
Anatomy of Microarchitecture-Level Reliability
Assessment: Throughput and Accuracy

Athanasios Chatzidimitriou Dimitris Gizopoulos

Department of Informatics & Telecommunications
University of Athens

Athens, Greece
{achatz, dgizop}@di.uoa.gr

Abstract—The increasing density and complexity of modern

microprocessors, which is driven by manufacturing technologies
scaling, significantly affect their reliability. Reliability evaluation
during the early design stages is a challenging process for
microprocessor designers. Statistical fault-injection on
microarchitecture simulators is commonly used, among other
techniques, since it can deliver early and accurate reliability
estimations for many important microprocessor hardware
structures. However, full-system microarchitectural simulators
have a relatively small simulation throughput. Thus, the number
of injection experiments that can be performed during a fault
injection campaign can be limited and therefore lead to smaller
statistical significance of the reliability assessment.

Aiming to boost the throughput of microarchitecture-level
fault injection, we present, in this paper, a multi-faceted
microarchitecture-level toolset for reliability assessment of
modern microprocessors. The framework is built around the
Gem5 simulator and provides several modes of operation which
employ acceleration features for all stages of a fault-injection
based reliability assessment campaign. The tool throughput and
the accuracy of the delivered reliability assessments can be
traded off and allow architects to make informed decisions about
the most suitable error protection mechanisms of any given
microarchitecture and workload by studying the reports
delivered by the toolset. We provide experimental results of the
different modes of the toolset for both the x86 and ARM out-of-
order models of Gem5. Our experimental results show that up to
8x acceleration of the fault injection campaigns can be achieved
with less than 0.5 percentile points of accuracy loss.

Keywords—microprocessor reliability evaluation; statistical
fault injection; microarchitecture simulators

I. INTRODUCTION
The rapid development of semiconductor technologies is

continuously increasing the density and complexity of modern
microprocessor chips in favor of performance and
functionality. This extreme scaling however has a negative
impact on the reliable operation of microprocessors, making
them more vulnerable to cosmic radiation, latent
manufacturing defects, device degradation and low voltage
operation [2] [6] [8] [24]. As a result, transient faults tend to
appear more frequently, which makes them a major threat for
the reliable system operation. Luckily, not all faults can harm
the system stability and not all faults have the same severity.
Several metrics have been proposed to express aspects of the
system vulnerability from different observation angles.
Architectural Vulnerability Factor (AVF) [21] was proposed by
Mukherjee et al. to express the vulnerability factor for transient
faults; AVF of a microprocessor hardware structure is the

probability that a bit flip in it affects the correct execution of a
program. Similarly, IVF [25] and H-AVF [5] have been
proposed to express the vulnerability of microprocessor
structures to intermittent and permanent faults.

Sridharan and Kaeli later proposed finer levels of
abstraction for the AVF, introducing the Hardware
Vulnerability Factor (HVF) [30] and the Program Vulnerability
Factor (PVF) [28], each to quantify the portion of AVF that
can be attributed to the Hardware layer (including the
microarchitecture) and the Software layer, respectively.

Vulnerability assessment is very important during the early
design stages. Fault-tolerance mechanisms impose area, power
and performance overheads which can, for example, vary in a
range between 1% and 125% (in terms of extra memory
capacity) for typical memory error detection and correction
[20]. Thus, significant effort must be devoted to effectively
measure the vulnerability of a system design as early as
possible and make suitable design decisions for error
protection.

Simulation tools that model a system being designed are
widely used to assess the system vulnerability. The detail of
their models depends on the requirements of the assessment.
These requirements may vary on the level of estimation
accuracy, time limitations, scope (e.g. full-system, processor,
component etc.) and differences in the software workloads.
Microarchitectural simulators are excellent candidates for early
reliability assessment because they provide an ideal balance
between sufficient modeling detail for most important
components and a reasonable simulation throughput.
Compared to simpler functional simulators, they offer
microarchitectural details on their implementation while,
compared to RTL models, they are several orders of magnitude
faster and can combine full-system capabilities. In addition,
microarchitecture simulators are very flexible and support easy
modifications of the hardware structures configurations and
thus offer easier exploration of design alternatives. Different
approaches, like statistical fault injection [7] [9] [10] [12] [14]
[15] [16] [26] [33], Architectural Correct Execution (ACE)
analysis [4] [21] [22] and probabilistic approaches [1] [11] [31]
can be employed on top of microarchitecture-level simulators
for measuring the vulnerability of microprocessor components
to soft errors. ACE analysis and probabilistic methods are quite
fast methods but require significant modifications of the
simulator and tend to overestimate the vulnerability by 3x to 7x
compared to fault injection [12] [19] [32]. Fault injection on
the other hand needs minimum changes in the simulator,
delivers very accurate reliability reports, but requires large
numbers of simulations to reach statistical significance [18].

69978-1-5090-1953-3/16/$31.00 ©2016 IEEE

In this work, we focus on the anatomy of
microarchitecture-level reliability assessments using fault
injection. We analyze the fault injection simulation lifetime,
and explore several acceleration opportunities of fault injection
for transient faults. We propose a variety of approaches for
finer balancing of the assessment accuracy and the throughput
of fault injection campaigns. We also present a
microarchitecture-level fault injection framework which
integrates the different acceleration options and offers fast
fault-injection based reliability measurements. Section II
describes the enhancement of a fault injection framework with
the proposed acceleration features; Section III presents how
higher-level workload attributes can be considered for result
prediction and thus early termination of fault injection; Section
IV presents our experimental results for x86 and ARM
microprocessor configurations and Section V concludes the
paper.

II. ASSESSING SYSTEM VULNERABILITY

A. Background, Definitions and Concepts
The Architectural Vulnerability Factor (AVF) of a

hardware component was introduced by Mukherjee et al. as the
probability that a fault in a hardware component affects
program execution [21]. AVF was presented alongside with
Architectural Correct Execution (ACE) analysis, a method for
fast AVF estimation. The set of bits that are required for
correct operation are called ACE bits; the remaining bits are
called un-ACE bits. ACE analysis includes the notion of time,
and thus, each bit is characterized as ACE or un-ACE for a
certain period of time. AVF can then be defined as the fraction
of ACE bits in a hardware component.

