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Abstract²Forthcoming technologies hold the promise of a 
significant increase in integration density, performance and 
functionality. However, a dramatic change LQ� PLFURSURFHVVRU¶V�
reliability is also expected. Developing mechanisms for early and 
accurate reliability estimation will save significant design effort, 
UHVRXUFHV�DQG�FRQVHTXHQWO\�ZLOO�SRVLWLYHO\�LPSDFW�SURGXFW¶V�WLPH-
to-market (TTM). In this paper, we propose a versatile 
architecture-level fault injection framework, built on top of a 
state-of-the-art x86 microprocessor simulator, for thorough and 
fast characterization of a wide range of hardware components 
with respect to various fault models.  

Keywords—reliability evaluation, architectural fault injection 

I. INTRODUCTION 
Semiconductor technology evolution has continuously 
provided more transistors for roughly constant power and cost 
per chip. Computer architects have exploited this growing 
transistor budget to develop sophisticated techniques that boost 
performance. However, technology scaling trends lead to 
increasingly unreliable microprocessor products [36]. Thus, 
measuring microprocessor reliability and providing means to 
guarantee correct operation is a critical challenge for the 
forthcoming technologies. 

Accurate identification of the vulnerabilities of a 
microprocessor product, early in design time, assists designers 
to carefully plan for reliability enhancements with low cost and 
high power efficiency. On the contrary, inaccurate reliability 
estimation often results on over-designed microprocessors and 
negatively impacts time-to-market (TTM) and product costs. 
To put this in perspective, Table 1 shows the additional amount 
of logic required to protect SRAM arrays, such as cache 
memories, from single and multi-bit hardware faults; different 
protection techniques impose significantly different overheads. 
Thus, computer architects require tools for fast and accurate 
assessment of a coPSRQHQW¶V�reliability, so that they can make 
high level architectural trade-offs early in the design process 
without resorting to worst-case and guard-banding approaches. 

Techniques Detect (Protect) Area Overhead 
Parity 1/64 bits (none) 1.6% 

SEC-DED 2/64 bits (1/64 bits) 12.5% 
DEC-TED 3/64 bits (2/64 bits) 23.4% 

Table 1: Area overhead of SRAM detection and correction 
techniques (X/Y means that a technique can detect and 

protect X bits for every Y bits) [21]. 

Modeling and estimating the reliability of microprocessor 
components can be achieved either through analytical methods 
or through fault injection experiments. Table 2 presents a 
qualitative comparison between four wide-spread techniques 
for early reliability estimation. The comparison is done, in 
terms of simulation time (i.e. the time needed to characterize a 

microprocessor component), fault model accuracy (i.e. how 
representative is the fault model) and reliability estimation 
accuracy (i.e. the error margin of the final estimation). Fault 
injection experiments are either based on an RT-level or an 
architecture-level simulator. While RTL fault injections more 
accurately capture lower level fault model, the excessively long 
simulation time of these schemes prevents detailed evaluation 
of components with statistically safe numbers of injection runs. 
On the contrary, architecture-level fault injections are very fast 
and allow the execution of complex workloads for long 
simulation intervals. Fault injection is an experimental 
reliability evaluation approach that provides sufficient accuracy 
and is applicable early in the design time where RTL netlist is 
not available. A recent study [6] compares the results of fault 
injection in the flip-flop level (on FPGAs) and the architecture-
level, showing significant difference between the two. 

Analytical methods, such as ACE (Architectural Correct 
Execution) analysis and probabilistic models, utilize a high-
level performance model, which is available early in the design 
cycle, coupled with low level information about processor¶V 
reliability to provide early reliability estimation. However, 
analytical approaches provide a conservative lower bound 
regarding the reliability of a microprocessor [19] [42].  

 RTL 
injection 
[42] [23] 

Arch. 
injection 

[9] [41] [30] 

ACE 
analysis 
[26] [27] 

Probabilistic 
models 

[20] [38] [39] 
Simulation 

Time High Medium Low None 

Fault Model 
Accuracy High Medium None None 

Estimation 
Accuracy High High Medium Medium 

Table 2:  Early reliability estimation methods: A qualitative 
comparison. 

