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2. State of the Art
2.1. Dependability
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[ Dependability }

Dependability is a global concept that subsumes the usual
attributes of reliability, availability, safety, integrity, and
maintainability.

Dependability represents the ability to avoid service failures that
can happen to a system frequently and severely than
acceptable.
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2.2. Fault Tolerance
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Fault Tolerance

A method permitting to:
Increase the dependability
Avoid services failure in the presence of faults

Several strategies used to tolerate faults, e.g. Redundancy.

Redundancy is the use of additional hardware or software, not strictly
necessary to functioning, but used in case of failure in other components.

21
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Hardware Fault Tolerance

i

Software Implemented
Hardware Fault Tolerance
(SIHFT)
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Fault Tolerance

| Technigues | Description | +/- | Examples _

Hardware Fault Tolerance Changing the hardware to - Effective - Fault masking
< tolerate faults - Costlyinterm - Dynamic
r\I[Il./ of equipment recovery

Software Implemented
Hardware Fault Tolerance
(SIHFT)
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Hardware Fault Tolerance Changing the hardwareto - Effective - Fault masking
3 tolerate faults - Costly in term - Dynamic
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% Application

Layer
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Hardware Fault Tolerance Changing the hardwareto - Effective - Fault masking
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Fault Tolerance

Hardware Fault Tolerance Changing the hardwareto - Effective - Fault masking
E tolerate faults - Costly in term - Dynamic
» / of equipment recovery
Software OS Layer Modifying the OS to achieve - Requires high
Implement high level dependability skills to modify
ed the OS
Hardware Middleware Building an intermediate - Efficient in case - Interposition
Fault Layer software layer to manage the application is agents
Tolerance the communication not modifiable

(SIHFT) between the OS and the
| application

Application
Layer
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Fault Tolerance

Hardware Fault Tolerance

Software
Implement
ed
Hardware
Fault
Tolerance
(SIHFT)

OS Layer

Middleware
Layer

Application
Layer

Changing the hardware to
tolerate faults

Modifying the OS to achieve
high level dependability

Building an intermediate
software layer to manage
the communication
between the OS and the
application

Acting directly on the
software application

- Effective - Fault masking
- Costly in term - Dynamic
of equipment recovery

- Requires high
skills to modify
the OS

- Efficient in case - Interposition

the application is agents
not modifiable

- Cheap - RECCO
- Better solution - CFCRE
when the source - ABFT

code is available
30
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2.3. Fault Injection
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~ Fault Injection

[ Fault Injection }

* Avalidation technique of the dependability for fault
tolerance systems

® Evaluate the behavior of the system in the presence of
faults
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1" High time-resolution.

==Expensive in term of
equipment.

==Risk to damage the
system.
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{ Fault Injection }

74 0 Ny

{ Hardware Fl 1 { Simulation-based FI 1 [ Emulation-based Fl 1

U
[ Software Fl ]

1" High time-resolution. 52 No risk to damage the

system
—Expensive in term of ' Low-cost
equipment. “Simple to set-up
==Risk to damage the
system. == Accuracy of fault model

and system model

=" |t reduces the execution
time compared to the
simulation-based FI.

== Costly and not flexible
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Fault Injection Environments

Jaca University of  Software Fl * Faults are injected in object-oriented systems.
Campinas, » Adapted to any Java application.
Brazil
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- Fault Injection Environments

Jaca University of  Software Fl * Faults are injected in object-oriented systems.
Campinas, » Adapted to any Java application.
Brazil

Xception University of  Software Fl * Fault are injected in software
Coimbra, * It uses advanced debugging features to observe the
Portugal behavior of the system in detail in presence of faults.
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Fault Injection Environments

Jaca

Xception

RIFLE

University of
Campinas,
Brazil

University of
Coimbra,
Portugal

University of
Coimbra,
Portugal

Software Fl

Software Fl

Hardware FI

* Faults are injected in object-oriented systems.
* Adapted to any Java application.

* Fault are injected in software
* It uses advanced debugging features to observe the
behavior of the system in detail in presence of faults.

* Faults are injected in pin-level of the modules.
* It performs analysis to observe the impact of faults
on the processor
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Fault Injection Environments

Jaca

Xception

RIFLE

LIFTING

University of
Campinas,
Brazil

University of
Coimbra,
Portugal

University of
Coimbra,
Portugal

LIRMM
Montpellier,
France

Software Fl

Software Fl

Hardware FI

Simulation-
based Fl

* Faults are injected in object-oriented systems.
* Adapted to any Java application.