Identifying ACE bits is a difficult process since it refers to
a full-system aspect. Existing techniques of ACE analysis, tend
to overestimate the AVF by up to 7x [12] [19] and even refined
methods still report up to 3x overestimations [32]. To better
address this issue, Sridharan and Kaeli have introduced the
System Vulnerability Stack [30], where the AVF is separated
in many fine-grained layers, which are however substitutes of
two major ones: Hardware and Software layers. They also
introduced the Hardware Vulnerability Factor (HVF) [30] and
the Program Vulnerability Factor (PVF) [28], respectively.
Separating AVF into hardware and software layers can
accelerate the assessment process since each measurement can
be performed with different tools. PVF for instance can be
estimated using fast functional emulators without
microarchitectural details, only to measure the software
masking effects.

Our work proposes acceleration features and techniques for
faster vulnerability estimation through fault injection. The fault
injection framework we built provides both AVF estimation
and hardware vulnerability estimation (not to be confused with
HVF). Since we utilize concepts like the system vulnerability
stack, it is important to clearly highlight the differences with
the existing metrics and define the limits of each approach.

Statistical fault injection is a reliability estimation
technique that can bypass the complexity of ACE analysis and
directly access the program output that was produced with the
injected faults. Therefore, it can offer complete (full-system)
AVF estimation. Techniques that target to profile and simulate
incomplete portions of a program, such as SimPoints [27] the

capability of accessing the effect of faults on the program
output. The simulated part of the program may include
masking effects of both software and hardware layers.
Comparing the system or the architectural state at the end of a
portion will give an estimation that does not clearly belong to
one layer of the system vulnerability stack. Stating that it
corresponds to the full-system AVF may be inaccurate and
misleading, since there is not enough evidence of the
participation of incomplete program parts to the program’s
final output.

On the other hand, a clear separation of HVF and PVF can
be achieved by stopping a simulation whenever a fault reaches
an architectural visible resource [28] [29]. In [29], a software
resource is defined as any independently-addressable
architectural structure. This abstraction level raises several
issues with the definition of PVF that are not clearly clarified,
especially for memory structure estimations. Virtual memory
complicates things significantly. Memory is indirectly accessed
by the software, involving (in most cases) a hardware
translation mechanism. A question that is hard to be answered
is: Which portion of the virtual address space should be
considered a software resource, the mapped one or the
complete address space? For the mapped part, multiple
addresses can correspond to the same hardware structure and
many can be temporarily mapped to peripheral devices. From
the HVF point of view, any valid cache line is a visible
resource as long as the same line is not valid on a higher cache
level. But an eviction caused by the microarchitecture can
immediately change this condition and a fault that was
characterized as software visible can turn to invisible, without
software interference.

To address such issues, we use a slightly different variant
of the Hardware/Software vulnerability separation than HVF
and PVF. Since both determine jointly the AVF, defining one
also defines the other. For the software side we use the concept
of instruction flow, to which we will refer as program flow.
Program flow is a subset of software resources and limits the
software bounds only to those resources that are actually used.
This applies to both registers and memory. The program flow
consists of: (i) the decoded instruction and its operands, (ii) the
data transactions in both registers and memory, (iii) the
program instruction order, and (iv) the execution time of each
instruction (to monitor performance deviations). Therefore, an
architecturally mapped register that is not used by the program
and does not participate in the program flow is not considered
to reach the software layer, in spite of the fact that it is part of
the architectural state.

Software masking can then be defined to express the
probability that a fault which was involved on the instruction
flow to be masked by the program. On the complementary
hardware side, we define as hardware vulnerability the
probability that a fault on a hardware structure reaches a visible
point of the program flow. Therefore, unused hardware
resources are characterized as masked on the hardware layer,
even if part of them is mapped to architectural resources.

B. GeFIN – A Gem5 fault injection framework
In this work, we employ GeFIN, a microarchitecture level

fault injection framework first presented in [16] built on top of
the Gem5 simulator [3]. The framework consists of a modified
Gem5 version that allows fault injection along with

70

instrumentation for running and controlling simulation
campaigns. It supports all types of fault-models (transient,
permanent and intermittent) in single or multiple fault
configurations of any combination. In this paper, we focus of
the use of GeFIN for transient single-bit faults.

The GeFIN framework uses faultmasks to describe
injection of faults. Each faultmask can include one or multiple
faults for the simulation. It carries sufficient information to
accurately target one or multiple component(s) at a given time
or period. Each fault is described by: (i) thread id (cpu id), (ii)
microarchitecture component, (iii) position within the
component (bit granularity), (iv) fault model, (v) clock cycle of
the occurrence, (vi) duration (for intermittent faults) and (vii)
mask effect (bit flip, stuck-at 1, stuck at 0).

GeFIN uses configuration presets. Each preset consists of
attributes, such as the ISA, memory configuration, CPU core
(in-order, out-of-order etc.), multicore setup, system setup, disk
images, kernels etc. along with GeFIN attributes and a list of
supported components for injections. New presets can be easily
added to cover different requirements.

A complete Fault Injection Campaign is initiated on GeFIN
by selecting: (i) the configuration preset, (ii) the benchmark,
(iii) the fault model, (iv) the number of faultmasks for the
simulation and (v) the number of workers (spawned threads to
work in parallel). Multiple campaigns can also be scheduled
independently through an appropriate configuration file.

When a simulation ends, GeFIN stores all its outputs for
later processing. The fault effects classification phase is an
offline process initiated (manually or automatically) after the
end of an injection campaign. Since each configuration preset
may produce different outputs, each preset is accompanied
with its own default parser script for the classification phase.
Different versions of the parser scripts can be used additionally
to report different fault effect classes.

The level of flexibility and ease of expansion that GeFIN
introduces makes it a perfect candidate for our work.

C. Fault simulation epochs
There are three possible important events during a fault

injection run that define different epochs of the simulation. The
events are:

• Fault Injection event. It corresponds to the time
(cycle) of the bit-flip occurrence.