In this paper, we propose a comprehensive architecture-
level fault injection framework for early reliability estimation 
of x86 microprocessors. The proposed framework: 
x Is built on top of an x86 microprocessor model, simulated 

with MARSSx86 full-system simulator. 
x Provides realistic reliability estimation for storage 

elements, since the microprocessor model is enhanced 
with the data arrays of cache hierarchy (not realized in the 
original model). 

x Models transient, intermittent, and permanent faults as 
well as multi-bit faults of these models. 

x Exploits the full system capabilities of a cycle-accurate 
simulator (MARSSx86), in conjunction with a functional 
machine emulator (QEMU environment), to completely 
execute a workload and to model fault propagation till the 
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higher level of a system stack, such as the operating 
system- and the application-level. 

II. ARCHITECTURE-LEVEL FRAMEWORK 
In this section, the proposed architecture-level fault injection 
framework for early reliability estimation is presented. 

A. Simulator 
Our infrastructure runs on top of MARSSx86 architectural 

simulator [31] which is probably the most comprehensive 
publicly available x86 simulation framework today. The x86 
functional model of MARSSx86 is more accurate than other 
publicly available simulators and its memory system better 
models real systems [37].  

MARSSx86 is widely used for performance measurements  
[4] [24] [37]. MARSSx86 utilizes PTLsim [44] to simulate the 
internal details of an x86 microprocessor model. PTLsim has 
been used for reliability measurements [8] [9] [11], as well as 
silicon validation [10]. MARSSx86 is a full system, cycle-
accurate simulator capable of simulating a multicore processor 
with a detailed implementation of the front-end and the back-
end pipeline stages of a modern x86-64 architecture. In 
addition, MARSSx86 simulates the cache hierarchy, which we 
extend with the data arrays (to allow realistic fault injections at 
all different cache levels L1, L2, L3), and implements several 
cache coherency protocols. To provide full system capabilities 
MARSSx86 is coupled with QEMU emulator. We selected 
MARSSx86 as the kernel of our framework due to the 
following reasons: (a) it accurately simulates an x86-64 
microprocessor model; and (b) its full system simulation 
operation provides us with the capability to trace the 
propagation of a low-level hardware fault, till its manifestation 
on the operating system- or on application-level output. 

B. Fault Models 
Transient, intermittent and permanent faults are the main 

fault types exploited for reliability evaluation.   
Transient faults (or soft error) [2] [3] [6] [12] [18] [19] 

[20] [26] [27] [30] [32] [33] [34] [35] [38]: Neutron radiation 
from cosmic rays, alpha particles from packaging materials, 
environmental and design variations can flip temporally the 
contents of a storage element, such as memory cells and flip-
flops, causing an error. Moreover, while moving deeper into 
nanometer scale integration levels and near threshold voltage 
operation, the sensitivity of storage elements to such 
phenomena will increase enormously.  

In our fault injection framework, transient faults are 
modeled by flipping the value of a randomly selected bit in a 
randomly selected clock cycle during simulation.  

Intermittent faults [7] [41]: Wear-out behavior, process 
variation, voltage and temperature fluctuations can cause burst 
of frequent faults, called intermittent faults. Intermittent faults 
occur at irregular intervals, on the same location and last for a 
short period of time. 

In our fault injection framework, intermittent faults are 
modeled by setting the state of storage elements to 1 or 0, in a 
randomly selected cycle, for a random period.  

Permanent faults [1] [9] [11] [15] [23]: Electro-migration, 
gate oxides, time dependent dielectric breakdown, thermal 
cycling and negative bias temperature instability are some 
representative sources of permanent faults during system 

operation. In general, permanent faults tend to occur early in 
the processor¶V lifetime due to manufacturing defects that 
escape manufacturing testing or late in its lifetime due to wear-
out effects.  

In our fault injection framework, a storage element that 
suffers from a permanent fault can be set persistently to one 
(stuck-at-1) or to zero (stuck-at-0) for the entire simulation 
time.  

Multi-bit faults [17] [32] [35] [38] [39]: Multi-bit 
transient, intermittent and permanent faults can occur in 
storage cells.  

Multi-bit transient faults are classified into the following 
main categories: (a) Spatial: Occur when a single particle strike 
flips the state of multiple bits. Recent studies [13] [16] [22] 
show that spatial multi-bit faults are usually compact, i.e. faults 
are confined to a contiguous rectangle; and (b) Temporal: 
Result from multiple single-event upset (single, independent 
particle strikes) distributed over time [39].  

