
Differential Fault Injection on Microarchitectural Simulators

Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou, Nikos Foutris, Dimitris Gizopoulos

Department of Informatics & Telecommunications, University of Athens, Greece
{manoliskal, tseloniss, achatz, nfoutris, dgizop}@di.uoa.gr

Abstract—Fault injection on microarchitectural structures
modeled in performance simulators is an effective method for
the assessment of microprocessors reliability in early design
stages. Compared to lower level fault injection approaches it is
orders of magnitude faster and allows execution of large
portions of workloads to study the effect of faults to the final
program output. Moreover, for many important hardware
components it delivers accurate reliability estimates compared
to analytical methods which are fast but are known to
significantly over-estimate a structure’s vulnerability to faults.

This paper investigates the effectiveness of
microarchitectural fault injection for x86 and ARM
microprocessors in a differential way: by developing and
comparing two fault injection frameworks on top of the most
popular performance simulators, MARSS and Gem5. The
injectors, called MaFIN and GeFIN (for MARSS-based and
Gem5-based Fault Injector, respectively), are designed for
accurate reliability studies and deliver several contributions
among which: (a) reliability studies for a wide set of fault
models on major hardware structures (for different sizes and
organizations), (b) study on the reliability sensitivity of
microarchitecture structures for the same ISA (x86)
implemented on two different simulators, (c) study on the
reliability of workloads and microarchitectures for the two
most popular ISAs (ARM vs. x86).

For the workloads of our experimental study we analyze
the common trends observed in the CPU reliability assessments
produced by the two injectors. Also, we explain the sources of
difference when diverging reliability reports are provided by
the tools. Both the common trends and the differences are
attributed to fundamental implementations of the simulators
and are supported by benchmarks runtime statistics. The
insights of our analysis can guide the selection of the most
appropriate tool for hardware reliability studies (and thus
decision-making for protection mechanisms) on certain
microarchitectures for the popular x86 and ARM ISAs.

Keywords-reliability evaluation, fault injection, micro-
architectural simulators, microprocessors

I. INTRODUCTION
The reliable operation of modern and forthcoming

computing systems can be affected by transient faults (soft
errors), intermittent faults, and permanent (hard) faults [2]
[9] [17]. Hardware faults can be caused by external factors
such as radiation or are due to latent manufacturing defects,
device degradation, or certain modes of operation such as
very low voltage operation [2] [7] [9] [30]. Several metrics
have been proposed for the assessment of reliability; for
example the Architectural Vulnerability Factor (AVF) [28]
quantifies the probability of a transient fault in a hardware

component to produce a program-visible error accounting for
both the hardware and the software masking effects.
Similarly, vulnerability factors for intermittent faults [31]
(IVF) and permanent faults [6] (H-AVF) have been defined.

Early assessment of the expected reliability of a
computing system (or equivalently its resiliency to hardware
faults) is an important task which steers design decisions
related to the required mechanisms for the detection and
diagnosis of hardware faults and the recovery of the system
from their effects. Such fault tolerance mechanisms always
impose area, power and performance overheads.
Straightforward guard-banding of the system with inaccurate
knowledge of the effect of hardware faults can easily make
the costs of protection against hardware faults excessive. For
example, typical memory error detection and correction
techniques can have a cost (in terms of added memory
capacity) which ranges from 1% to 125% depending on the
detection and correction capabilities of each technique [24].
Clearly, the selection of the most appropriate protection
techniques depends on the required reliability levels and
studies of its inherent resiliency to hardware faults.

Tolerance mechanisms against any fault model must be
decided as early as possible to avoid costly re-design cycles
for late integration of such mechanisms. However, early
decisions on the protection mechanisms are hard to make
because during the early stages of a system design important
parameters are unknown: hardware components sizes and
architectures, workload. It is widely recognized that
microarchitecture simulators, apart from their importance for
performance studies, offer an opportunity for an effective
combination of early and accurate reliability estimations:
� They are available in early design phases and important

parameters of the major hardware structures can be
easily configured.

� They are significantly faster than simulators at more
detailed levels of abstraction (RTL, gate-level) and thus
allow studies on large intervals of software execution.

� They accurately model important array-based
microarchitecture components: storage arrays which
occupy the majority of a chip’s area and thus largely
determine vulnerability to faults. For instance, on-chip
caches, register files, buffers, queues.

A set of approaches that utilize performance simulators
for reliability evaluation is based on probabilistic models and
ACE-based (Architectural Correct Execution) analysis to
determine the AVF of hardware structures [5] [13] [28] [29]
[43] [51]. Other approaches also use performance
measurements [10] [44] for online AVF estimation, while
others try to separate the masking effects that hardware and

2015 IEEE International Symposium on Workload Characterization

978-1-5090-0088-3/15 $31.00 © 2015 IEEE

DOI 10.1109/IISWC.2015.28

172

software can have on hardware faults [38] [40] [41]. All
these approaches are very fast (a single or few runs of a
benchmark are needed to feed the models) but require
significant modifications of the simulator as they are based
on tracking data flow through the microarchitecture. Despite
their speed, the recognized drawback of these approaches is
that they over-estimate the vulnerability of microprocessor
structures [14] [23] [45]; for example, [14] reports a 7x AVF
over-estimation and [45] reports that even a refined ACE-
based analysis (which requires even more elaborate
modifications of the microprocessor simulator model) leads
to up to 3x over-estimation. This can lead to decisions for
expensive but not justifiable protection mechanisms.

On the other hand, fault injection frameworks that utilize
microarchitectural simulators much closer resemble the
actual hardware and software behavior in the presence of
faults [12] [14] [32] [48]. Fault injection approaches require
much simpler modifications of the simulators but require
larger simulation time for the fault injection experiments.
However, when statistically significant numbers of fault
injections are performed [20], fault injection delivers very
accurate reports on the faulty behavior of hardware
components.

In this paper, we investigate the limits of
microarchitecture level fault injection for x86 and ARM
ISAs conducting a differential analysis on two
comprehensive fault injector tools supporting the same fault
models and running the same workloads. Such a differential
analysis can bring insights about the sensitivity of the
vulnerability of hardware structures and workloads to the
underlying microarchitecture as well as the ISA of the
microprocessor. It can also identify common trends and
diverging reliability reports in the two tools which can lead
to informed design decisions for error protection.

Our differential fault injection framework can serve
many different studies in this context. We inject hardware
faults on actual microarchitecture structures (all storage
arrays: caches, register files, buffers, queues – not only on
architecturally visible points) to better assist design decisions
for error protection of individual components.

Our microarchitecture-level fault injection tools, called
MaFIN and GeFIN (for MARSS-based and Gem5-based
Fault Injector, respectively), are built on the two most
popular microarchitectural simulators (MARSS [33] and
Gem5 [3]) and the two popular ISAs (x86 and ARM). Both
injectors have been developed modularly using exactly the
same principles and employ the check-pointing features of
the simulators to ensure that faults affect only the execution
of the benchmark being studied as well as to speed up the
injection campaigns.

