$
ISPP<DV$

Mid<performance$
mid<reliability$
ISPP<SV$

Flash&memory&
So<ware&layer&

Hardware&layer&

Fig. 12. Exporting storage services to the software layer.

The flash filesystem can therefore be extended in order to provide dedicated API to
request different classes of storage services and to properly redirect the data to the
partition implementing the requested access mode. Each application can be then in-
strumented in order to request for each flash memory access the storage service that
is more suited for the specific data that is going to be accessed. A single application
can therefore benefit from data stored in different partitions with different services
in order to optimize the overall reliability/performance. Moreover, considering a dif-
ferent scenario, the choice of the target service may be also handled by the operating
system to shield the user from details of the hardware implementation and to avoid
erroneous selection of the target service. The operating system may be delegated to
select different access modes for an application by exploiting routines that continu-
ously analyze the behavior of the application in order to determine the optimum per-
formance/reliability/power trade-off configuration for the problem, and supervise the
program execution. Using program instrumentation gives the programmer flexibility
in choosing the system configuration needed for a particular non-functional require-
ment, while, the implicit approach reduces programming effort and speeds up program
development.

While for a given access mode the selected programming algorithm is in general
constant over the memory life-time, the ECC correction capability must be continu-
ously tuned at run-time to compensate for the memory aging. Several models in the
literature correlate the RBER of a page to the number of performed PE cycles [Sun
et al. 2011], and enable to build models fitted on experimental data to compute the
best ECC correction capability to apply when a page is programmed. If the PE count

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 17 of 25 Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs

A:16 D. Bertozzi et al.

programming algorithms in fresh devices. On the one hand this means that the RT
improvement with respect to the reference case will be achieved only after hundreds
of PE cycles. On the other hand, this also means that in fresh devices the WT can be
broadly modulated at marginal RT penalty. Overall, Fig. 10 shows a usage model of
the access modes: the correction capability is used to preserve a target UBER over the
flash life, whereas the programming algorithm is used to trade the WT with the RT. At
a given PE cycle a higher RT can be achieved by switching the programming algorithm
(i.e., from ISPP-SV prog. t to ISPP-DV prog. t), and the ECC correction capability (since
ISPP-DV needs a lower t to preserve the target UBER with respect to ISPP-SV). The
WT can be traded-off similarly. Regardless the selected programming algorithm, Fig.
10b clearly shows that for most of the memory life the non-adaptive approach produces
a significant device under-utilization from the RT standpoint.

Other usage models are clearly feasible. For instance, switching from ISPP-SV prog.
t to ISPP-DV prog. t, while keeping t unchanged, minimizes the UBER beyond 10�13

leaving the RT unaltered at the cost of the WT. Similarly, switching to ISPP-RV progr.
t achieves a WT improvement. If at the same time we decrease t the UBER is largely
degraded while the RT is improved. Otherwise with a constant t the UBER is degraded
to the lower extent but RT is unaltered. Finally, the upper-left access mode in Fig. 9
can be used in those cases where an ultra-low power operating mode is required while,
at the same time, largely degrading UBER and therefore application-perceived low
reliability are accepted. Approximately storage of data to improve performance when-
ever high-precision storage is not required has been already investigated in previous
studies [Sampson et al. 2013] and the considered service represents a very efficient
way for its implementation. In contrast, the lower-right access mode in Fig. 9 provides
the best achievable reliability at the cost of increased power consumption and largely
degraded performance.

Fig. 11 summarizes the way UBER can be tuned by selecting different ECC correc-
tion capability or programming algorithm. Values in the figure are computed consid-
ering the RBER of the flash at 10,000 PE cycles, i.e., quite late in the flash lifetime.
Similarly to the performance characterization, Fig. 11 shows that we can achieve im-
portant trade-offs in the reliability of the access modes, with the possibility of varying
the UBER of the NVM system of several orders of magnitude.