Multi-bit permanent and intermittent faults are expected to 
increase in future microprocessors, due to the extreme scaling 
and the operation in reduced voltage levels for power reduction 
purposes [1] [5] [28] [44]. More specifically, the single bit 
failure probability (pfail) of SRAM cells is expected to fall in 
the range between 10-6 and 10-4 [5] [28] [44] which given a 
binomial probability distribution results in very high 
probabilities of multi-bit permanent faults in SRAM arrays.  

In our fault injection framework, multi-bit transient, 
intermittent and permanent faults are modeled based on the 
single-bit fault model with the difference that more than one bit 
is affected. 

C. Fault-Injection Framework 
Our versatile architecture-level fault injection framework 

built on top of MARSSx86 architectural simulator is outlined 
at a high-level in Figure 1.   

 
Figure 1: High-level block diagram of the architecture-level 

fault injection framework. 

A guiding principle that we adopted throughout the 
development of our tool was to minimize the overhead induced 
by the simulator due to the fault injection infrastructure. 
Therefore, the proposed framework is separated into two main 
parts: 
x Offline Part: The overall simulation time remains 

unaffected, since the procedures comprising this part are 
not in the critical path of the framework (i.e. do not affect 
simulation throughput). In particular, the offline part 
consists of the following processes: (a) population of the 

Fault
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Benchmark
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Fault 
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fault mask database from the fault generation tool (based 
on the fault models presented on section II-B); and (b) the 
simulation controller, which controls the fault injection 
experiments. The fault controller configures MARSSx86 
simulator based on the user-defined parameters, launches 
the fault injection run, and collects the experimental 
results necessary to characterize the injected fault. 

x Online Part: This part constitutes the kernel of the 
infrastructure. MARSSx86 simulator is extended with 
two new modules. The statistics handler and the fault 
handler. The former measures a variety of statistics 
relevant to the fault characterization process, while the 
latter controls the actual injection of a fault into the 
simulator based on the input parameter set defined by the 
simulation controller. 

Figure 2 shows details of two key elements of the 
architecture-level fault injection infrastructure, the fault mask 
database and the statistics database. The fault mask 
generation tool produces fault masks with the following 
attributes: (1) processor_id: the targeted processor, (2) 
module_id: the targeted microarchitectural array in a 
processor, (3) module_dimension: the internal structure of the 
microarchitectural array (i.e., ModDIM = MROWS x NCOLUMNS x 
LSIZE, where MROWS and NCOLUMNS are equal to the number of 
rows and columns of an array and LSIZE is the size of an entry. 
For example, ModDIM = 1024 x 4 x 32, means that the 
structure has 1024 rows, 4 columns per row and 32 bits per 
column), (4) fault_type: permanent, intermittent or transient 
fault, (5) fault_dimension: the internal structure of the fault 
(i.e., FDIM = MROWS x NCOLUMNS. For instance, FDIM = 2 x 2, 
means that a 4-bit fault is injected into an array, and is 
deployed as a rectangle), (6) frequency: how often a fault is 
activated (in our simulation environment an intermittent or a 
transient fault is activated only once during the simulation 
interval); and (7) duration:  how many clock cycles the fault is 
active (refers to intermittent faults). Therefore, the fault 
handler parses the attributes of the fault mask and accordingly 
adjusts the simulated microprocessor model. 

 
Figure 2: The properties of the key elements, fault mask 
database and statistics database, of the fault injection 

framework. 
The statistics database is updated from the statistics 

handler module and is comprised of the following fields: (1) 
detection_latency: the time interval elapsed between the 
activation of a fault (clock cycle that the fault is excited for the 
first time) and its detection (clock cycle the fault is observed 

at an architecturally visible output), (2) activations: the access 
frequency of a faulty entry, (3) architecture_state: consists of 
the values of the program counter, and the architectural 
registers; and (4) application_state:  the output of the 
application either on the stdout or on a hard disk file. 