Both MaFIN and GeFIN consist of three modules: a fault
masks generator, an injection campaign controller and a
parser of the logged information. The tools allow studies on
the full range of fault models: transient, intermittent and
permanent, as well as studies with multiple faults injected in:
(i) different bits of the same entry of a hardware structure,
(ii) different entries of a structure, (iii) different hardware
structures simultaneously, (iv) all combinations of the above.

Table I summarizes the state in microarchitectural fault
injectors and puts the new contributions of this paper in this
context. The two new microarchitectural fault injectors built
for the needs of our differential study cover several
important missing aspects of the research area.

We keep a balance in the content of the paper between:
(a) the essential description of the microarchitecture-level
fault injector tools (realization of the injection, modifications
of the simulators, their features, the supported fault models,
etc.) and (b) the presentation, analysis and explanation of the
experimental results to identify the sources of common
trends and diverging reliability reports between the tools.
Sections II and III focus on the former while Section IV
focuses on the latter. Section V discusses related work and
Section VI concludes the paper.

TABLE I. STATE-OF-THE-ART AND CONTRIBUTIONS OF THIS PAPER
IN FAULT INJECTION TECHNIQUES ON MICROARCHITECTURAL SIMULATORS

Aspect State-of-the-art This work
Injection framework that

targets all major
microarchitecture

structures

None1
Both MaFIN and
GeFIN: all major

structures

Comparison between
ISAs (x86 vs. ARM) None GeFIN

(x86 vs. ARM ISA)
Comparison between

Out-of-Order
microarchitectures

None MaFIN and GeFIN

Comparison between
simulators for same ISA None MaFIN and GeFIN

(for x86 ISA)

Full system fault
injection

[32]: Gem5;
[48]: M5;

[21] [22]: GEMS

Both MaFIN and
GeFIN are full system

injectors
New microarchitectural

structures added None MaFIN

Transient, intermittent,
permanent fault models

[48] (not all
hardware structures)

MaFIN and GeFIN:
all fault models

II. MICROARCHITECTURAL FAULT INJECTION
The objective of this work is the study and the analysis of

workloads reliability in the presence of hardware faults on
top of two different (thus diverse), configurable,
microarchitecture-level full-system fault injectors for x86
and ARM ISAs. By setting their configurations and running
benchmarks of interest several reliability studies for
hardware components can be performed. This comparative
study can reveal important insights about microarchitectural
fault injection, among which:
� What are the characteristics of a microarchitectural

simulator that make it more suitable as a substrate for
fault injection studies?

� How much sensitive is the vulnerability of hardware
structures to the ISA as well as the microarchitecture
(simulator model or hardware structures configurations)
for a given workload?

1 [14]: integer register file and ROB only; [48]: no injections supported in
any cache level.

173

Major decisions towards the objective of this paper are
the selection of the microarchitectural simulators and
configurations. We discuss these decisions.

A. Simulators Selection
We have considered a number of publicly available full

system simulators. A recent study [16] on the sources of
modeling errors in full system simulators summarizes the
publicly available tools and their advantages: Flexus [47],
Gem5 [3], GEMS [27], MARSS [33], OVPsim [18], PTLsim
[49], Simics [25]. Among these full-system simulators
MARSS [33] and Gem5 [3] are: cycle-accurate (thus can
allow per cycle granularity of fault injections at any modeled
hardware component), publicly available, and regularly
maintained today by their developers. By themselves, these
properties can justify selecting MARSS and Gem5 for our
reliability studies. Moreover, the two simulators best serve
our purposes because:

They are widely adopted by the computer
architecture community. Both simulators are recent and
very popular. Their increased popularity is mainly due to
their accurate support of important ISAs, their detailed and
configurable model of the memory system [42] and check-
pointing support.

Their combination supports differential reliability
studies. The combination of MARSS and Gem5 supports the
purposes of our work – reliability studies on different ISAs
and reliability studies on the same ISA on different
simulators. In particular:
� Both MARSS and Gem5 support the x86 ISA and thus

facilitate comparison of microarchitectural fault
injections in the hardware components of an x86
microprocessor.

� Gem5 supports several ISAs; ARM and x86 are among
the best supported and thus a comparative study of them
can be performed.

� Both MARSS and Gem5 have a fully configurable
model (pipeline depths and widths, structures sizes and
organizations, etc.)

� MARSS models both a high-performance OoO pipeline
and a simple in-order (Atom-like) pipeline; a reliability
assessment study between these two models can be
implemented (this paper focuses on the OoO model to
compare with the corresponding one of Gem5).

An important difference between MARSS and Gem5 is
that they require different development efforts to support
fault injection at the microarchitecture level. Gem5 already
includes all key microarchitecture components which model
hardware arrays on which faults of any duration and severity
can be injected. MARSS, on the other hand, does not contain
important arrays needed for fault injection: data/instruction
arrays of caches at all levels. This dual effort delivers a
framework for comparative studies on important hardware
components such as caches on MARSS. Details about the
modifications of the original versions of the simulators are
described along with the integration of the fault injection
features in Section III.

B. Simulators Configurations
The three different configurations of MARSS and Gem5

on which we performed our experimental study and analysis
(Section IV) are summarized in Table II. MARSS simulates
x86 ISA while the x86 and ARM ISAs of Gem5 have been
used2.

Both MaFIN and GeFIN injectors can be easily modified
for other values of the parameters shown in Table II. Our
main focus in setting the parameters was to keep the sizes
and organizations of the hardware structures the same (or as
close as possible) in the two simulators. Section III describes
the modifications of the simulators and the additional
components we added on them. For any parameters not
shown below the default values of the simulators were used.

