/

A Survey on Simulation-Based Fault
Injection Tools for Complex Systems

SETS 2014
Maha Kooli Giorgio Di Natale, Alberto Bosio
PhD Student in LIRMM Pascal Benoit, Lionel Torres

Laboratoire
Informatique
Robotique
(‘ereCO “:E Microélectronique
ross-Lay ntinuum

ayer tarly Reliability Evaluation for the Computing cOntinuum ~ ® ® ® ® & @ M on t p e' I ler

Space shuttle shatter the axis of NASA
January 28, 1986

Outline

1. CLERECO Project
2. State of the Art
2.1. Dependability
2.2. Fault Tolerance
2.3. Fault Injection
3. Research Direction
4. Conclusion and Perspective

”

Outline

1. CLERECO Project
2. State of the Art
2.1. Dependability
2.2. Fault Tolerance
2.3. Fault Injection
3. Research Direction
4. Conclusion and Perspective

DESIGN

7

ross-Layer Early Feliability fvaluation for the Computing cOntinuum

_— — e
- CLERECO work packages

WP2: Common and domain-specific sources of failure and reliability

/

é CLERECO Framework
Q
& WP 3: Hardware components
c L . WP 5:
© reliability characterization — WP 6:
S System .
.. Validation &
. ﬂ level K
Q- L proof-of-
= o reliability
WP 4: Software level reliability estimation concept
characterization

WP 7: Dissemination & exploitation

- S
" CLERECO work packages

WP2: Common and domain-specific sources of failure and reliability

/

é CLERECO Framework

()]

& WP 3: Hardware components

c Ly . WP 5:

© reliability characterization — WP 6:

S System L.

.. Validation &

. ﬂ level (—

Q- L proof-of-

= - = reliability Sy
WP 4: Soft reliability estimation p
charact

WP 7: Dissemination & exploitation

Outline

2. State of the Art
2.1. Dependability

- Dependability

[Dependability }

Dependability is a global concept that subsumes the usual
attributes of reliability, availability, safety, integrity, and
maintainability.

Dependability represents the ability to avoid service failures that
can happen to a system frequently and severely than
acceptable.

e —————

" Dependability

[Dependability }

4 I

[Attributes } [Threats }

Tee—

" Dependability

[Dependability }

4 I

[Attributes } [Threats }

I

* A way to evaluate
the dependability.

N\

|

Means

11

/

- Dependability

[Dependability }

4 I N\

[Attributes } [Threats } [Means

i

Availability
Reliability

Safety
Confidentiality

Integrity

Maintainability

Security

etc...

; —_— _,,g,,%//////4(
’/5zgendabﬂﬁ

[Dependability J

4 4 N

[Attributes] [Threats] [Means]

U

~ Availability
- Reliability

Safety
Confidentiality

Integrity

Maintainability |

Security

etc...

/

- Dependability

[Dependability }

4 I N\

[Attributes } [Threats } [Means
Availability | e Undesired things
Reliability J that can affect the
Safety \ dependability.

Confidentiality

Integrity

Maintainability

Security

etc...

/

- Dependability

[Dependability }

4 I N\

[Attributes } [Threats } [Means
U U
Availability Faults
Reliability Errors
Safety Failures
Confidentiality etc...
Integrity |
Maintainability
Security

etc...

. S

/

- Dependability

[Dependability }

4 I N\

[Attributes } [Threats } [Means
Availability Faults

Reliability Errors %

Safety] Failures

Confidentiality etc...

Integrity Chain of

threats

Maintainability

Security

etc...

/

- Dependability

[Dependability }

4 I N\

[Attributes } [Threats } [Means }
i))
AvEIRRIlty Faults : * Techniques and methods
Reliability J \ Errors) able to increase the
Safety B 7 dependability
Confidentiality etc...
Integrity |
Maintainability
Security

etc...

17

/

ependability

-

D

/

[Attributes }

i

Availability
Reliability

Safety
Confidentiality

Integrity

Maintainability

Security

etc...

[Dependability }

J

[Threats }

U

Faults

Errors

Failures

etc...

N\

F M

i

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

etc...

18

S S

/

- Dependability

[Dependability }

4 I N\

[Attributes } [Threats } [Means }
J J J
Availability Faults Fault Prevention
Reliability Errors Fa ce
Safety Failures Fault Removal
Confidentiality etc... Fault Forecasting
Integrity etc...

Maintainability

Security

etc...

Outline

2. State of the Art

2.2. Fault Tolerance

20

Fault Tolerance

A method permitting to:
Increase the dependability
Avoid services failure in the presence of faults

Several strategies used to tolerate faults, e.g. Redundancy.

Redundancy is the use of additional hardware or software, not strictly
necessary to functioning, but used in case of failure in other components.

