A Survey on Simulation-Based Fault Injection Tools for Complex Systems

SETS 2014

Maha Kooli

PhD Student in LIRMM

Giorgio Di Natale, Alberto Bosio Pascal Benoit, Lionel Torres

Laboratoire Informatique Robotique Microélectronique Montpellier

Motivation

Space shuttle shatter the axis of NASA January 28, 1986

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

CLERECO

DESIGN

CLERECO work packages

WP2: Common and domain-specific sources of failure and reliability WP 7: Dissemination & exploitation WP1: Management **CLERECO Framework** WP 3: Hardware components WP 5: reliability characterization WP 6: System Validation & level proof-ofreliability concept WP 4: Software level reliability estimation characterization

CLERECO work packages

WP2: Common and domain-specific sources of failure and reliability WP 7: Dissemination & exploitation WP1: Management **CLERECO Framework** WP 3: Hardware components WP 5: reliability characterization WP 6: System Validation & level proof-ofreliability concept WP 4: Software level reliability estimation characterization

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

- Dependability is a global concept that subsumes the usual attributes of reliability, availability, safety, integrity, and maintainability.
- Dependability represents the ability to avoid service failures that can happen to a system frequently and severely than acceptable.

 A way to evaluate the dependability.

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

- A method permitting to:
 - Increase the dependability
 - Avoid services failure in the presence of faults
- Several strategies used to tolerate faults, e.g. Redundancy.
- Redundancy is the use of additional hardware or software, not strictly necessary to functioning, but used in case of failure in other components.

Redundancy

Redundancy

Redundancy

Techniques	Description	+/-	Examples
Hardware Fault Tolerance			
Software Implemented Hardware Fault Tolerance			
(SIHFT)			

Techniques	Description	+/-	Examples
Hardware Fault Tolerance	Changing the hardware to tolerate faults	- Effective- Costly in termof equipment	Fault maskingDynamicrecovery
Software Implemented Hardware Fault Tolerance (SIHFT)			

Techr	niques	Description	+/-	Examples
Hardware Fa	ult Tolerance	Changing the hardware to tolerate faults	- Effective- Costly in termof equipment	Fault maskingDynamicrecovery
Software Implement ed	OS Layer			
Hardware Fault Tolerance (SIHFT)	Middleware Layer			
	Application Layer			

Techr	niques	Description	+/-	Examples
Hardware Fa	ult Tolerance	Changing the hardware to tolerate faults	- Effective- Costly in termof equipment	Fault maskingDynamicrecovery
Software OS Layer Implement ed	Modifying the OS to achieve high level dependability	- Requires high skills to modify the OS		
Hardware Fault Tolerance (SIHFT)	Middleware Layer			
	Application Layer			

Techr	niques	Description	+/-	Examples
Hardware Fault Tolerance		Changing the hardware to tolerate faults	- Effective- Costly in termof equipment	Fault maskingDynamicrecovery
Software Implement ed Hardware Fault Tolerance (SIHFT)	OS Layer	Modifying the OS to achieve high level dependability	- Requires high skills to modify the OS	
	Middleware Layer	Building an intermediate software layer to manage the communication between the OS and the	- Efficient in case the application is not modifiable	- Interposition agents
	Application Layer	application		

Techr	niques	Description	+/-	Examples
Hardware Fault Tolerance		Changing the hardware to tolerate faults	- Effective- Costly in termof equipment	Fault maskingDynamicrecovery
Implement ed Hardware Fault Tolerance (SIHFT) App	OS Layer	Modifying the OS to achieve high level dependability	- Requires high skills to modify the OS	
	Middleware Layer	Building an intermediate software layer to manage the communication between the OS and the application	- Efficient in case the application is not modifiable	- Interposition agents
	Application Layer	Acting directly on the software application	CheapBetter solutionwhen the sourcecode is available	- RECCO - CFCRE - ABFT

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

Fault Injection

- A validation technique of the dependability for fault tolerance systems
- Evaluate the behavior of the system in the presence of faults

Fault Injection

Hardware FI

- ♣ High time-resolution.
- Expensive in term of equipment.
- Risk to damage the system.

Fault Injection

Hardware FI

Simulation-based FI

- ♣ High time-resolution.
- Expensive in term of equipment.
- Risk to damage the system.