TABLE II. SIMULATORS CONFIGURATIONS

Parameter
Simulator/ISA

MARSS/x86 Gem5/x86 Gem5/ARM
Pipeline OoO OoO OoO
Physical
register file

256 int; 256 FP; 16
store; 24 branch 256 int; 128 FP 256 int; 128 FP

Issue Queue
entries 32 32 32

Load/Store
Queue
entries

32 (unified) 16 (load)/
16 (store)

16 (load)/
16 (store)

ROB
entries 64 40 40

Functional
units

2 int ALUs; 2 FP
ALUs; 4 AGUs

6 int ALUs; 2
complex int
ALUs; 4 FP
ALUs, 2 FP

mul/div, 4 SIMD

2 int ALUs; 1
complex int

ALUs; 2 FP &
SIMD

L1
Instruction
Cache

32KB, 64B line,
128 sets, 4-

way,write back

32KB, 64B line,
128 sets, 4-way,

write back

32KB, 64B line,
128 sets, 4-

way,write back

L1 Data
Cache

32KB, 64B line,
128 sets, 4-ways,

write back

32KB, 64B line,
128 sets, 4-ways,

write back

32KB, 64B line,
128 sets, 4-ways,

write back

L2 Cache
1MB, 64B line,

1024 sets, 16-way,
write back

1 MB, 64B line,
1024 sets, 16-

way, write back

1 MB, 64B line,
1024 sets, 16-

way, write back
Branch
Predictor

Tournament
predictor

Tournament
predictor

Tournament
predictor

Branch
Target
Buffer

direct branches
BTB (4-way, 1K
entries), indirect

branches BTB (4-
way, 512 entries)

conditional and
unconditional
branches BTB

(direct-mapped,
2K entries)

conditional and
unconditional
branches BTB

(direct-mapped,
2K entries)

RAS 16 entries 16 entries 16 entries

III. MAFIN AND GEFIN FEATURES AND IMPLEMENTATION
In this section we discuss in detail the fault injection

functionalities of MaFIN and GeFIN tools as well as their
implementation and main modules.

A. Fault Injectors Features
The designs of MaFIN and GeFIN injectors rely on the

same principles and our intention was to extend the original

2 All ISAs that support full system simulation on Gem5 can be also
employed in future versions of the tool.

174

versions of the MARSS and Gem5 simulators in order to
support the same injection capabilities and features. The
following description applies to both MaFIN and GeFIN
injectors.

Fault models

Both MaFIN and GeFIN model exactly the same fault
types on microarchitectural array components: transient,
intermittent and permanent faults as well as their
combinations. These three types of fault models allow a wide
analysis of the effect of different factors that affect
reliability: fabrication defects, environmental conditions,
early-life failures, device degradation and voltage scaling.
Table III describes the three basic single bit fault models.

TABLE III. FAULT MODELS

Fault model Description

transient
a storage element’s bit value is flipped in a clock cycle of

the program execution; the bit position and the clock
cycle can be set arbitrarily (randomly or directed)3

intermittent

a storage element’s bit value is set to ‘0’ or to ‘1’ starting
at a clock cycle and for an arbitrary number of clock

cycles; the bit position, the start time and the duration of
the fault can be set arbitrarily (randomly or directed)

permanent
a storage element’s bit value is permanently set to ‘0’ or
to ‘1’; the bit position can be set arbitrarily (randomly or

directed)

Moreover, both MaFIN and GeFIN support fault
injection experiments for multiple faults in many different
combinations to match both the temporal and the spatial
behavior of faults in hardware structures. Such combinations
can include injection of (a) multiple faults of any type and
any duration in a single structure, (b) multiple faults on
different structures.

Obviously, the type, the multiplicity and the locations of
the faults used in a certain injection campaign depend on the
study that a user of MaFIN and GeFIN wishes to perform. In
this differential study we used only the single bit flip model,
but the tools also support permanent, intermittent and
multibit fault studies.

Fault effect classification

MaFIN and GeFIN injectors classify the outcomes of
each fault injection simulation based on the impact of the
fault on the simulated system. The fault classification is fully
configurable and a user of the injector can modify the classes
of the fault effects by changing the parser of the injection
logging information (see the next subsection for the
operation of the parser and examples of classification
options). In this paper, we present the fault effects
classification using the following six classes. These represent

3 We don’t consider transient faults in combinational logic in this work
because microarchitecture simulators don’t model such logic accurately;
however, their effects would propagate to storage elements and thus can be
also implicitly studied with our tools.

typical classes (and corresponding terminology) used in the
reliability literature.

Masked: fault injection runs in which the fault does not
affect the execution of the application (which is executed to
its end). The result of an injection with a masked fault is
identical to that of a fault-free simulation (both the output of
the application and any exceptions generated during
execution).

Silent Data Corruption (SDC): fault injection runs for
which the final output of the program that is written to an
output file is corrupted (differs from the output of the fault-
free execution) and no other indication of the fault has been
recorded (an abnormal event such as an exception, etc.).

Detected Unrecoverable Error (DUE): includes cases
in which the simulated process completes successfully, but
with indications of errors. The baseline microprocessor
models do not include any error detection or protection
mechanisms and therefore, the only indication of an error is
the raising of ISA exceptions. Typically, reliability reports in
the literature divide DUEs in two sub-categories: false DUE
(the output is correct despite the error indication) and true
DUE (output is corrupted). In our experimental results
section we don’t show these two different DUE sub-classes
but of course the parser of both fault injectors can be
configured to calculate them separately.

Timeout: includes all of the cases that lead to either a
Deadlock or a Livelock. A Deadlock describes the condition
in which the program flow has been trapped (due to the
injected fault) and can’t commit any further instructions. A
Livelock, on the other hand, describes a situation where the
program flow has been redirected and continues the
execution of instructions on random code areas (again due to
the fault). In order to monitor these cases, a configurable
execution timeout limit is used. In our experimental results,
the limit is three times the fault-free execution time of each
benchmark.

Crash: includes any case that results in an unrecoverable
situation and stops the simulated program. Crashes involve
all three levels of the simulation, including a process crash,
where the simulated program was abnormally terminated, a
system crash, where the simulated full-system was unable to
recover (typical cases of kernel panic) as well as a simulator
crash, where the simulator process itself was abnormally
terminated.

Assert: includes all cases where the simulator reached,
due to injected fault, a (high level) condition which was
unable to handle and an assertion was raised stopping the
simulation.

In our experimental results (Section IV) we use the term
vulnerability to refer any abnormal behavior due to a fault,
i.e. the sum of the non-masked classes.

B. Fault Injectors Implementation
The major objectives of the two injectors were:

1) Accuracy of delivered reliability reports. Towards this
objective we run applications/benchmarks to completion
unless a fault is guaranteed masked. This execution to
the end ensures the final program effect of faults is
captured.

175

2) Speed of the fault injections campaigns (applies to
transient faults). Apart from the straightforward
employment of several workstations to run experiments
on, we optimize the injectors so that an injection run is
stopped immediately in cases where: (i) a fault is
injected in an invalid/unused entry of a structure, (ii) a
faulty entry is over-written before ever read. For all
benchmarks and all components these optimizations
lead to 30%-70% speedup of each individual run and
thus very large savings of the injection campaign time.

3) High configurability of the injectors. See all details
about the features of the injectors in the following
paragraphs.

Both the MaFIN and GeFIN injectors are built on three
main modules which form the backbone of any fault
injection campaign run on them. Fig. 1 visualizes the flow of
operation of the two injectors.

In the first step, the Fault Mask Generator module
produces the fault masks that are used during the injection
campaign. This is a one-step process for each combination of
hardware structure and benchmark. The Fault Mask
Generator can produce (by user defined parameters) a
random set of fault masks for any type of fault (transient,
intermittent, permanent) for the entire simulation time of the
benchmark.