• First access event. The first access of the faulty entry,
which can be a read or write. This event may never
happen during a simulation.

• Visible fault effect event. The first visible effect of the
fault on the program flow. This event can only occur
after a read access of the fault.

These three events define five different epochs of a fault
injection run (see Fig. 1):

Pre-fault epoch. The epoch starts with the simulation and
ends at the time of the injection of the fault. The pre-fault
epoch is out of interest for reliability estimation since it has no
residing faults. The simulation is identical to the fault-free
(golden) simulation.
Idle epoch. This epoch starts at fault injection time and ends
either on the first access of the faulty entry or at the end of
simulation; whichever comes first. A fault has been injected
into the system and resides silently unused during Idle epoch.

Start EndFirst Access Fault Effect

Read

Injection

Inactive Epoch

Pre-fault
Epoch

Idle
Epoch

Manifestation
Epoch

Corruption
Epoch

Case 1

Case 2

Case 3

Case 4
Read

Write

Fig. 1: Fault injection timeline illustrates the different epochs defined by the
fault injection event, the first access of the faulty entry and the first program
visible fault effect. In Case 1, the fault remains unused (no access); in Case 2,
the fault gets overwritten before being read; in Case 3 the fault is read but its
effect is software masked and in Case 4 the fault corrupts the program flow.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Icache Dcache L2 RegFile LSQ

Pre-fault Idle Manifestation Corrupt/Inactive

Fig. 2: Breakdown of the duration of the simulation epochs.

Inactive epoch. The fault gets overwritten and no longer
exists on the simulation.

Manifestation epoch. The first access of the faulty entry
marks the beginning of the Manifestation epoch. During this
epoch, a fault has been accessed and can potentially harm the
program flow.

Corruption epoch. When a fault reaches the program flow,
the Corruption epoch starts. From this point onwards, the fault
resides in the software layer and may cause corruption of the
program output, may crash the system or may be masked at the
software layer.

Idle and Manifestation are the most important epochs, since
they contain the fault injection, fault propagation and fault
effect events. Although the Manifestation epoch describes the
complete lifetime of a fault before propagating to the program
flow, Idle epoch is an important part of the simulation because
it contains all the hardware access patterns related to if, when
and where the fault will be used by the microarchitecture. The
Idle and Manifestation epochs contain all the required
information to characterize a fault effect for the hardware layer.
However it must be pointed out that these epochs can also
include parts of no interest. For instance, cases where a fault is
initially propagated to the microarchitecture but then it gets
hardware masked (e.g. due to a misspeculation and a pipeline
flush). Such cases waste simulation time as the fault has no
effect.

It is important to note that the described epochs are
determined only by the first occurrence of the three important
events, which however may not depend on each other. This
means that the first visible effect of a fault may be due to the
second or third access of the fault and not necessarily the first.
We have modified GeFIN to identify these events and
determine the corresponding epochs.

71

Fig. 2 presents the duration of these epochs during the
entire simulation timeline. The Pre-fault epoch consumes an
average 49% of total simulation time with the Corruption and
the Inactive epoch following with an average of 38%. We can
also see that the most critical epochs for the effect of a fault
(the Idle and the Manifestation) only hold an average of 13%
of simulation time.

The fact that only 13% of the baseline simulation time is
enough to characterize the hardware vulnerability is the
motivation of our work. Our efforts focus to reduce the
simulation time only to the critical parts.

D. Acceleration features
In this subsection we will describe the new acceleration

features integrated into GeFIN. The baseline tool presented in
[16] was enhanced to monitor and detect the events and
successfully identify the epochs described in the previous
section. By knowing which epoch the simulation is going
through, the corresponding acceleration potential is
automatically revealed. Each epoch has some special attributes
to which the simulator can adapt and either reduce some of the
monitoring overhead, or even apply more aggressive
approaches, such as fast forwarding or fault effect prediction.

The features are separately described as direct features, the
ones that lead to pure acceleration without any loss of accuracy
in the vulnerability measurements; and indirect features, which
can further reduce the simulation time significantly but can
lead to some loss of accuracy in the vulnerability
measurements. All these features can be independently enabled
or disabled, giving the flexibility of different combinations,
according to the estimation requirements of a particular
campaign.

1. Direct Features
Enhanced checkpointing and fast-forwarding. The Pre-

fault epoch does not contain any faults and thus, it is out of
interest for the reliability assessment. Each GeFIN run is aware
of the fault injection time and therefore can eliminate the Pre-
fault epoch by starting simulation from the point of the fault
injection. Checkpointing is a widely known method employed
to skip insignificant parts of the simulation and fast-forward
the execution of a program. However, checkpoints come at a
cost. The loss of microarchitectural state cannot be ignored,
especially when considering large trained components, such as
cache memories. This is the reason why checkpoints are
usually accompanied with warm-up intervals.

To address this accuracy loss, we have enhanced Gem5
checkpoint infrastructure to also include the state and data of
all cache memories. This significantly reduces the loss of
microarchitectural state and allows direct restoring of
checkpoints, without the requirement of warm up. With the
enhanced checkpoints, we can completely skip the Pre-fault
epoch with a minimal deviation of the final vulnerability
estimations, caused by the minimal pipeline detail loss (which
is measured to less than 1 percentile point).

Early stop on overwrite/invalid. Injected faults that get
overwritten before being read cannot harm the system state and
they can be considered as masked prior to the completion. The
same applies to faults injected in inactive (invalid) structure
entries, which will be overwritten upon allocation. The epoch

that follows the overwriting is the Inactive epoch, which can be
safely discarded (simulation stops).

Skipping the Inactive epoch can save up to 50% of a
campaign time without any impact on the final result. GeFIN
was enhanced to recognize Inactive epochs and stop the
simulation, marking the injected fault as masked.

2. Indirect features
Early stop on program corruption. This feature aims to

skip the entire Corruption epoch. By monitoring the instruction
commit flow, in terms of static instructions, operands, data
transactions and time, we can detect changes on the expected
program flow. Any kind of mismatch that is observed to the
program flow marks the fault effect event. Stopping at that
time, changes the observation point of the simulation result and
limits the AVF estimation only to the hardware portion, as
described in Section II.A. If this feature is enabled during an
injection campaign the software masking portion of AVF is
ignored. This is a useful feature when the hardware
vulnerability report it delivers is combined with a software
vulnerability estimation (using for example a functional
simulator and software-level fault injections).