* Fault are injected in software
* It uses advanced debugging features to observe the
behavior of the system in detail in presence of faults.

* Faults are injected in pin-level of the modules.
* It performs analysis to observe the impact of faults
on the processor

* A simulator able to perform both logic and fault
simulation for stuck-at faults and single event-upset
on digital circuits

* It provides many features to analyze the fault
simulation results.

* It allows describing the hardware systems to define
the software stored in the memory, and to inject
faults in the hardware model elements.
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~ FAUMachine ...

FRIEDRICH-ALEXANDER
UNIVERSITAT
=" ERLANGEN-NURNBERG

University of Nuremberg,
Germany

e A virtual machine similar to QEMU or Virtual Box.

* |t permits to inject faults and observe the whole operating system or
application software.

* |t performs with a high simulation speed thanks to the virtualization.
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FAUMachine Installation

FAUmachine (on clereco)

Y

File Inject Host Keymap Media
Nothing grabbed
chassis power_supply, -etho, -keyboard mouse floppy_drive -hdc
O &> & Q O o &
Power IDE Busy | |NUM CAPS SCRL Selected Busy
~O Powerl &5 Reset | | Q Switch Selected Send Keycode | H Insert | Insert |
monitor

s, Screenshot . ) .
FAUmachine BIOS 260116812
Copyright (C) 2003-2009, University Erlangen—Nuremberyg

il Record

*L Zoom In

N JP|PENTIUM CPU at 2.00GHz
SRkl | <CPU ID:1234 Patch ID:None>

il

Memory Test @ _1Z21664K OK

Press <Del> to enter setup.
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~ Virtual Machine

The FAUmachine virtual machine runs as a normal user process on top of
Linux on i386 and AMD64 hardware.

% of the performance of the host system:
CPU/Memory/ROM: 5 times slower
Disk: 3 times slower
Network: 2 times slower
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- Which Type of Faults?

Memory Cells/CPU Register:
Transient bit flips
Permanent stuck-at faults
Permanent coupling faults
Disk/CDROM:
Transient / permanent block faults
Transient / permanent whole disk faults
Network:
Transient send / receive faults
Intermittent send / receive faults
Permanent send / receive faults
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" How to Inject Faults?

* Via GUI in FAUMachine
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" How to Inject Faults?

"

_ -

* Via GUI in FAUMachine

-memO0

Bit Flip

| Address 12b35881

Add Bit Flip Fault

Bt 7

Stuck-At-0 O off (® active Address 0x542310 Bit 2

Add Stuck-At-0 Fault

Add Stuck-At-1 Fault

Add Coupling Fault

-hda

Disk Fault

@® off O active

Add Block Fault Fault

-hdc

Drive Fault

@® off O active

-cable

Packet Loss

0%

]
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How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
* Define faults type, location, time and duration
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" How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of fi 1s
signal err : boolean;
begin
process
begin
shortcut bool out (
err,
":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;
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- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of f£i is

Define the signal for > signal err : boolean;
Lo
the fault cgLn
process
begin

shortcut bool out (
err,
":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;
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- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
* Define faults type, location, time and duration

architecture behaviour of f£i is

signal err : boolean;
begin
process
begin
Connect the actual fault > shortcut_bool_out (
err,

":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;
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- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of fi 1s
signal err : boolean;
begin
process
begin
shortcut bool out (
The signal of the fault > err,
":pc:memQ0",
"stuck at 0/0x543210/0");
err <= true;
end process;
end behaviour;
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" How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of f£i is

signal err : boolean;
begin
process
begin
shortcut bool out (
err,
The path to the > ":pc:mem0",
instantiated "stuck at 0/0x543210/0");
err <= true;
component end process;

end behaviour;
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- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
* Define faults type, location, time and duration

architecture behaviour of fi 1s
signal err : boolean;
begin
process
begin
shortcut bool out (
err,
":pc:memQ0",
Fault Parameters > "stuck _at 0/0x543210/0");
err <= true;
end process;
end behaviour;
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- How to Inject Faults?

® Via GUI in FAUMachine
® Via VHDL script
Define faults type, location, time and duration

architecture behaviour of fi 1is
signal err : boolean;
begin
process
begin
shortcut bool out (
err,
":pc:memQ0",
"stuck at 0/0x543210/0"™) ;
Activate the fault > err <= true;
end process;
end behaviour;
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4. Conclusion and Perspective
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- Conclusion and Perspective

®* FAUMachine:
* Inject faults using VHDL script
* Observe the impact of faults

* LLVM and its based fault injection tool LLFI
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