A fault mask contains information about: (i) the
processor core where the fault is going to be injected (can be
used in a multicore architecture), (ii) the microarchitecture
structure on which the fault will be injected, (iii) the exact bit
position of the injection, (iv) the exact simulation cycle or
exact instruction on which injection happens (for transient or
intermittent), (v) the type of fault, and finally (vi) the
population of faults (single or multiple). All the generated
fault masks are stored in a “masks repository” from which
the Injection Campaign Controller picks fault masks to
apply.

Figure 1. MaFIN and GeFIN injection frameworks

Provided the “mask repository”, the actual fault injection
campaign can begin. The Injection Campaign Controller
reads the masks from the repository and sends injection
requests to the Injector Dispatcher which is the module that
directly communicates with the MARSS or Gem5 simulator,
respectively. The interface between the Injection Campaign
Controller and the individual Injection Dispatcher contains
the transfer of user defined parameters concerning the
injection to the microarchitectural simulators and the transfer
of the results of the fault injection experiments from the
microarchitectural simulator back to the Injection Campaign
Controller. The last task of the Injection Campaign
Controller is to store the results of the injection in a “logs
repository” which contains all log files for further processing
by the Parser.

The third and last step of the fault injection campaign is
the processing of the injection results and the generation of
the fault effects classification. The processing of the fault
injection results is performed by the use of a Parser. The
Parser is an easily reconfigurable script that classifies the
faults into the six final categories described in previous sub-
section: Masked, SDC, DUE, Timeout, Crash, and Assert.
The classification results can be easily modified through
small changes of the Parser code according to the user’s
needs as the input of Parser for an alternative classification is
not changed and is already stored into the log files repository
(no new fault injection campaign is required). For example, a
more course-grain classification can be used just separating
“Masked” from “Non-Masked” behavior. On the other hand,
a more fine-grain classification may break down the DUE
category in false-DUE and true-DUE (a usual separation in
the reliability literature). Moreover, the user could move the
results from the Simulator Crash subcategory to the Assert
category to group together faulty behaviors attributed to
simulator malfunctions due to the injected faults.

C. Extensions to MARSS and Gem5
�icroarchitectural simulators are developed for

performance measurements of the simulated model and their
main objective is to save simulation time without modeling
details that are not necessary for performance assessments.
As a result, performance simulators may lack certain
functionality necessary to perform accurate fault injection
experiments. For example, the functional and the control
logic components are not implemented in a way that
resembles actual hardware structures. Therefore, injectors
like MaFIN and GeFIN focus on reliability studies in
hardware structures which are modeled as arrays in a
performance simulator and thus the effect of faults on them
can be accurately measured. The injection of transient,
intermittent or permanent fault on a modeled storage bit of a
microarchitectural simulator is largely equivalent to injecting
it on the actual hardware.

Unfortunately, some simulators do not model data arrays
of caches (and other structures such as queues, buffers);
MARSS is such a simulator. It models the control
information of cache memories (tags and control bits) but
only keeps the actual data and instructions at the main
memory model of the simulation. Without the

176

implementation of the actual arrays for the data and the
instructions on caches, fault injection is not feasible. Our
work addresses this issue by implementing the data array
extension on MARSS to be able to compare the x86
reliability studies on both injectors (Gem5 already includes
the caches data arrays). This modification of MARSS
introduced an approximate ~40% throughput degradation
which depends on the memory intensiveness of a program.

The development of MaFIN and GeFIN went through the
following major tasks:
� Identification of existing structures; integration of the

fault injector on these structures.
� Modification of structures that lack of accuracy to

perform a fault injection study (missing bit arrays);
integration of the fault injector on these structures.

� Enhancement of the x86 model of MARSS with new
components (performance related) to fully resemble a
modern design; integration of the fault injector on these
new structures.

Table IV summarizes all enhancements made on MARSS
and Gem5 for accurate measurements of the reliability of the
hardware structures of x86 and ARM-based architectures.

TABLE IV. MAFIN AND GEFIN ENHANCEMENTS

Components
Simulator/ISA

MaFIN-x86 GeFIN-x86 and GeFIN-ARM

Existing

Load/Store Queue
Issue Queue
Integer Register File
FP Register File
Caches – Tag
Data TLB – Valid, Tag
Instr. TLB – Valid, Tag
Branch Target Buffer –
Uncond. indirect branches

Load/Store Queue
Issue Queue
Integer Register File
FP Register File
Caches – Tag
Caches – Data
Data TLB – Valid, Tag
Instr. TLB – Valid, Tag
Branch Target Buffer-
Uncond./Cond. direct branches

Modified

L1D cache – Data arrays
L1I cache – Instruction arrays
L2 cache – Data arrays
L1I cache – Valid bit
L1D cache – Valid bit
L2 cache – Valid bit
Branch Target Buffer –
Uncond./Cond. direct branches

Accurate reliability modeling of
associative caches structure
(replacement algorithm)

New Prefetcher in L1D cache
Prefetcher in L1I cache

The two fault injectors can perform injections on all the
components of Table IV. Both MaFIN and GeFIN already
cover very important hardware structures consisting of large
arrays of storage bits, which are also the most vulnerable
components of modern processors. All these array structures
are customizable rendering MaFIN and GeFIN very useful
for several different reliability estimation studies.

IV. EXPERIMENTAL RESULTS
Although the number of studies that can be performed on

MaFIN and GeFIN is very large4 and can be the subject of
future research, we present a comprehensive set of
experimental results in this paper to identify and analyze
consistent reliability trends between microarchitectures and
workloads and also to explain reported divergences between
the two tools.

In this section we detail the context of the experimental
analysis, present the results and analyze/explain them. We
first discuss the fault sampling method we used and the
benchmarks employed in the study. We then provide the
faulty behavior characterization results (using the classes
described in Section III) and analyze them in detail to
highlight common trends as well as to explain and root cause
significant differences.

A. Fault Sampling
Any fault sampling approach can be applied in the

injectors. In our experimental results we used statistical fault
sampling as described in [20]. Given: (a) the number of bits
of an array-based hardware structure, (b) the number of
execution cycles of a benchmark, and (c) the required
confidence and error margin of the sampling the formula of
[20] delivers the number of required fault injection runs.

The major parameters in the fault sampling described in
[20] are the confidence and the error margin. For a 99%
confidence and a 3% error margin, for all the hardware
structures and all benchmarks of our study the number of
required fault injections is 1843. We round this number up
by injecting 2000 faults in each structure/benchmark
combination (this number of injections correspond to 2.88%
error margin). The accuracy of any statistical fault injection
campaign can be traded off with the time required to perform
the campaign; this is the case also in our injectors. For
example, if the error margin of the sampling is increased
from 3% to 5% then the number of required injections per
hardware structure is only 663 instead of 1843 which leads to
significantly smaller (by approximately 3 times) campaign
execution time.