1 10 20 30 40 50 60 70 80 90
Correction capability (t)

1e-018

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

1e-004
1e-003

U
B

E
R

ISPP - RV
ISPP - SV
ISPP - DV

Fig. 11. Trade-off on the storage reliability by selecting different programming algorithms and different
ECC correction capability. UBER is computed at 10,000 PE cycles of the flash.

4.2. Implementation of the access modes
In order to properly exploit the advantages provided by the combined adaptation of
the flash programming algorithm and the ECC correction capability, a strategy to de-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 16 of 25Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs

D5.5: Preliminary EDA tool-suite Page 14 of 19

Version 1.0 – 25/03/2016

4. RELSw Tools

4.1. LIFILL - A LLVM-based software fault injector

A LLVM-based software fault injector March 2016

Contact Us

Giorgio Di Natale
Phone: +33 467 41 85 01

Email: giorgio.dinatale@lirmm.fr

LIRMM - CNRS / Université Montpellier
UMR 5506 - CC 477,
161 rue Ada, 34095 Montpellier Cedex 5 France

Product Overview

LIFILL (LIrmm Fault Injection LLVM-based) is able to inject faults in both
data and instructions of the LLVM code. The LLVM source code is
modified by applying mutations that implement the effect of the fault
on the variable or the instructions.

FP7-CLERECO
Grant Agreement FP7-611404

“We provided you

the passcode to the

reliability of any

software you

develop”

- LIRMM (CRNS)Supported Architectures

Any language provided with a
LLVM compiler.

Extensions & Tools

▪ Fully Hardware independent
▪ Controllability on the fault

location and its effects.

Target Components

▪ Any data (variables, vectors,
etc.)

▪ Any standard LLVM
instruction.

Supported Fault Models

CLERECO developed Software
Fault Models (SFM):
✓ Wrong Data
✓ Instruction Replacement

Measurements
▪ Masking probability
▪ Fault Silent Violation (FSV)
▪ Crashed
▪ Detected Faults

LIFILLLIFILL

System Requirements:

▪ OS: Linux
▪ Tools: clang/llvm
▪ RAM: 4GB

D5.5: Preliminary EDA tool-suite Page 15 of 19

Version 1.0 – 25/03/2016

4.2. LICFI - A Full features C-Based Fault Injector

A Full features C-Based Fault Injector March 2016

Contact Us

Giorgio Di Natale
Phone: +33 467 41 85 01

Email: giorgio.dinatale@lirmm.fr

LIRMM - CNRS / Université Montpellier
UMR 5506 - CC 477,
161 rue Ada, 34095 Montpellier Cedex 5 France

Product Overview

LICFI (LIrmm C-Based Fault Injector) randomly inject faults in both data
and instructions of a program written in C language. Injections are
randomly and dynamically performed while the program is currently
running.

FP7-CLERECO
Grant Agreement FP7-611404

“The only feasible

way to prove your C

program is reliable is

testing it, quickly”

- LIRMM (CRNS)

Supported Architectures

The tool supports all C language
programs.

Extensions & Tools

▪ Hardware independent.
▪ Instrumented at the original

source code, which offers
an efficient observability of
the software components.

▪ Execute on the final
executable file.

▪ Easy fault injection
mechanism.

▪ Multi-Thread
implementation.

Target Components

▪ Any data (variables, vectors,
etc.)

▪ Any standard C instruction.

Supported Fault Models

CLERECO developed Software
Fault Models (SFM):
✓ Wrong Data
✓ Instruction Replacement

Measurements
▪ Masking probability
▪ Fault Silent Violation (FSV)
▪ Crashed
▪ Detected Faults

LICFILICFI

System Requirements:

▪ OS: Linux
▪ Tools: clang/llvm
▪ Libraries: pthread
▪ RAM: 4GB

Key Concepts

Instrumentation of the original
code allows a selective analysis of
the code.