GeFIN was expanded with the capability to monitor and
compare on-line the commit stage of the processor and stop on
the first mismatch of the program flow. An initial fault-free
execution is used to produce the correct instruction trace,
which is then supplied to the campaign workers for on-line
comparison.

Early switch to functional emulation. Unlike the previous
features that target to skip portions of the simulation, early
switch intends to fast-forward an epoch, in particular the
Corruption epoch. Gem5 supports different operation modes.
Among others, it includes simple functional CPU models
which have no microarchitectural details and operate at a 20x
higher throughput than the detailed models.

Following the early stop on program corruption feature,
and considering that Gem5 supports switching to the functional
model at any time, the missing software vulnerability part of
the complete AVF estimation for that particular experiment can
be measured using the same tool. By switching to emulation
mode, we can move the observation point at the end of the
program execution and report the complete AVF measurement.
The source of potential accuracy losses is only the possibility
that the fault would cause further problems after its first visible
effect; switching to emulation will only capture this effect on
the final output. However, our results (Section IV.B) show that
these cases are rare and barely have any impact on the final
fault effects classification.

Start EndFault EffectInjection

Man. limit

Man. limit + switch

Idle limit

Idle limit + switch

Read

Read

Early limit Early limit
Functional
Emulation

End

End

Fig. 3: Effect of Manifestation early limit and Idle early limit individually or
combined with early switch feature.

Early limit. This feature is used to stop the simulation
early after the first access of the faulty entry. It condenses the
manifestation epoch to a user-defined amount of time, during

72

which the fault has the opportunity to manifest itself. This
feature is intended to be used along with fault effect prediction.
In Section III we present how we can effectively use prediction
to get high acceleration with minor loss of accuracy, depending
on behavior patterns of some hardware structures.

Early limit comes also in an alternative form aiming to
condense the Idle epoch. This form of the feature is only
recommended for use in strict campaign time constraints.
When employed, it can lead to significant loss of accuracy
since it adds a large number of unknown cases. However, it can
be combined with early switch to indicate a switch instead of
stop after the defined time.

Fig. 3 illustrates how early limit and early switch features
apply to the simulation timeline.

III. WORKLOAD STUDIES
Although skipping uninteresting epochs and stopping

earlier can be effective for speeding up the vulnerability
estimation, the simulation still doesn’t completely focus on
critical parts of the fault simulation timeline. As we already
mentioned, the Idle and Manifestation epochs also include
masked cases. In the workloads study of this section we
investigate component behaviors in order to detect and stop
simulations that have little or no chances to report any fault
effects. At this point, it is important to mention that there is a
fundamental difference between components in the pipeline
(e.g. register file) and components out of it (e.g. cache
memories). Allocated pipeline resources have a very short
residency time and hence, very small Idle epochs, while on the
other hand, memory entries (especially in lower levels) may
even never be used again (long Idle or Manifestation epochs).

Using a very extensive simulation-based study, we
collected a set of interesting observations that reveal
opportunities for further speeding up the vulnerability
estimation process. Our benchmarks base consists of 10
benchmarks (see Section IV.C), simulated for 5 hardware
components in 2 different ISAs with 2,000 faults injected per
component. This corresponds to 40,000 injections for each
component (20,000 injections per ISA).

This section presents the fault effect patterns observed in
our study for different hardware components and can be taken
into account for predicting the effects of faults significantly
earlier.

Register file. Out-of-order processors come in two flavors:
The traditional Reorder Buffer & Architectural register file
concept, where the ROB also holds the data for the pending
dynamic instruction values, and the Physical register file &
Active List (ROB term is also commonly used) scheme, where
all data is stored to the physical register file and the ROB
contains pointers to those resources. Both approaches have
pros and cons and both can be found in modern processor
chips. Gem5 uses the latter approach on its out-of-order core,
with a Physical register file combined with a rename map to
indicate the current up-to-date committed values for the
architectural registers.

Allocated resources in the physical register file come at two
different types: architectural and dynamic. In a typical case,
the physical register file has allocated at a minimum the
number of architectural registers (along with any micro-
implementation static registers; e.g. Fault handling, ALU side
utility etc.) at any time, and from that point on, it additionally

allocates resources for the in-flight dynamic instructions. Each
dynamic instruction usually allocates two source and one
destination registers. Upon renaming, the real dependencies are
resolved and the operands of static instructions may change to
temporal resources. The order is restored upon commit (alt.
retire) stage and the rename map is updated to the current
architectural values. We will use the terms dynamic registers
and architectural registers to express the nature of the
allocated resource in the physical register file.

The fundamental difference between architectural and
dynamic registers is their residency time. Dynamic registers
remain active as long as their instruction lives inside the
pipeline (usually a few clock cycles) while on the other hand,
architecturally mapped registers are part of the program state
and may be used millions of cycles later, or even not used at
all. This implies that any fault in a dynamic register has a short
window of opportunity to lead to a state corruption. Our
experimental sample of 40,000 injections confirms that all of
the faults that hit dynamic registers and led to a state
corruption, did reach a visible point in the program flow in less
than 500 clock cycles, indicating a safe point of time to stop
the simulation without loss of accuracy.

The architectural registers on the other hand do not follow
this behavior pattern. In fact, each ISA reports different
behavior and thus, our analysis is separated on an ISA basis.

ARM ISA defines 31 architectural registers, 16 for the used
mode and 15 for the FIQ, IRQ, SVC, Undefined and Abort
modes. In addition, Gem5 implementation also includes 12
microarchitectural registers, totaling up to 43 entries in the
rename map.