B. Benchmarks
We utilize MaFIN and GeFIN frameworks to classify the

behavior of 10 benchmarks in the presence of transient
faults. All benchmarks are simulated to their completion
(unless “safe” early-stop is decided at run time – see
previous section) to guarantee full accuracy of the reported
classification.

The 10 benchmarks we use are from the MiBench suite
[15] (djpeg, search, smooth, edge, corner, sha, fft, qsort,
cjpeg, caes). MiBench benchmarks suite consists of
programs from different application domains, and are very
similar in their instruction mixes and instruction throughput
with SPEC benchmarks [15]. Their shorter execution times
compared to SPEC (standard benchmarks for performance

4 Studies per hardware structure; per benchmark; per simulator; for
different sizes and organizations of the hardware structures; for different
input data sets of the benchmarks, etc.

177

studies) make them very suitable for fault injection and
reliability studies and for this reason they have been
extensively used in such a context [14], [50], [52], [53].
Although we report results in this paper for the MiBench
benchmarks, both MaFIN and GeFIN can be used in fault
injection campaigns using SPEC2006 benchmarks (or any
other benchmark). Both simulators support check-pointing
and thus targeted runs on SimPoint samples [39] of the
SPEC2006 benchmarks can be executed.

C. Reliability Characterization Results Analysis
In this subsection, we report the results of an extensive

characterization study on hardware components on MaFIN
and GeFIN. In particular, the results show reliability
characterization of the following hardware structures (faults
can be injected in all structures listed in Table IV; we
selected to report on the following ones because of their
importance in the CPU and their large sizes compared to
other components):
� Integer physical register file (Fig. 2)
� L1D cache (Fig. 3)
� L1I cache (Fig. 4)
� L2 cache (Fig. 5)
� Load/Store Queue (Fig. 6)

For each component the sizes and configurations are the
ones shown on Table II. As discussed previously, we inject
2000 transient faults randomly in each structure and for each
benchmark. In total 300,000 fault injections have been
performed (5 components x 10 benchmarks x 3 tools x 2000
injections = 300,000 injections).

Roughly, the complete fault injection campaigns reported
in the paper took approximately 1 month: 2000 injections
performed in 5 different hardware structures, for 10 different
benchmarks, in 3 different setups – MaFIN-x86, GeFIN-x86
and GeFIN-ARM; we employed 10 different workstations
providing about 100 threads that ran injections in parallel.

Each graph shows for a particular component the faulty
behavior classification (using the classes in Section III) for
each of the 10 benchmarks and on the average. For each
benchmark the graphs show three stacked bars (each bar
corresponds to a fault injection campaign): one for the
execution on the MaFIN-x86 injector (M-x86 bar), one on
the GeFIN-x86 configuration (G-x86) and one on the
GeFIN-ARM configuration (G-ARM). For the average case,
the same three bars are shown at the rightmost end of each
diagram.

The average vulnerability5 reports at the rightmost bars
of each diagram reveal the following:
� The largest average case vulnerability differences are

observed between the two x86-based configurations
(MaFIN-x86 and GeFIN-x86): 7.20 percentile points in
the L1D cache, 3.61 percentile points in the L1I cache,
and 1.36 percentile points in the L2 cache.

5 As mentioned earlier we use the term vulnerability to refer to the sum of
all non-masked behaviors. AVF can be also used in our context: the
probability that a transient fault in a structure’s bit leads to any erroneous
behavior (i.e. not masked).

� On the contrary, the vulnerability differences between
the two ISAs (x86 and ARM) on GeFIN are much
smaller in all components. In the L1D and L2 cache the
differences between GeFIN-x86 and GeFIN-ARM
configurations are only 0.55 and 0.13 percentile points
respectively, while in the L1I cache the average
difference is 2.03 percentile points (x86 being more
vulnerable than ARM).

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

Integer Physical Register File

Masked SDC DUE Timeout Crash Assert

Figure 2. Faulty behavior classification for the integer physical register
file.

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

L1D cache

Masked SDC DUE Timeout Crash Assert

Figure 3. Faulty behavior classification for L1D cache (data arrays).

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

L1I cache

Masked SDC DUE Timeout Crash Assert

Figure 4. Faulty behavior classification for L1I cache (instruction arrays).

178

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%
M

-x
86

G
-x

86
G

-A
R

M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

L2 cache

Masked SDC DUE Timeout Crash Assert
Figure 5. Faulty behavior classification for L2 cache (data arrays).

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

M
-x

86
G

-x
86

G
-A

R
M

djpeg search smooth edge corner sha fft qsort cjpeg caes avg

LSQ

Masked SDC DUE Timeout Crash Assert
Figure 6. Faulty behavior classification for Load/Store Queue (data field).

We analyze in more detail the results of the classification
shown in the diagrams both on a per-component basis to
identify consistent trends and on a per-benchmark basis to
interpret diverging behaviors. We discuss potential
(microarchitecture or ISA related) reasons that explain the
differences between the two tools providing execution
statistics for the benchmarks of our study.

Integer Register File and LSQ

The Integer Register File (Fig. 2) and the LSQ (Fig. 6)
are the least vulnerable components in all cases (benchmark,
ISA and microarchitecture configuration). The vulnerability
(sum of all non-masked classes) of the Register File and the
LSQ for each individual benchmark and on the average
across all benchmarks is almost always less than 3% for all
three configurations. This is a consistent behavior that is also
compatible to previous literature reports. The two
components hold data of relatively short lifetime which
explains the small vulnerability to transient faults.
� Remark 1 – There is a consistent small difference of

~1 percentile point between the MaFIN and GeFIN
report for the LSQ vulnerability (LSQ in MaFIN is
always slightly more vulnerable than the GeFIN’s
LSQ). The reason for this slight difference is that
MARSS implements a unified queue for loads and

stores while Gem5 implements different queues and
only the store queue holds data. Therefore, our
injections on GeFIN’s LSQ affect only stores while in
MaFIN both queues are affected by faults.

� Remark 2 – Both the Integer Register File and the
LSQ have mixed faulty behaviors in the non-masked
classes. Faults in both components in most cases can
lead to any of the five non-masked faulty behaviors
(SDC, DUE, Timeout, Crash, and Assert). The exact
numbers in each class of course depend on the
benchmark.

First-Level Caches (L1D, L1I)

The first-level cache memories (L1D cache in Fig. 3 and
L1I cache in Fig. 4) are the most vulnerable components in
all cases (benchmark, ISA and microarchitecture
configuration).