D. Fault Effect Characterization 
The fault classification categories are shown in Figure 3. 

Depending on the system level that a fault is detected, we have 
the following fault classes: 
x Architecture-level: A fault is detected at the architecture-

level when a mismatch in the program counter, and/or the 
architectural registers is detected. The architecture-level 
classes are the following: 

o SDC: a silent data corruption in the architecture 
state of the microprocessor model (i.e. a 
mismatch with the fault-free case). 

o Benign: The architecture state of the fault-
injected run equals to the fault-free execution. 

x Application-level: A corruption in the application-level state 
reveals that the program output has been modified (either 
the stdout or a hard disk file) due to the fault. A fault 
detected at the application-level can be classified into the 
following categories: 

o SDC: a silent data corruption in the application 
output1. 

o DUE (detected unrecoverable error): An 
unexpected exception, assertion, deadlock or 
interrupt occurred. Simulator crashes, either 
during simulation or emulation phase, are also 
clustered into this category. Finally, it should be 
noted that, false and true DUE are also included 
into this category. 

o Benign: The workload executed completely 
without manifesting any mismatch at its output 
compared with the fault-free execution. 

o Hangs: The application does not terminate within 
a reasonable time interval (in our framework the 
limit is set to 3x the fault-free execution time).  

 
Figure 3: Fault characterization classes. 

E. Simulation Timeline 
In this sub-section we present the timeline of a single fault 

injection simulation run (Figure 4). We exploit the checkpoint 
capabilities of MARSSx86 simulator to avoid the initialization 
phase of a workload, bound the indeterminism induced due to 
the interaction with the OS and reach to a ZRUNORDG¶V�SRLQW�RI�
interest. When the workload reaches this point, we switch to 
simulation mode and warm-up the structures of the 

                                                           
1 Architecture-level SDCs may also result in application-level SDCs. 
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microprocessor model for a user-defined amount of cycles 
(warm-up period is configured during the initialization phase 
from the simulation controller). After committing a user-
defined number of k x86 instructions (including user and kernel 
instructions), the statistics collected so far are reset, the fault 
handler is called and the fault injected simulation period is 
launched (similarly to the warm-up period, the simulation 
period is a user-defined parameter defining the n x86 
instructions that will be simulated). 

At the simulation end, the architecture states (of the golden 
and the fault-injected runs) are compared. In case of a 
mismatch an architecture-level SDC is detected, otherwise the 
fault is benign (equal architecture states). For cases where the 
architecture state is faulty, the thread context (i.e., program 
counter, architectural registers, and virtual memory) is 
transferred to the QEMU virtualization environment and 

executed until completion (this is feasible due to the high 
throughput of the QEMU emulator). At ZRUNORDG¶V�
completion, we compare the golden application state (which 
was generated offline) with the fault-injected state to detect 
whether the faulty propagates and corrupts a user-visible 
output (i.e., operating system-, or application-level). If does so, 
then is classified as an application-level SDC fault. If an 
exception, a deadlock, an assertion, an interrupt, or a simulator 
crash occur during the workload execution, then an 
application-level DUE fault is detected. If, the execution 
exceeds the maximum execution interval (3x the fault-free one) 
then a hang, is detected. Finally, if the application finishes 
normally and the output of the faulty execution is clear, the 
fault is classified as masked. The aforementioned process is 
iterated for every injected fault. 

 
Figure 4: Fault injection simulation timeline. 

III. EXPERIMENTAL RESULTS 
We evaluate the time implications induced from the ³online 
part´ (Section II-C) of our fault injection framework. The 
³RIIOLQH� SDUW´� LV� D� RQH-time process and does not affect 
simulation throughput. 

Table 4 reports the very small overhead induced on the 
unmodified model of MARSSx86 simulator (original model) 
from our fault-injection framework (enhanced model), 
measured in millions of x86 instructions committed per second 
(MIPS). The contents of Table 4 are the average values of three 
independent runs. The enhanced model has the following 
functionalities enabled: (a) the cache memories are enhanced 
with the data arrays, (b) the fault injection handler is integrated 
(for demonstration purposes, single, quintuple and tenfold 
transient and permanents faults are injected into L1 data cache 
array. The permanent fault injection constitutes the worst-case 
scenario in terms of simulation overhead, since it is active and 
affecting functionality of the simulator throughout the entire 
simulation interval); and (c) the statistics handler measures 
statistics relevant to the detection latency and the fault 
activations. The fault detection comparison happens at the end 
of the simulation interval (to detect an architecture state 
mismatch) and after the completion of the application run (to 
detect application level errors).  