The hardware vulnerability of architectural registers is
presented in Fig. 4 (top). The Stack Pointer of SVC, ABT and
IRQ modes seems to be highly critical (100% vulnerability)
while the Link Register in these modes is not critical and
always gets masked (0% vulnerability). The diagram does not
include the 12 micro-architectural registers (due to space
limitations) that are also held in rename map, which also have
a similar trend in severity: some are highly critical and others
are not critical at all. It is important to mention that these
behaviors highly rely on the system platform. A system that
uses Fast Interrupts would have different vulnerability
compared to our system that does not use the FIQ mode at all.

The lower diagram of Fig. 4 shows how long it takes before
a fault in each of the registers becomes visible on the program
flow (hardware vulnerability). This time is equal to the
duration of the Manifestation epoch. All registers (except for
the different mode ones) have a Manifestation epoch of less
than 10,000 clock cycles for more than 90% of the cases. The
remaining mode registers have a standard trend on their
vulnerability (as shown on the upper diagram of Fig. 4). In
summary, we can conclude that it could be enough to stop
simulation 10,000 clock cycles after the first fault access and
only lose less than 10% of the corrupted cases. Considering
that the register file vulnerability is estimated approximately at
around 5% (see next section), the inaccuracy of this under-
estimation will be less than 0.5 percentile points.

73

0%

20%

40%

60%

80%

100%

User SVC ABTUND IRQ FIQ

H
ar

dw
ar

e
Vu

ln
er

ab
ili

ty

Architectural Register

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Manifestation period (Clock cycles)

St
at

e
co

rr
up

tio
ns

 (%
 p

er
 re

gi
st

er
)

Fig. 4: ARM ISA. Red color is used for the registers with long Manifestation
epochs and Green for the rest (top) Hardware vulnerability per architectural
register (bottom) manifestation epoch length per architectural register

x86 ISA is a CISC ISA that supports more complex
operations and direct memory operations. Fig. 5 shows the HW
vulnerability of x86 registers and the Manifestation epochs
duration of the x86 ISA. Unlike ARM, in x86 ISA there are no
clear trends. The special purpose registers (RSP, RBP, RDI,
RSI) have a relatively consistent behavior and tend to have a
Manifestation epoch of 10,000 cycles for more than 90% of the
cases. In contrast, for the same period, the percentage of the
remaining general purpose registers is between 70% and 90%.

In practice, x86 is less “friendly” to this estimation
approach, as it will lead to a larger number of unresolved
corruptions for the same early-limit, compared to the ARM
ISA.

Load-Store queue. The Load-Store Queues are pipeline
components with short residency time. The role of LSQ is to
support the Load-Store dependency resolution for the in-flight
memory instructions. Store queue also holds data along with
the referred address which is then forwarded to the memory
hierarchy.

A similar timing analysis on the LSQ reveals that all the
corrupt cases reached the program flow in less than 500 clock
cycles. The Manifestation epoch for the corrupt cases is very
short and thus, the possible estimation loss (if any) that will
occur with early stopping will be virtually zero.

Instruction & Data cache. Instruction cache is exploited
by the CPU front-end, the fetch stage. Requests that come from
the instruction port either follow the program flow or, in cases
of control instructions, are predicted by the branch prediction
units. In both cases, the incoming memory block contains
instructions with high probability to be used, due to locality
and accurate branch prediction. This further implies that a
faulty fetched cache block is very likely to be used by the core.
The upper diagram of Fig. 6 presents the Manifestation epoch

of the corrupt cases for the instruction cache, per benchmark.
We can observe a clear trend, similar to the pipeline-structures,
but with longer Manifestation epochs. All benchmarks follow
similar trend lines, with 90% of corruption cases to appear in
less than 100,000 clock cycles.

0%

20%

40%

60%

80%

100%

H
ar

dw
ar

e
Vu

ln
er

ab
ili

ty

Architectural Register

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Manifestation period (Clock cycles)

St
at

e
co

rr
up

tio
ns

 (%
 p

er
 re

gi
st

er
)

Fig. 5: x86 ISA. Blue is used for special purpose, Red for general purpose and
Green is used for double purpose registers. (top) Hardware vulnerability
(bottom) manifestation epoch length per architectural register.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Instruction Cache

cjpeg

djpeg

FFT

qsort

rijndael_enc

sha

stringsearch

corners

edges

smooth

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Data Cache

cjpeg

djpeg

FFT

qsort

rijndael_enc

sha

stringsearch

corners

edges

smooth

Fig. 6: Manifestation epochs duration for the L1 instruction and data cache,
per benchmark.

74

Data cache requests on the other hand are guided by
memory operations of the program flow, mispeculated load
instructions, prefetching and unresolved load/store
dependencies. Unfortunately, there is no standard ratio among
these sources of data cache requests and the workload itself can
have a severe impact on each one of them. We have
experimented using functional cores against the detailed for
cache memory vulnerability estimation and the results
reinforced the argument that speculation can severely affect the
measurements. Data cache accessing is highly unpredictable
and this is also observed in the lower diagram of Fig. 6. Our
analysis did not identify clear behavior patterns for the cache
memories that would reveal any acceleration potential for the
early stop features of our fault injection framework.

L2 cache. The unified second level of cache memory has
similarities with L1 cache. It includes both data and instruction
blocks and behaves accordingly, similar to the corresponding
L1 cache. The data part is highly unpredictable similarly to the
L1 data cache. However, the findings of the L1 instruction
cache also apply for L2. Instructions in L2 follow the similar
but more slackly trend lines than L1 instruction cache and are
normalized above 80% on a Manifestation epoch of 100,000
clock cycles. Considering that the number of corruptions in the
L2 that were caused because of faults in instruction blocks is
very small (see the experimental results section), the loss of
accuracy is marginal.

TABLE I summarizes the conclusions that can be extracted
by our workload analysis. These conclusions are provided as
input for the parser in order to be used for result prediction of
early-stopped cases.

TABLE I: WORKLOAD ANALYSIS CONCLUSIONS
Component Comments

Register File

Faults in dynamic registers reach the program flow in less
than 500 clock cycles. It is safe to consider a simulation as
masked after 1000 clock cycles.
Architectural registers are significantly different. For the
ARM ISA, if the fault hits a mode SP register, it can be
considered as corruption. If the fault hits a mode RA
register, it can be considered as masked.
90% of the corruptions in the general purpose registers
appear in less than 10,000 clock cycles.
For the x86 ISA there are no safe guidelines. Special
purpose registers tend to follow a pattern, with 90% of the
corruptions to appear in the first 10,000 clock cycles. The
remaining registers have smaller percentages that range
between 70% and 90%, for the same Manifestation epoch.