21

f/ﬁgdundancy

e ————

In

M

Out

M

Voter

M

Space Redundancy

22

/

-

R

e

dundancy

In

M

® M

Out

Voter

M

Space Redundancy

In

f(In)

k<m

M

g(Out)

Comparator

Information Redundancy

Out

23

/

-

R

e

dundancy

M s
fm) o =
2
In z Out £
. M 55.; u g(Out) 5
2 |
In M m
M Out
Space Redundancy Information Redundancy
Outl

R1
In
{
Out2
R2

Time Redundancy

Out

Comparator

24

P L /

Fault Tolerance
e s A e

Hardware Fault Tolerance

i

Software Implemented
Hardware Fault Tolerance
(SIHFT)

25

Fault Tolerance

| Technigues | Description | +/- | Examples _

Hardware Fault Tolerance Changing the hardware to - Effective - Fault masking
< tolerate faults - Costlyinterm - Dynamic
r\I[Il./ of equipment recovery

Software Implemented
Hardware Fault Tolerance
(SIHFT)

26

Fault Tolerance

Hardware Fault Tolerance Changing the hardwareto - Effective - Fault masking
3 tolerate faults - Costly in term - Dynamic
/ of equipment recovery

Software OS Layer

Implement

ed

Hardware \jiddleware

Fault Layer

Tolerance

(SIHFT)

% Application

Layer

27

Fault Tolerance

Hardware Fault Tolerance Changing the hardwareto - Effective - Fault masking
3 tolerate faults - Costly in term - Dynamic
» / of equipment recovery

Software OS Layer Modifying the OS to achieve - Requires high

Implement high level dependability skills to modify

ed the OS

Hardware Middleware

Fault Layer

Tolerance

(SIHFT)

‘ - Application
Layer

28

Fault Tolerance

Hardware Fault Tolerance Changing the hardwareto - Effective - Fault masking
E tolerate faults - Costly in term - Dynamic
» / of equipment recovery
Software OS Layer Modifying the OS to achieve - Requires high
Implement high level dependability skills to modify
ed the OS
Hardware Middleware Building an intermediate - Efficient in case - Interposition
Fault Layer software layer to manage the application is agents
Tolerance the communication not modifiable

(SIHFT) between the OS and the
| application

Application
Layer

29

Fault Tolerance

Hardware Fault Tolerance

Software
Implement
ed
Hardware
Fault
Tolerance
(SIHFT)

OS Layer

Middleware
Layer

Application
Layer

Changing the hardware to
tolerate faults

Modifying the OS to achieve
high level dependability

Building an intermediate
software layer to manage
the communication
between the OS and the
application

Acting directly on the
software application

- Effective - Fault masking
- Costly in term - Dynamic
of equipment recovery

- Requires high
skills to modify
the OS

- Efficient in case - Interposition

the application is agents
not modifiable

- Cheap - RECCO
- Better solution - CFCRE
when the source - ABFT

code is available
30

Outline

2. State of the Art

2.3. Fault Injection

31

/

~ Fault Injection

[Fault Injection }

* Avalidation technique of the dependability for fault
tolerance systems

® Evaluate the behavior of the system in the presence of
faults

" Fault Injection

[Fault Injection }

7

[Hardware Fl }

1" High time-resolution.

==Expensive in term of
equipment.

==Risk to damage the
system.

33

/

~ Fault Injection

[Fault Injection }

4 0

[Hardware Fl } [Simulation-based FI }

1" High time-resolution. 52 No risk to damage the

system
—Expensive in term of ' Low-cost
equipment. “Simple to set-up
==Risk to damage the
system. == Accuracy of fault model

and system model

/

~ Fault Injection

[Fault Injection }
Y4 i}
[Hardware Fl } [Simulation-based FI }

U
[Software Fl]

1" High time-resolution. 52 No risk to damage the

system
—Expensive in term of ' Low-cost
equipment. “Simple to set-up
==Risk to damage the
system. == Accuracy of fault model

and system model

~ Fault Injection

{ Fault Injection }

74 0 Ny

{ Hardware Fl 1 { Simulation-based FI 1 [Emulation-based Fl 1

U
[Software Fl]

1" High time-resolution. 52 No risk to damage the

system
—Expensive in term of ' Low-cost
equipment. “Simple to set-up
==Risk to damage the
system. == Accuracy of fault model

and system model

=" |t reduces the execution
time compared to the
simulation-based FI.

== Costly and not flexible

36

e . /

Fault Injection Environments

Jaca University of Software Fl * Faults are injected in object-oriented systems.
Campinas, » Adapted to any Java application.
Brazil

37

/4 ° ° ° /
- Fault Injection Environments

Jaca University of Software Fl * Faults are injected in object-oriented systems.
Campinas, » Adapted to any Java application.
Brazil

Xception University of Software Fl * Fault are injected in software
Coimbra, * It uses advanced debugging features to observe the
Portugal behavior of the system in detail in presence of faults.

38

Fault Injection Environments

Jaca

Xception

RIFLE

University of
Campinas,
Brazil

University of
Coimbra,
Portugal

University of
Coimbra,
Portugal

Software Fl

Software Fl

Hardware FI

* Faults are injected in object-oriented systems.
* Adapted to any Java application.

* Fault are injected in software
* It uses advanced debugging features to observe the
behavior of the system in detail in presence of faults.