The L1D cache vulnerability varies significantly among
benchmarks and between ISAs and microarchitectures. Its
vulnerability can be as low as 2.5% (search benchmark in
the MaFIN-x86 setup) and as high 47.3% (cjpeg benchmark
in the GeFIN-x86 setup). On average across benchmarks the
L1D cache vulnerability is less than 15% in MaFIN-x86
while in both ISAs of GeFIN (GeFIN-x86 and GeFIN-ARM)
it is more than 22%. The general trend in most (but not all)
individual benchmarks) is that MaFIN reports a less
vulnerable L1D cache than GeFIN.
� Remark 3 – The significant ~7 percentile point

difference between MaFIN and GeFIN vulnerability
reports on the L1D cache can be attributed to two main
differences between the two microarchitectural
simulators:
The MARSS CPU model uses more aggressive
approaches than Gem5 (and other simulators) for loads
issue. Load instructions are issued as soon as possible
and before aliasing with earlier stores is determined.
For this reason, the number of executed loads in
MaFIN is significantly larger than in GeFIN although
(for each benchmark) the number of committed loads is
very close to each other. This significant difference
leads to extra masking of the faults in L1D on MaFIN
and along with the previous point consistently explains
the L1D cache vulnerability differences between the
two tools. For example, in fft, cjpeg, caes (the
benchmarks with largest difference in L1D between
MaFIN-x86 and GeFIN-x86) MaFIN issues 2.6x, 4.7x,
2.0x more loads than GeFIN; this confirms the general
trend.
MARSS employs the QEMU hypervisor for system
functions as well as for unimplemented instructions.
When QEMU is invoked, the cache of the
microarchitecture is not accessed (memory accesses go
to the main memory) – for this reason faults in the L1D
cache are masked and do not affect the operation when
QEMU runs (this is not the case in the L1I cache; see
below). Gem5 on the other hand handles the complete

179

system operation internally and does not employ a
hypervisor so this type of masking does not happen.

 However, in qsort and smooth the expected higher
masking in MaFIN is not observed. For qsort GeFIN-
x86 has smaller L1D read hit rate than in MaFIN-x86
(by 0.64x), while GeFIN-x86 has higher L1D write hit
rate than MaFIN-x86 (1.91x in qsort and 1.57x in
smooth); this means that in MaFIN-x86 for these
benchmarks faults in L1D are less likely to be over-
written and thus MaFIN-x86 is more vulnerable than
GeFIN-x86.

� Remark 4 – The prevailing faulty behavior in the L1D
cache is the SDC class (intuitively expected) which
leads to corrupted benchmark final output. In all
benchmarks and the average case the SDC class is from
3x to 5x larger than the sum of all four other non-
masked classes.

� Remark 5 – The most remarkable differences between
the different ISAs (GeFIN-x86 and GeFIN-ARM) for
the L1D cache are observed in fft, qsort and cjpeg. The
ARM model has 2x more store instructions than that of
x86 in the fft benchmark, while in cjpeg the L1D write
misses of the ARM model are 6x more than x86 model,
which naturally leads to more vulnerability for the x86
model for these two benchmarks. The GeFIN-x86
model in qsort follows a completely different memory
access pattern which reports significantly more L1D
replacements (4x) than GeFIN-ARM. This indicates
that the ARM model is more vulnerable for qsort than
the x86 model.

The L1I cache vulnerability, on the other hand, is less
variable across benchmarks than the L1D cache but still it
can be as low as 5.3% (smooth benchmark in the MaFIN-x86
setup) and as high 34.5% (caes benchmark in the MaFIN-
x86 setup). On average across benchmarks, L1I cache
vulnerability is around 19% in MaFIN-x86 while in both
ISAs of GeFIN (GeFIN-x86 and GeFIN-ARM) it is more
than 14%. Here, the general trend in most (but not all)
individual benchmarks is that MaFIN reports a more
vulnerable L1I cache than GeFIN (the opposite trend to L1D
reports).
� Remark 6 – Unlike L1D, the QEMU hypervisor does

not affect the behavior of L1I cache. QEMU may be
invoked during decode stage only, which is after
fetching (and accessing of L1I). This means that any
faults residing in the L1I cache can be propagated
without disturbance by the hypervisor.

On the other hand, MARSS and Gem5 have differences
in the implementation of their front-end that can lead to
different prediction accuracy. Both simulators
implement a Tournament predictor, consisting of a
local and a global predictor. A meta-predictor takes the
final decision based on the accuracy of the local and
global ones. The most noticeable difference between
MARSS and Gem5 is that the final prediction is bound
to the branch address in the case of MARSS and to the
global branch history in the case of Gem5. Branch

address is not taken into account at all on the decision
of Gem5 global predictor as well. This prediction
scheme difference leads to different memory access
patterns and L1I cache state; this can explain the small
differences in the masked category between MaFIN-
x86 and GeFIN-x86. Unfortunately, there is no
consistent trend for all benchmarks. For instance, in the
edge, corner and sha benchmarks MaFIN-x86 has by
0.83x, 0.82x, 0.68x less mispredictions than GeFIN-
x86 which implies that GeFIN-x86 brings more L1I
blocks from lower levels, increasing the probability to
overwrite faults.

� Remark 7 – The fft, qsort, caes are the benchmarks
with difference more than 5 percentile points between
GeFIN-x86 and GeFIN-ARM. For these benchmarks
the replacements of L1I blocks in ARM model are
4.2x, 2.0x, and 7.2x more than in the x86; this can
explain a more vulnerable x86 behavior than the ARM
model.

� Remark 8 – Fig. 4 shows that SDCs in the L1I cache
are much less likely to be observed than in the L1D
cache. The prevailing non-masked behavior in L1I
cache in the MaFIN injector is the Assert class, while in
the GeFIN injector the Crash class prevails. This
difference is because MARSS simulator includes a
significantly larger number of assertion checking points
in its code which are raised during faulty executions of
the benchmarks and stop the simulation abnormally. On
the other hand, assertion checking in Gem5 is compact
and less frequent and for this reason injected faults
eventually lead to crashes.6

Second-Level Cache (L2)

The L2 cache memory vulnerability (Fig. 5) is in all
cases (benchmark, ISA and microarchitecture configuration)
a few percentile points higher than the Register File and LSQ
and significantly lower than both first-level caches. On
average, it ranges between 6% and 7% for the three ISA and
microarchitecture combinations.

The difference in the L2 cache vulnerability between
MaFIN and GeFIN is only about 1 percentile point which
shows a consistent behavior between the two tools.
� Remark 9 – Since L2 is unified the vulnerability

reports show a balance between SDCs and other
abnormal classes (Crashes etc.).