LSQ
Program flow corruptions appear in less than 500 clock
cycles. It is safe to consider a fault as masked after 1000
clock cycles in the Manifestation epoch.

Instruction
cache

All benchmarks follow steady trend lines, with more than
90% of the corruptions to appear in less than 100,000 clock
cycles. Stopping after 100,000 clock cycles and assuming
that 10% of the corruptions was missed.

Data cache The component is highly unpredictable and no assumptions
can be drawn to make early predictions of the fault effect.

L2

The unified L2 cache follows similar trends with the
instruction cache for instruction cache lines. Data cache
lines in the L2 are unpredictable similarly to the L1 data
cache.

IV. EXPERIMENTAL RESULTS
The enhanced GeFIN framework offers a variety of fault

injection acceleration features that can be used individually or
combined. In this section we present the results of our
experiments for different combinations of these features and

how the final vulnerability estimation as well as the campaign
throughput is affected compared to the baseline fault injection
without the new features.

A. Experimental Setup
Our GeFIN framework can perform two types of

vulnerability estimation: complete AVF estimation and
Hardware vulnerability estimation (as described in Section
II.A). Our experimental setup includes 4 different
configurations for each mode, for a total of 8 sets of simulation
campaigns. TABLE II summarizes the features that were
enabled for each preset.

The choice of the configuration intends to show the tradeoff
between accuracy and performance. Most of the acceleration
features introduce some inaccuracy on the final outcome and
thus, we expect the configurations with the most acceleration
features enabled to be also the most inaccurate.

TABLE II: GEFIN CONFIGURATIONS

Acronym AVF
measurement

Hardware vulnerability
measurement

Baseline
 Baseline fault inject  Early stop on program

corruption

Early  Early stop on overwrite  Early stop on overwrite

Early-Fwd
 Fast forwarding
 Early stop on overwrite

 Fast forwarding
 Early stop on overwrite

Early-Fwd-Sw

 Fast forwarding
 Early stop on overwrite
 Early switch after

100,000 cycles

 Fast forwarding
 Early stop on overwrite
 Early stop after 100,000

cycles

B. Fault effect classification
Each fault injection run is classified depending on the effect

that the fault had on the program execution. Since the
observation point is different in the AVF measurements and the
hardware vulnerability measurements, each mode has different
classes to characterize a fault.

The AVF measurement campaigns have a finer grained
fault effect classification which consists of 5 classes:

Masked: Complete program execution with no deviations
from the fault-free simulation. The fault did not affect the
system or the application in this class. The results of a masked
simulation is identical to the fault-free simulation

Silent Data Corruption (SDC): Complete program
execution where the program output was different compared to
the fault-free simulation, without any observable indications of
this effect.

Crash: A simulation that did not reach the end of the
program, as it was disturbed by a catastrophic event. The crash
may refer to process crash (killed process) or system crash
(kernel panic).

Assert: A simulation that was unexpectedly terminated due
to a simulator failure. If the simulator crashes or reaches a high
level condition that it is unable to handle, it raises an assertion
to stop the simulation.

Timeout: Includes all cases where the simulation did not
finish within a certain amount of time (that equals to 4x the
fault-free execution time). Simulations are stopped to solve
possible deadlock or livelock situations.

The Hardware vulnerability measurement campaigns, on
the other hand, have only 2 classes of fault effect classification:

75

Masked: The fault did not reach the program flow until the
end of simulation.

Corrupt: A mismatch was detected on the program flow
compared to the fault-free trace. The mismatch could be on the
instruction, operands, data transactions or program order.
Performance deviations are ignored in this particular setup.

C. Benchmarks
In our experiments we use a subset of MiBench

benchmarks suite [13]. These are: FFT, djpeg, stringsearch,
smooth, edge, corners, sha, qsort, cjpeg, rijdnael.

The suite is commonly used in reliability studies [12] [16]
[17] [23] [34], since it contains benchmarks from different
application domains that also have similar instruction mixes,
with SPEC benchmark suite [13]. The validation of our toolset
requires complete executions for comparison with AVF
estimation. The MiBench suite is the perfect candidate due to
the small execution times of the programs which permits a
large number of fault injections.

D. Reliability Measurements
Fig. 7 and Fig. 8 present the fault effects classifications for the
AVF measurements and the hardware vulnerability
measurements, respectively, for the different GeFIN
configurations using the ARM and the x86 ISA. As expected,
the Baseline and Early configurations have identical
estimations as they only skip 100% masked Inactive epochs
and don’t suffer any accuracy loss. Early-Fwd configuration
shows that the integration of the cache memories states to the
checkpoint mechanism of Gem5 significantly improves the
accuracy, however we can see that x86 ISA is more affected by
the microarchitectural state loss caused by the fast forwarding.
Early switching capability seems to fail in some cases for the
LSQ. This is due to the fact that store instructions may be
forwarded to the memory hierarchy after the instruction
commits; the LSQ entry is marked as “ready to write back” and
the store is forwarded to the memory hierarchy as long as the
cache port is available. If the store is blocked due to other
pending stores, the instruction will not stall the back end and
will get committed. At that point, the LSQ entry may get
detached by the committed instruction, which no longer exists
in the pipeline. Switching to emulation mode with this situation
raises assertions because the architectural state is not
synchronized with the CPU core and fails to drain. This
explains the large percentage of assert cases for the LSQ.

Hardware vulnerability measurements on the other hand
introduce the fault effect prediction concept that is based on the
analysis presented at Section III. The results show that the
approach can be potentially used for components with steady
behavior patterns, such as register file, LSQ or Instruction
cache. In components with unpredictable behavior like the L1
data cache and the L2, results show a large loss of accuracy.