* Faults are injected in pin-level of the modules.
* It performs analysis to observe the impact of faults
on the processor

39

Fault Injection Environments

Jaca

Xception

RIFLE

LIFTING

University of
Campinas,
Brazil

University of
Coimbra,
Portugal

University of
Coimbra,
Portugal

LIRMM
Montpellier,
France

Software Fl

Software Fl

Hardware FI

Simulation-
based Fl

* Faults are injected in object-oriented systems.
* Adapted to any Java application.

* Fault are injected in software
* It uses advanced debugging features to observe the
behavior of the system in detail in presence of faults.

* Faults are injected in pin-level of the modules.
* It performs analysis to observe the impact of faults
on the processor

* A simulator able to perform both logic and fault
simulation for stuck-at faults and single event-upset
on digital circuits

* It provides many features to analyze the fault
simulation results.

* It allows describing the hardware systems to define
the software stored in the memory, and to inject
faults in the hardware model elements.

utline

1. CLERECO Project
2. State of the Art
2.1. Dependability
2.2. Fault Tolerance
2.3. Fault Injection
3. Research Direction
4. Conclusion and Perspective

4)”

41

|

~ FAUMachine ...

FRIEDRICH-ALEXANDER
UNIVERSITAT
=" ERLANGEN-NURNBERG

University of Nuremberg,
Germany

e A virtual machine similar to QEMU or Virtual Box.

* |t permits to inject faults and observe the whole operating system or
application software.

* |t performs with a high simulation speed thanks to the virtualization.

42

FAUMachine Installation

FAUmachine (on clereco)

Y

File Inject Host Keymap Media
Nothing grabbed
chassis power_supply, -etho, -keyboard mouse floppy_drive -hdc
O &> & Q O o &
Power IDE Busy | |NUM CAPS SCRL Selected Busy
~O Powerl &5 Reset | | Q Switch Selected Send Keycode | H Insert | Insert |
monitor

s, Screenshot .) .
FAUmachine BIOS 260116812
Copyright (C) 2003-2009, University Erlangen—Nuremberyg

il Record

*L Zoom In

N JP|PENTIUM CPU at 2.00GHz
SRkl | <CPU ID:1234 Patch ID:None>

il

Memory Test @ _1Z21664K OK

Press to enter setup.

43

~ Virtual Machine

The FAUmachine virtual machine runs as a normal user process on top of
Linux on i386 and AMD64 hardware.

% of the performance of the host system:
CPU/Memory/ROM: 5 times slower
Disk: 3 times slower
Network: 2 times slower

44

- Which Type of Faults?

Memory Cells/CPU Register:
Transient bit flips
Permanent stuck-at faults
Permanent coupling faults
Disk/CDROM:
Transient / permanent block faults
Transient / permanent whole disk faults
Network:
Transient send / receive faults
Intermittent send / receive faults
Permanent send / receive faults

45

TTeee—

e

" How to Inject Faults?

* Via GUI in FAUMachine

46

" How to Inject Faults?

"

_ -

* Via GUI in FAUMachine

-memO0

Bit Flip

| Address 12b35881

Add Bit Flip Fault

Bt 7

Stuck-At-0 O off (® active Address 0x542310 Bit 2

Add Stuck-At-0 Fault

Add Stuck-At-1 Fault

Add Coupling Fault

-hda

Disk Fault

@® off O active

Add Block Fault Fault

-hdc

Drive Fault

@® off O active

-cable

Packet Loss

0%

]

——

/

/

How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
* Define faults type, location, time and duration

48

A_ﬂfczf’¢’//

" How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of fi 1s
signal err : boolean;
begin
process
begin
shortcut bool out (
err,
":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;

49

/

/7

- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of f£i is

Define the signal for > signal err : boolean;
Lo
the fault cgLn
process
begin

shortcut bool out (
err,
":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;

50

/—/‘

/ﬁ

- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
* Define faults type, location, time and duration

architecture behaviour of f£i is

signal err : boolean;
begin
process
begin
Connect the actual fault > shortcut_bool_out (
err,

":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;

51

/

/7

- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of fi 1s
signal err : boolean;
begin
process
begin
shortcut bool out (
The signal of the fault > err,
":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;

52

A_ﬂfczf’¢’//

" How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of f£i is

signal err : boolean;
begin
process
begin
shortcut bool out (
err,
The path to the > ":pc:mem0",
instantiated "stuck at 0/0x543210/0");
err <= true;
component end process;

end behaviour;

53

/

/

- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
* Define faults type, location, time and duration

architecture behaviour of fi 1s
signal err : boolean;
begin
process
begin
shortcut bool out (
err,
":pc:memQ0",
Fault Parameters > "stuck _at 0/0x543210/0");
err <= true;
end process;
end behaviour;

54

/

/7

- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of fi 1is
signal err : boolean;
begin
process
begin
shortcut bool out (
err,
":pc:memQ0",
"stuck at 0/0x543210/0"™) ;
Activate the fault > err <= true;
end process;
end behaviour;

55

- Qutline

4. Conclusion and Perspective

56

/ /
- Conclusion and Perspective

®* FAUMachine:
* Inject faults using VHDL script
* Observe the impact of faults

* LLVM and its based fault injection tool LLFI

57

”

Thank you