� Remark 10 – Vulnerability differences larger than 5
percentile points are observed in cjpeg and caes
benchmarks between MaFIN-x86 and GeFIN-x86 for
the L2 cache. In cjpeg GeFIN-x86 has 1.2x more L2
write misses than MaFIN-x86, while in caes GeFIN-
x86 has 1.54x more write hits than MaFIN-x86
increasing the probability that a fault is overwritten.

6 We discuss this point here for the L1I cache vulnerability but it is also
observed for the L1D cache in the non-SDC classes which include
significantly more Assertions in MaFIN than Crashes (the case in GeFIN).

180

� Remark 11 – Concerning the ISA differences between
GeFIN-x86 and GeFIN-ARM, djpeg is the only
benchmark with difference larger than 5 percentile
points. In this case, the x86 model has 0.5x less L2 read
hits and 6.8x more L2 write misses than the ARM
model, making this benchmark less vulnerable for the
x86 architecture.

V. RELATED WORK
Previous work on microarchitecture-level fault injection

includes papers that focus on the tools themselves as a stand-
alone method for reliability assessment. A microarchitecture-
level injection tool built on M5 simulator [4] for Alpha ISA
only is briefly described in [48]. The injector was built on a
simple in-order microarchitecture and reliability studies of
complex out-of-order x86 or ARM microprocessors are not
supported. An injection tool based on Gem5 and the Alpha
ISA is described in [32]; the tool only injects transient faults
in architectural registers. Very preliminary results of a
MARSS-based (MaFIN-like) microarchitecture level
injection are provided in [12]. Also, [11] [14] use PTLsim
for fault injections on very few hardware structures. Unlike
previous approaches our differential setup covers both state-
of-the-art simulators (MARSS and Gem5), both x86 and
ARM architectures, and provides fault injections capabilities
of any fault type in all actual hardware structures of complex
out-of-order microarchitectures.

Other approaches combine performance simulators with
lower-level simulators to improve reliability assessments
accuracy. The approach in [22] presents a combination of
GEMS and Simics simulators with Cadence NC-Verilog
gate-level simulator. For logic components it delivers a more
accurate estimation at the expense of long simulation times.
In [26] a fault injection method at the RTL and gate-level is
described for the control blocks of an Alpha microprocessor.

Microarchitectural simulators have been also used for
injections only at architectural visible points (the
architectural registers) to measure the effectiveness of error
protection techniques. In [35] the ASIM functional simulator
is used and faults are only injected at the registers.

Other approaches are even lower level and work at the
RTL, on FPGA realizations of a microarchitecture or on
hardware emulators. The experimental study of [37] injects
faults in a DLX processor FPGA realization and an ASIC
realization of an Alpha processor. The framework described
in [1] uses an FPGA-based system for the reliability
characterization of a full system stack. In [34], an FPGA-
based reliability analysis framework is described. In [45] and
[46] an RTL model of an Alpha processor is developed and
used for fault injection experiments. In [19] faults are
injected in an RTL model of picoJava-II processor. In [36] a
hardware emulation platform is used for injections at the
latches of a microarchitecture. An interesting recent study [8]
quantitatively evaluates the impact of flip-flop soft errors
using several injection approaches at different levels of
abstraction and discussed the sources of inaccuracies when
higher levels of abstraction are employed in fault injection
setups.

VI. CONCLUSIONS
We have presented a detailed vulnerability analysis of the

hardware structures of out-of-order x86 and ARM models
using a differential microarchitecture-level framework which
employs two microarchitecture-level fault injectors (MaFIN
and GeFIN – built on MARSS and Gem5). The fully
parameterized tools support high-throughput, comprehensive
injection campaigns for single and multiple transient,
intermittent and permanent faults on one or more of the
major hardware structures of the microarchitecture. The
injectors can be used for differential studies on the reliability
of hardware components running any workload, and support
early design decisions for fault protection mechanisms.

We presented detailed characterization results for five
important hardware structures employing ten benchmarks
from the MiBench suite which is extensively used in
reliability studies. We discussed the common trends in the
reliability report and we explained diverging behaviors by
provided insights about the internal implementations of the
simulators.

In the average case, the reported differences between the
two x86 injectors (MaFIN-x86 and GeFIN-x86) are larger
than between the two ISAs implemented in Gem5 (GeFIN-
x86 and GeFIN-ARM). The main sources of the differences
are the different front-end structures of the simulators, the
more aggressive memory requests approach that MARSS
follows compared to Gem5 and also the use of the QEMU
hypervisor in MARSS: the largest differences due to these
reasons are observed in the cache memories. For particular
benchmarks cases, significant differences are observed both
between the two tools and also between the two ISAs and we
have provided potential explanations for these differences
based on the fundamental implementation differences of the
simulators as well as runtime statistics of the benchmarks.

ACKNOWLEDGMENT
This work is supported by the 7th Framework Program of

the European Union through the CLERECO Project, under
Grant Agreement 611404, and also by EU and Greek
national funds under the Thales/HOLISTIC project and the
DIaSTEMA project.

REFERENCES
[1] R.Balasubramanian, K.Sankaralingam, “Understanding the

impact of gate-level physical reliability effects on whole
program execution”, HPCA 2014.

[2] R.C.Baumann, “Soft errors in advanced computer systems”,
IEEE Design & Test of Comp., vol. 22, no. 3, pp. 258-266,
May/June 2005.

[3] N.Binkert et al., “The Gem5 simulator”, ACM SIGARCH
Computer Arch. News, vol. 39, no. 2, May 2011.

[4] N.L.Binkert et al., “The M5 simulator: modeling networked
systems, IEEE Micro, vol. 26, no. 4, pp. 52-60, July/August
2006.

[5] A.Biswas et al., “Computing architectural vulnerability
factors for address-based structures”, ISCA 2005.

[6] F.A.Bower, D.Hower, M.Yilmaz, D.Sorin, S.Osev, “Applying
architectural vulnerability analysis to hard faults in the
microprocessor”, SIGMETRICS 2006.

181

[7] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu,
“Improving cache lifetime reliability at ultra-low voltages”,
MICRO 2009.

[8] H.Cho, S.Mirkhani, C.-Y.Cher, J.Abraham, S.Mitra,
“Quantitative evaluation of soft error injection techniques for
robust systemdDesign”, DAC 2013.

[9] C.Constantinescu, “Trends and challenges in VLSI circuit
reliability”, IEEE Micro, vol. 23, pp. 14-19, July 2003.

[10] L.Duan, B.Li, L.Peng, “Versatile prediction and fast
estimation of architectural vulnerability factor from processor
performance metrics”, HPCA 2009.

[11] S.Feng, S.Gupta, A.Ansari, S.Mahlke, “Shoestring:
probabilistic soft error reliability on the cheap”, ASPLOS
2010.

[12] N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile
architecture-level fault injection framework for reliability
evaluation”, IOLTS 2014.