Data presented on Table 4 are produced from the end-to-
end execution of a memory-intensive application, a bubblesort 
algorithm (sorting 10,000 integer), when 0, 1, 5, and 10 
transient faults are injected into the L1 data cache (Table 3 
shows the configuration of the simulated x86 model). The host 
machine of the experiments was an Intel i7-3970X CPU 

clocked at 3.5 GHz using 32 GBytes of RAM and running 
Ubuntu 12.04.04 LTS operating system. 

Parameter Setting 
Pipeline depth 24 (max branches in-flight) 

Fetch/Issue/Commit 4/4/4 instructions per cycle 
RAS 16 entries 

BTB 4KB (4-way set associative, 1K 
entries) 

Combined Predictor 16KB (64K entries, 2 bits per entry, 
16 bits BHR) 

meta predictor table: 64K  entries 
Issue Queue 16 entries (one per cluster) 

Reorder Buffer 128 entries 
Functional Units 4 clusters (ALUs: 4 INT, 4 FPU) 

L1 instruction cache 64KB (64B line, 512 sets, 2-ways, 2 
cycles latency) 

L1 data cache 64KB (64B line, 512 sets, 2-ways, 2 
cycles latency) 

L2 cache 2MB inclusive (64B line, 8-ways, 5 
cycles latency) 

Main memory Infinite size (50 nsec latency) 
Table 3: Enhanced x86 microprocessor configuration. 
The enhanced model of MARSSx86 simulator has a lower 

simulation throughput than the original model but the 
overhead on the simulation time from the integration of the 
fault injection framework is up to 5.8% when tenfold 
permanent faults are injected (3.3% when 10 transient faults 
are injected). In particular, 1.5% (out of 5.8%) is due to 

Emulator
(checkpoint)

Warm-up
(k x86 instr.) Faulty simulation interval (n x86 instr.)

switch-to-simulator inject-fault

reset-stats cmp-arch.-state Emulation
(until workload end)

cmp-app.-state

arch. SDC
benign

masked
app. DUE
app. SDC

Hangs
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modeling the data array functionality on the simulator, while 
the rest 4.3% is due to the fault injection-related source code. 
Another key insight of these first results is that simulation 
throughput does not increase significantly as the number of 
injected faults is increased. On contrast, it remains almost 
stable. In particular, on singe and tenfold permanent faults 
injections the simulation throughput is 0.0467 and 0.0456, 
respectively, while on the transient fault injections the 
simulation throughput is equal to 0.0470 with single faults 
injected and 0.0468 with then faults injected.  

 Original Model 
(MIPS)  

Enhanced Model 
(MIPS) Slowdown 

Si
m

ul
at

ed
 x

86
 

In
st

ru
ct

io
ns

 p
er

 se
co

nd
 Transient Fault Injections 

No fault 0.0484 0.0477 1.5% 
1-fault - 0.0470 2.9% 
5-faults - 0.0469 3.1% 

10-faults - 0.0468 3.3% 
Permanent Fault Injections 

1-fault 0.0484 0.0467 3.5% 
5-faults - 0.0461 4.7% 

10-faults - 0.0456 5.8% 
Table 4: Comparison of the original model of MARSSx86 
simulator with the enhanced model (i.e. MARSSx86 with 

the proposed fault injection framework integrated) in 
terms of x86 simulated instructions per second on the 

host machine (³No fault´ experiment measures the 
overhead induced only from the integration of the data 
arrays into the cache memory of MARSSx86 simulator). 

Table 5 presents some first results for the reliability 
evaluation of the L1 data cache memory. Single-bit transient 
faults (randomly selected from the fault mask database) are 
injected in a randomly selected entry at randomly selected 
clock cycle (Section II-E). To evaluate cache memories, we 
develop four memory-intensive applications: (a) vectorADD1: 
adds two arrays consisting of 10,000 integer elements and 
prints the sum in hard-disk file at the end of the calculations, 
(b) vectorADD2: adds two arrays consisting of 10,000 integer 
elements and prints the sum in hard-disk file after each 
individual addition, (c) mMul: a matrix multiplication 
algorithm (100x100 integer arrays) that stores the product of 
operation in a hard-disk file at the end; and (d) bubblesort: a 
sorting algorithm (for 1,000 integer numbers). Overall, 1,265 
fault injection experiments were performed (125 running 
vectorADD1, 664 with vectorADD2, 336 executing mMul, and 
140 with the bubblesort algorithm). These numbers of 
injection give only a first report on the reliability studies that 
can be performed on our framework. Accurate reliability 
estimates for the caches and other structures can be only 
derived from significantly more extended campaigns with 
larger numbers of injected faults. 