D5.5: Preliminary EDA tool-suite Page 16 of 19

Version 1.0 – 25/03/2016

4.3. ALIVE - A LLVM-based Lifetime Variable Analysis

A LLVM-based Lifetime Variable Analysis March 2016

Contact Us

Giorgio Di Natale
Phone: +33 467 41 85 01

Email: giorgio.dinatale@lirmm.fr

LIRMM - CNRS / Université Montpellier
UMR 5506 - CC 477,
161 rue Ada, 34095 Montpellier Cedex 5 France

Product Overview

ALIVE evaluates the effect of faults in all variables of a generic software,
by analyzing the variable lifetime and its propagation to the output of
the program.

FP7-CLERECO
Grant Agreement FP7-611404

“Before asking if a

single fault will

impact on your

system, ask if it will be

seen at all”

- LIRMM (CRNS)

Supported Architectures

The tool supports all programming
languages included in the LLVM set
of compilers.

Extensions & Tools

▪ Very fast evaluation: only
one run is required to
provide effective results,

▪ Time accurate,
▪ Accounts for all possibile

making effects,
▪ Support Software Error

Protection strategies,

Target Components

▪ Single variables
▪ Basic Structures (i.e., vectors

and matrix)
▪ Advanced structures (i.e.,

unions, multi-type
containers)

Supported Fault Models

CLERECO developed Software
Fault Models (SFM):
✓ Wrong Data
✓ Instruction Replacement

Measurements
▪ Masking probability
▪ Fault Silent Violation (FSV)
▪ Crashed
▪ Detected Faults

ALIVEALIVE

Key Concepts

Variable Lifetime analysis:

▪ A variable is alive from the
first write to the last read
(before next write)
⁃ A fault in an alive

variable can have
influence on the
program execution

⁃ A fault in a dead
variable is masked
(will be either re-
written or never used
again)

D5.5: Preliminary EDA tool-suite Page 17 of 19

Version 1.0 – 25/03/2016

4.4. BaITA - Bayesian Instruction Trace Analyzer for x86

Software

Bayesian Instruction Trace Analyzer for x86 Software March 2016

Contact Us

Stefano Di Carlo
Phone: +39 011 0907080 Fax: +39 011 0907099

Email: stefano.dicarlo@polito.it

Politecnico of Turin, Department of Controls and Computer Engineering
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Product Overview

BaITA is a reliability instruction trace analyzer for softwares based on
bayesian network. It provides a very fast analysis of each x86 Instruction
Set Architecture (ISA) based software exploring real executable traces
of the software without the need of the original sources.

FP7-CLERECO
Grant Agreement FP7-611404

“The only way to

prove your running

software is really

reliable”

- Testgroup (Polito)Supported Architectures

The tool is able to parse:
✓ x86 standard instructions
✓ AMD extensions
✓ SSE1 & 2 extensions
✓ MMX instructions

Extensions & Tools

▪ Fully automated analysis
⁃ Data propagation
⁃ Control flow genera-

tion
▪ Internal parser fully cus-

tomizable
▪ Multi-thread analysis capa-

bility
▪ Reliability model for further

investigation provided as
output

Target Components

▪ System Registers
⁃ ES, SS, DS, CS, …
⁃ EIP, EDI, …
⁃ …

▪ General Purpose Registers
⁃ EAX, EBX, …
⁃ r1x, r2x, …

▪ Floating Point Registers
▪ MMX registers
▪ All addressable Memory Lo-

cations

Supported Fault Models

✓ Transient
✓ Intermittent
✓ Permanent

Measurements

▪ AVF/FIT
▪ Single target error probabili-

ty

BaITABaITA

 Extra Features

▪ Cross-Platform Implementa-
tion

▪ Easy compilation using
CMake

▪ Fully customizable parser
▪ Extendible Target compo-

nent description
▪ Compatible with CLERICO

MaFIN and GeFIN tools

System Requirements

▪ OS: Linux, OS X 10.8 or later
▪ Libraries: SMILE
▪ RAM: 4GB
▪ Tools: CMake, Bison, Flex