[13] X.Fu, T.Li, J.Fortes, “Sim-SODA: A unified framework for
architectural level software reliability analysis”, Workshop on
Modeling, Benchmarking and Simulation, 2006.

[14] N.George, C.Elks, B.Johnson, J.Lach, “Transient fault models
and AVF estimation revisited”, DSN 2010.

[15] M.R.Guthaus et al., “MiBench: A free, commercially
representative embedded benchmark suite”, IWWC 2001.

[16] A.Gutierrez et al., “Sources of error in full-system
simulation”, ISPASS 2014.

[17] L.Huang, Q.Xu, “AgeSim: A simulation framework for
evaluating the lifetime reliability of processor-based SoCs”,
DATE 2010.

[18] Imperas. OVPsim, http://ovpworld.org [Online].
[19] S.Kim, K.Somani, “Soft error sensitivity characterization for

microprocessor dependability enhancement strategy”, DSN
2002.

[20] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical
fault injection: Quantified error and confidence”, DATE
2009.

[21] M.-L.Li et al., “Understanding the propagation of hard errors
to software and implications for resilient system design”,
ASPLOS 2008.

[22] M.-L.Li, P.Ramachandran, U.R.Karpuzcu, S.K.S.Hari,
S.V.Adve, “Accurate microarchitecture-level fault modeling
for studying hardware faults”, HPCA 2009.

[23] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “Architecture-level soft
error analysis: Examining the limits of common
assumptions”, DSN 2007.

[24] Y.Luo et al., “Characterizing application memory error
vulnerability to optimize datacenter cost via heterogeneous-
reliability memory”, DSN 2014.

[25] P.S.Magnusson et al., “Simics: a full system simulation
platform”, IEEE Computer, vol. 35, no. 2, pp. 50-58,
February 2002.

[26] M.Maniatakos, N.Karimi, C.Tirumurti, A.Jas, Y.Makris,
“Instruction-level impact analysis of low-level faults in a
modern microprocessor controller”, IEEE Transactions on
Computers, vol. 60, no. 9, pp. 1260-1273, Sept. 2011.

[27] M.K.Martin et al., “Multifacet's general execution-driven
multiprocessor simulator (GEMS) toolset”, ACM SIGARCH
Computer Arch. News, vol. 33, no. 4, November 2005.

[28] S.S.Mukherjee, C.T.Weaver, J.Emer, S.K.Reinhardt,
T.Austin, “A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor, MICRO 2003.

[29] A.A.Nair, S.Eyerman, L.Eeckhout, L.K.John, “A first-order
mechanistic model for architectural vulnerability factor”,
ISCA 2012.

[30] S.Nassif, N.Mehta, Y.Cao, “A resilience roadmap”, DATE
2010.

[31] S.Pan, Y.Hu, X.Li “IVF: Characterizing the vulnerability of
microprocessor structures to intermittent faults”, IEEE
Transactions on VLSI Systems, vol. 20, no. 5, pp. 777-790,
May 2012.

[32] K.Parasyris, G.Tziantzoulis, C.Antonopoulos, N.Bellas,
“GemFI: A fault injection tool for studying the behavior of
applications on unreliable substrates”, DSN 2014.

[33] A.Patel, F.Afram, S.Chen, K.Ghose, “MARSS: A full system
simulator for multicore x86 CPUs”, DAC 2011.

[34] A.Pellegrini, K.Constantinides, D.Zhang, S.Sudhakar,
V.Bertacco, T.Austin, “CrashTest: A fast high-fidelity FPGA-
based resiliency analysis framework”, ICCD 2008.

[35] P.Racunas, K.Constantinides, S.Manne, S.S.Mukherjee,
“Perturbation-based fault screening”, HPCA 2007.

[36] P.Ramachandrant, P.Kudvatt, J.Kellingtont, J.Schumannt,
P.Sanda, “Statistical fault injection”, DSN 2008.

[37] G.Saggese, N.J.Wang, Z.Kalbarczyk, S.J.Patel, R.Iyer, "An
experimental study of soft errors in microprocessors" IEEE
Micro, vol. 25, no. 6, pp. 30-39, Nov-Dec 2005.

[38] A.Savino et al., “Statistical reliability estimation of
microprocessor-based systems”, IEEE Transactions on
Computers, 2012.

[39] T.Sherwood, E.Perelman, G.Hamerly, B.Calder,
“Automatically characterizing large scale program behavior”,
ASPLOS 2002.

[40] V.Sridharan, D.R.Kaeli, “Eliminating microarchitectural
dependency from architectural vulnerability”, IEEE
International Symposium on High Performance Computer
Architecture (HPCA-15), 2009.

[41] V.Sridharan, D.R.Kaeli, “Using hardware vulnerability
factors to enhance AVF analysis”, ISCA 2010.

[42] J.Stevens et al., “An integrated simulation infrastructure for
the entire memory hierarchy: cache, DRAM, non-volatile
memory, and disk”, Intel Technology Journal, vol. 17, no. 1,
2013.

[43] J.Suh, M.Annavaram, M.Dubois, “MACAU: A Markov
model for reliability evaluations of caches under single-bit
and multi-bit upsets”, HPCA 2012.

[44] K.R.Walcott, G.Humphreys, S.Gurumurthi, “Dynamic
prediction of architectural vulnerability from
microarchitectural state”, ISCA 2007.

[45] N.J.Wang, A.Mahesri, S.J.Patel, “Examining ACE analysis
reliability estimates using fault injection”, ISCA 2007.

[46] N.J.Wang, J.Quek, T.M.Rafacz, S.J.Patel, “Characterizing the
effects of transient faults on a high-performance processor
pipeline”, DSN 2004.

[47] T.F.Wenisch et al., “SimFlex: Statistical sampling of
computer system simulation”, IEEE Micro, vol. 26, no. 4, pp.
18-31, 2006.

[48] G.Yalcin, O.S.Unsal, A.Cristal, M.Valero, “FIMSIM: A fault
injection infrastructure for microarchitectural simulators”,
ICCD 2011.

[49] M.T.Yourst, “PTLsim: A cycle accurate full system x86-64
microarchitectural simulator”, ISPASS 2007.

[50] A.A.Nair, L.K.John, L.Eeckhout, “AVF stressmark: Towards
an automated methodology for bounding the worst-case
vulnerability to soft errors”, MICRO 2010.

[51] G.-H.Asadi, V.Sridharan, M.Tahoori, D.Kaeli, “Balancing
performance and reliability in the memory hierarchy”,
ISPASS 2005.

[52] Z.Zhao, D.Lee, A.Gerstlauer, L.K.John, “Host-compiled
reliability modeling for fast estimation of architectural
vulnerabilities”, SELSE 2015.

[53] D.S.Khudia, S.Mahlke, “Harnessing soft computations for
low budget fault tolerance”, MICRO 2014.

182