- No risk to damage the system
- **♣**Low-cost
- ♣Simple to set-up
- Accuracy of fault model and system model

Fault Injection

Hardware FI

Simulation-based FI

- ♣ High time-resolution.
- Expensive in term of equipment.
- Risk to damage the system.

- No risk to damage the system
- **♣**Low-cost
- ♣Simple to set-up
- Accuracy of fault model and system model

Fault Injection

Hardware FI

Simulation-based FI

Software FI

Emulation-based FI

- ♣ High time-resolution.
- Expensive in term of equipment.
- Risk to damage the system.

- No risk to damage the system
- **♣**Low-cost
- ♣Simple to set-up
- Accuracy of fault model and system model

- ♣ It reduces the execution time compared to the simulation-based FI.
- Costly and not flexible

Tool	Developer	Category	Description
Jaca	University of Campinas, Brazil	Software FI	 Faults are injected in object-oriented systems. Adapted to any Java application.

Tool	Developer	Category	Description
Jaca	University of Campinas, Brazil	Software FI	 Faults are injected in object-oriented systems. Adapted to any Java application.
Xception	University of Coimbra, Portugal	Software FI	 Fault are injected in software It uses advanced debugging features to observe the behavior of the system in detail in presence of faults.

Tool	Developer	Category	Description
Jaca	University of Campinas, Brazil	Software FI	 Faults are injected in object-oriented systems. Adapted to any Java application.
Xception	University of Coimbra, Portugal	Software FI	 Fault are injected in software It uses advanced debugging features to observe the behavior of the system in detail in presence of faults.
RIFLE	University of Coimbra, Portugal	Hardware FI	 Faults are injected in pin-level of the modules. It performs analysis to observe the impact of faults on the processor

Tool	Developer	Category	Description
Jaca	University of Campinas, Brazil	Software FI	 Faults are injected in object-oriented systems. Adapted to any Java application.
Xception	University of Coimbra, Portugal	Software FI	 Fault are injected in software It uses advanced debugging features to observe the behavior of the system in detail in presence of faults.
RIFLE	University of Coimbra, Portugal	Hardware FI	 Faults are injected in pin-level of the modules. It performs analysis to observe the impact of faults on the processor
LIFTING	LIRMM Montpellier, France	Simulation- based FI	 A simulator able to perform both logic and fault simulation for stuck-at faults and single event-upset on digital circuits It provides many features to analyze the fault simulation results. It allows describing the hardware systems to define the software stored in the memory, and to inject faults in the hardware model elements.

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

FAUMachine open source

- A virtual machine similar to QEMU or Virtual Box.
- It permits to inject faults and observe the whole operating system or application software.
- It performs with a high simulation speed thanks to the virtualization.

FAUMachine Installation

Virtual Machine

• The FAUmachine virtual machine runs as a normal user process on top of Linux on i386 and AMD64 hardware.

• ¼ of the performance of the host system:

CPU/Memory/ROM: 5 times slower

Disk: 3 times slower

Network: 2 times slower

Which Type of Faults?

Memory Cells/CPU Register:

- Transient bit flips
- Permanent stuck-at faults
- Permanent coupling faults

Disk/CDROM:

- Transient / permanent block faults
- Transient / permanent whole disk faults

• Network:

- Transient send / receive faults
- Intermittent send / receive faults
- Permanent send / receive faults

Via GUI in FAUMachine

Via GUI in FAUMachine

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

```
Define the signal for the fault
```

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

```
architecture behaviour of fi is
signal err: boolean;
begin

process
begin

shortcut_bool_out(

err,
":pc:mem0",
"stuck_at_0/0x543210/0");
err <= true;
end process;
end behaviour;
```

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

The path to the instantiated component

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

- Via GUI in FAUMachine
- Via VHDL script
 - Define faults type, location, time and duration

Outline

- 1. CLERECO Project
- 2. State of the Art
 - 2.1. Dependability
 - 2.2. Fault Tolerance
 - 2.3. Fault Injection
- 3. Research Direction
- 4. Conclusion and Perspective

Conclusion and Perspective

- FAUMachine:
 - Inject faults using VHDL script
 - Observe the impact of faults
- LLVM and its based fault injection tool LLFI

Thank you