TABLE III summarizes the configuration fault effect
measurement deviations in percentile units (vulnerability
expressed as summary of the not-masked classes). The most
interesting finding is that the switching to emulation mode after
a program flow corruption or the 100,000 cycles limit seems to
have small impact on the overall vulnerability estimation. This
applies especially to the cache memories, where we could not
identify trends on the behavior and get close estimations using
prediction.

70%
75%
80%
85%

90%
95%

100%

B
as

el
in

e

E
ar

ly

E
a

rly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
a

rly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
a

rly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
a

rly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
a

rly
-F

w
d

E
ar

ly
-F

w
d-

S
w

I cache D cache L2 RegFile LSQ

Average ARM AVF per component

Masked SDC Crash Timeout Assert

70%

75%
80%
85%
90%
95%

100%

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
a

rly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
a

rly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
a

rly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
a

rly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
a

rly
-F

w
d-

S
w

I cache D cache L2 RegFile LSQ

Average x86 AVF per component

Masked SDC Crash Timeout Assert

Fig. 7: Fault effects classification for the (top) ARM ISA and (bottom) x86
ISA for AVF measurements for the different modes of operation of the fault
injector.

60%
65%
70%
75%
80%
85%
90%
95%

100%

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

I cache D cache L2 RegFile LSQ

Average ARM hardware vulnerability

Masked Corrupt

60%
65%
70%
75%
80%
85%
90%
95%

100%

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

B
as

el
in

e

E
ar

ly

E
ar

ly
-F

w
d

E
ar

ly
-F

w
d-

S
w

I cache D cache L2 RegFile LSQ

Average x86 hardware vulnerability

Masked Corrupt

Fig. 8: Fault effects classification for the (top) ARM ISA and (bottom) x86
ISA for the hardware vulnerability measurements for the different modes of
operation of the fault injector.

76

TABLE III: AVERAGE VULNERABILITY DEVIATIONS COMPARED TO THE
BASELINE.

C
om

p GeFIN
Configuration

AVF deviation
Hardware

vulnerability
deviation

ARM x86 ARM X86

I$
 Early 0 p.u. 0 p.u. 0 p.u. 0 p.u.

Early-Fwd 0.16 p.u. 1.86 p.u. 0.57 p.u. 3.58 p.u.
Early-Fwd-Sw 0.59 p.u. 2.58 p.u. 0.26 p.u. 3.70 p.u.

D
$

Early 0 p.u. 0 p.u 0 p.u. 0 p.u
Early-Fwd 0.36 p.u. 1.86 p.u 0.34 p.u. 4.1 p.u

Early-Fwd-Sw 0.16 p.u. 2.02 p.u 20.8 p.u. 24.9 p.u

L2
 Early 0 p.u. 0 p.u 0 p.u. 0 p.u

Early-Fwd 0.03 p.u. 0.37 p.u 0.01 p.u. 0.77 p.u
Early-Fwd-Sw 0.38 p.u. 0.15 p.u 4.29 p.u. 5.93 p.u

R
eg

 Early 0 p.u. 0 p.u. 0 p.u. 0 p.u.
Early-Fwd 0.19 p.u. 0.03 p.u. 0 p.u. 0.2 p.u.

Early-Fwd-Sw 0.51 p.u. 0.15 p.u. 0.19 p.u. 0.1 p.u.

LS
Q

 Early 0 p.u. 0 p.u. 0 p.u. 0 p.u.
Early-Fwd 0.03 p.u. 0.64 p.u. 0.21 p.u. 1.84 p.u.

Early-Fwd-Sw -- -- 0.19 p.u. 1.84 p.u.

E. Fault simulation throughput
The major outcome of this paper is to successfully

accelerate the fault injection based vulnerability estimation.
Fig. 9 presents the average simulation time speedup of each
configuration for the two types of vulnerability measurements
(AVF measurements and hardware vulnerability
measurements). Each feature of GeFIN delivers a speedup that
depends on the duration of the epoch it targets. Enhanced fast
forwarding for instance aims to skip the Pre-fault epochs. Pre-
fault epoch occupies 49% of the total simulation time and
therefore, the ideal performance benefits of skipping this epoch
is up to 2x speedup. This is observable on the speedup graphs,
where the modes that have fast forwarding enabled report more
than 1.8x speedup (the expected speedup gain with 10
checkpoints that was used in our experiments).

We can observe the simulation performance gains of the
newly presented features of GeFIN. Pipeline components
benefit the most of the implemented techniques, while the AVF
Early-Fwd-Sw mode offers the best balance between accuracy
and acceleration, by achieving an average speedup of 4.4x and
deviating from the baseline fault injection AVF measurement
at less than 0.5 percentile points on average (apart from the
LSQ).

On the hardware vulnerability estimation, we can see that
Early-Fwd-Sw mode speeds up the simulation at an average of
6x for the register file and the LSQ, which are also the
components with the greatest accuracy for the configuration.
The L2 and L1 instruction caches obtain a 2.9x speedup for the
Early-Fwd mode and at the same time report deviations of less
than 0.4 percentile points on the classification.

An observation that is not visible on the presented graphs is
that longer benchmarks tend to benefit more from the
acceleration features of GeFIN, and this is due to the fact that
the instrumentation part of the simulation remains the same.

V. CONCLUSION AND FUTURE WORK
In this work, we propose several acceleration techniques for
fault-injection based reliability estimation at the
microarchitecture level. By analyzing the lifetime of a fault
injection simulation, we are able to extract behavior patterns
that can be used for stopping simulations earlier and predicting

the effect of faults. We have implemented all of the described
techniques on the GeFIN fault injection framework and our
experimental results show that the proposed methods maintain
high accuracy in the vulnerability measurements while offering
significant simulation speed up for certain components.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Icache Dcache L2 RegFile LSQ

S
p

ee
du

p

AVF Speedup

Base Early Early-Fwd Early-Fwd-Sw

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Icache Dcache L2 RegFile LSQ

S
pe

ed
u

p

Hardware vulnerability Speedup

Base Early Early-Fwd Early-Fwd-Sw

Fig. 9: Fault injeciton campaigns speedups compared to baseline per
configuration. (top) for AVF measurements; (bottom) for Hardware
vulnerability measurements.