D5.5: Preliminary EDA tool-suite Page 18 of 19

Version 1.0 – 25/03/2016

5. RELSys Tools

5.1. SyRA - A full System Reliability Analyzer

A full System Reliability Analyzer March 2016

Contact Us

Stefano Di Carlo
Phone: +39 011 0907080 Fax: +39 011 0907099

Email: stefano.dicarlo@polito.it

Politecnico of Turin, Department of Controls and Computer Engineering
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Product Overview

SyRA automates reliability analysis of complex electronic systems by
means of component based statistical reliability models. SyRA enables to
model the target system in terms of components (technology, hardware
and software) and resorting to the CLERECO Bayesian reliability engine
can efficiently analyze how faults and errors propagate through
components, accounting for complex interactions among them that are
not modeled with simpler statistical models.

FP7-CLERECO
Grant Agreement FP7-611404

“You don’t need to

know that your

system is reliable, you

need to prove it!”

- Testgroup (Polito)

Supported Architectures
▪ Supported microprocessors

architectures through other
CLERECO tools (ARM Cortex
A9, ARM Cortex A15, x86_64)

▪ Single/Multicore
architectures

▪ Single/Multithread
applications

Extensions & Tools

▪ Full system stack analyzed
(from technology to the
application software)

▪ Detailed hardware and
software description

▪ Montecarlo simulation to
account for uncertainty on
reliability parameters of the
single components

▪ Very fast analysis for early
design exploration.

Target Components
▪ All hardware components

and subcomponents.
▪ All functions of the OS and

the Software.

Supported Fault Models

✓ Transient
✓ Permanent

Measurements

▪ AVF/FIT
▪ Influence Probability

SyRASyRA

 Key Features

▪ The model is highly
parameterized. It enables to
include any factor that can
potentially affect the
reliability of the system (e.g.,
environmental factors such
as location and
temperature) by simply
adding new variables to the
model.

▪ Full GUI available

System Requirements

▪ OS: Linux, OS X 10.8 or later
▪ Libraries: SMILE, QT, Boost
▪ RAM: 4GB

D5.5: Preliminary EDA tool-suite Page 19 of 19

Version 1.0 – 25/03/2016

5.1. ReDO - A full System Reliability Design Optimizer

A full System Reliability Design Optimizer March 2016

Contact Us

Stefano Di Carlo
Phone: +39 011 0907080 Fax: +39 011 0907099

Email: stefano.dicarlo@polito.it

Politecnico of Turin, Department of Controls and Computer Engineering
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Product Overview
ReDO improves the reliability of your system design by selecting the best
combination components (technology, hardware and software) to
meet your design constraints. ReDO let you explores hundreds of design
alternatives automatically. ReDO features an advanced optimization
algorithm inspired by the Extremal Optimization evolutionary strategy,
and it is based on the CLERECO Bayesian reliability engine.

FP7-CLERECO
Grant Agreement FP7-611404

“There is only one

way to optimization:

be sure you are

getting only the best

of all.”

- Testgroup (Polito)Supported Architectures
▪ Supported microprocessors

architectures through other
CLERECO tools (ARM Cortex
A9, ARM Cortex A15, x86_64)

▪ Single/Multicore
architectures

▪ Single/Multithread
applications

Extensions & Tools

▪ Full system stack optimized
(from technology to the
application software)

▪ Very fast design exploration
▪ Full Design exploration

logged
▪ Multi-objective optimization

functions
▪ Maximum optimization time

definable by the user based
on early stop conditions

Target Components
Full optimization for:
▪ All hardware components

and subcomponents.
▪ All functions of the OS and

the Software.

Optimization Parameters:
✓ Reliability
✓ Time
✓ Area
✓ Power Consumption
✓ … any parameter that can

be described and
evaluated.

Measurements

▪ AVF/FIT
▪ Percentages of

improvement.
▪ Influence Probability

ReDOReDO

 Key Features

▪ Fully design optimization via
support of users defining
objective functions.

▪ Full GUI available

System Requirements

▪ OS: Linux, OS X 10.8 or later
▪ Libraries: SMILE, QT, Boost
▪ RAM: 4GB