The variation in the rates of fault categories across the 
four applications is mainly related to their different data use 
profiles. Similar behavior is also encountered in analytical 
methods, such as [12], where L1 data cache AVF 
approximately varies from 8% to 42% depending on the 

benchmark. Compared to analytical methods our fault 
injection experiments show lower cache SDC vulnerability in 
three of the four applications. This is justified from the fact 
that analytical methods to calculate the AVF provide an over-
estimation regarding component¶V�YXOQHUDELOLW\, which results 
in over-designed microprocessors and negatively impacts 
time-to-market (TTM) and product costs. 

Fault 
Category VectorADD1 VectorADD2 mMul BubbleSort 

App. SDC 2.4% 0.6% 47.5% 7.8% 
App. DUE 0.8% 0.2% 0.6% 0.0% 

Hang 17.4% 0.3% 0.3% 0.7% 
Masked 79.4% 98.9% 51.6% 91.5% 
Table 5: First results for the reliability evaluation of a L1 
data cache memory with single transient fault injection.  

IV. RELATED WORK 
Reliability evaluation has been carried out at various 
abstraction levels. Mainly is classified into simulation-based 
techniques and analytical methods. 

Simulation-based methods: Many simulation based fault 
injection schemes in various abstraction levels have been 
proposed in the literature. Wang et al. [43] explored the effect 
of transient faults on IVM microprocessor model though RT-
level fault injections, while on [42] examined the correlation 
between ACE analysis and RT-level fault injection 
experiments. Li et al. [18] proposed a hybrid simulation 
infrastructure to reliability evaluate various microprocessor 
components. Maniatakos et al. [23] developed a fault injection 
infrastructure on IVM microprocessor model. In [17] proposed 
a hardware-software framework to characterize a system under 
the presence of permanent faults. The authors of [41] proposed 
a fault injection framework on a microarchitectural simulator 
to perform dependability analysis. In [30] a fault injection tool 
based on the cycle accurate full system simulator Gem5 is 
proposed. Authors of [14] propose a technique to reduce the 
fault simulation time through grouping error simulations that 
produce same intermediate execution state. In [25], a statistical 
method to estimate the outcome of a system in presence of soft 
errors is proposed. In this paper, we propose an architecture-
level fault injection framework for early reliability evaluation 
on the storage structures of a modern x86-64 architecture 
enhanced with data arrays in the cache hierarchy.  Several 
research approaches proposed a reliability prediction 
framework build at the circuit- or gate-level [29] [40]. Even 
though their high accuracy, the low simulation throughput 
prevents the detailed evaluation of the propagation of faults 
into the higher level of the system stack. Finally, FPGA-based 
fault injection environments offer high throughput simulations, 
though the limited observability and controllability gives less 
flexibility [32] [33] . 

Analytical Methods: Mukherjee et al. [26] introduced 
ACE analysis. Biswas et al. [3] extended the original ACE 
analysis framework to enable address-based processor 
structures. Fu et al. [12] proposed a unified framework for 
estimating microprocessor reliability in the presence of soft 
errors at the architecture level. Sridharan et al. [35] introduced 
hardware vulnerability factor for hardware vulnerability 
estimation to bound the inaccuracy of AVF measurements. 
Savino et al. [34] proposed an analytical way to estimate the 
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reliability of a microprocessor-based system. Finally, Suh et al. 
[38] proposed a Markov model for reliability evaluation of 
cache under the presence of single and multi-bit upsets. 

V. CONCLUSIONS 
Early estimation of microprocessor reliability, to support the 
employment of efficient methods that guarantee correct 
operation is critical for forthcoming technologies. We have 
presented a first report on a flexible architecture-level fault 
injection framework for early reliability evaluation. The 
developed infrastructure was built on top of MARSSx86 full 
system simulator and supports characterization in the presence 
of any number of hardware faults of different types (transient, 
intermittent, permanent) in microprocessor  components.  
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