Among the presented techniques, the combination of early
stop on overwrite, early stop on program corruption, enhanced
fast forwarding and early switching to emulation offers the
most efficient tradeoff between accuracy loss and simulation
speed up. We have also concluded that some of the techniques
are not applicable for certain components, such as the data
cache, and further improvements are required. The long Idle
epochs that are detected in these components indicate that a
profiling process is required to efficiently evade injection on
unused resources.

ACKNOWLEDGMENT

This paper has been supported by the 7th Framework
Program of the European Union through the CLERECO
Project, under Grant Agreement FP7-611404.

REFERENCES
[1] G.H.Asadi, V.Sridharan, M.Tahoori, D.Kaeli, “Balancing performance

and reliability in the memory hierarchy”, ISPASS 2005.

[2] R.C.Baumann, “Soft errors in advanced computer systems”, IEEE
Design & Test of Comp., vol. 22, no. 3, pp. 258-266, May/June 2005.

[3] N.Binkert et al., “The Gem5 simulator”, ACM SIGARCH Computer
Arch. News, vol. 39, no. 2, May 2011.

[4] A.Biswas et al., “Computing architectural vulnerability factors for
address-based structures”, ISCA 2005.

77

[5] F.A.Bower, D.Hower, M.Yilmaz, D.Sorin, S.Osev, “Applying
architectural vulnerability analysis to hard faults in the microprocessor”,
SIGMETRICS 2006.

[6] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu, “Improving
cache lifetime reliability at ultra-low voltages”, MICRO 2009.

[7] H.Cho, S. Mirkhani, C.-Y. Cher, J. Abraham, S. Mitra, “Quantitative
evaluation of soft error injection techniques for robust system design”,
DAC 2013.

[8] C.Constantinescu, “Trends and challenges in VLSI circuit reliability”,
IEEE Micro, vol. 23, pp. 14-19, July 2003

[9] S.Feng, S. Gupta. A. Ansari, S. Mahlke, “Shoestring: propabilistic soft
error reliability on the cheap”, ASPLOS 2010

[10] N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile
architecture-level fault injection framework for reliability evaluation”,
IOLTS 2014.

[11] X.Fu, T.Li, J.Fortes, “Sim-SODA: A unified framework for architectural
level software reliability analysis”, Workshop onModeling,
Benchmarking and Simulation, 2006.

[12] N.George, C.Elks, B.Johnson, J.Lach, “Transient fault models and AVF
estimation revisited”, DSN 2010.

[13] M.R.Guthaus et al., “MiBench: A free, commercially representative
embedded benchmark suite”, IWWC 2001.

[14] S.K.S. Hari, S. V. Adve, H. Naemi, P. Ramachandran, “Relyzer:
Exploting application-level fault equivalence to analyze
applicationresiliency to transient faults”, ASPLOS 2012.

[15] S.K.S. Hari, R. Venkatagiri, S. V. Adve, H. Naemi, “GangES: Gang
error simulation for hardware resilience evaluation”, ISCA 2014.

[16] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, N.Foutris, D.Gizopoulos,
“Differential Fault Injection on Microarchitectural Simulators”, IISWC
2015

[17] D.S.Khudia, S.Mahlke, “Harnessing soft computations for low budget
fault tolerance”, MICRO 2014.

[18] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical fault
injection: Quantified error and confidence”, DATE 2009.

[19] X.Li, S.V.Adve, P.Bose, J.A.Rivers, “Architecture-level soft error
analysis: Examining the limits of common assumptions”, DSN 2007.

[20] Y.Luo et al., “Characterizing application memory error vulnerability to
optimize datacenter cost via heterogeneousreliability memory”, DSN
2014.

[21] S.S.Mukherjee, C.T.Weaver, J.Emer, S.K.Reinhardt, T.Austin, “A
systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor, MICRO 2003.

[22] A.A.Nair, S.Eyerman, L.Eeckhout, L.K.John, “A first-order mechanistic
model for architectural vulnerability factor”, ISCA 2012.

[23] A.A.Nair, L.K.John, L.Eeckhout, “AVF stressmark: Towards an
automated methodology for bounding the worst-case vulnerability to
soft errors”, MICRO 2010.

[24] S.Nassif, N.Mehta, Y.Cao, “A resilience roadmap”, DATE 2010.

[25] S.Pan, Y.Hu, X.Li “IVF: Characterizing the vulnerability of
microprocessor structures to intermittent faults”, IEEE Transactions on
VLSI Systems, vol. 20, no. 5, pp. 777-790, May 2012.

[26] K.Parasyris, G.Tziantzoulis, C.Antonopoulos, N.Bellas, “GemFI: A
fault injection tool for studying the behavior of applications on
unreliable substrates”, DSN 2014.

[27] T.Sherwood, E.Perelman, G.Hamerly, B.Calder, “Automatically
characterizing large scale program behavior”, ASPLOS 2002.

[28] V.Sridharan, D.R.Kaeli, “Eliminating microarchitectural dependency
from architectural vulnerability”, IEEE International Symposium on
High Performance Computer Architecture (HPCA-15), 2009.

[29] V.Sridharan, D.R.Kaeli, “Quantifying software vulnerability”,
Workshop on Radiation effects and fault tolerance in nanometer
technologies (WREFT), 2008

[30] V.Sridharan, D.R.Kaeli, “Using hardware vulnerability factors to
enhance AVF analysis”, ISCA 2010.

[31] J.Suh, M.Annavaram, M.Dubois, “MACAU: A Markov model for
reliability evaluations of caches under single-bit and multi-bit upsets”,
HPCA 2012.

[32] N.J.Wang, A.Mahesri, S.J.Patel, “Examining ACE analysis reliability
estimates using fault injection”, ISCA 2007.

[33] G.Yalcin, O.S.Unsal, A.Cristal, M.Valero, “FIMSIM: A fault injection
infrastructure for microarchitectural simulators”, ICCD 2011.

[34] Z.Zhao, D.Lee, A.Gerstlauer, L.K.John, “Host-compiled reliability
modeling for fast estimation of architectural vulnerabilities”, SELSE
2015.

78

