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Abstract—The increasing density and complexity of modern 

microprocessors, which is driven by manufacturing technologies 
scaling, significantly affect their reliability. Reliability evaluation 
during the early design stages is a challenging process for 
microprocessor designers. Statistical fault-injection on 
microarchitecture simulators is commonly used, among other 
techniques, since it can deliver early and accurate reliability 
estimations for many important microprocessor hardware 
structures. However, full-system microarchitectural simulators 
have a relatively small simulation throughput. Thus, the number 
of injection experiments that can be performed during a fault 
injection campaign can be limited and therefore lead to smaller 
statistical significance of the reliability assessment. 

Aiming to boost the throughput of microarchitecture-level 
fault injection, we present, in this paper, a multi-faceted 
microarchitecture-level toolset for reliability assessment of 
modern microprocessors. The framework is built around the 
Gem5 simulator and provides several modes of operation which 
employ acceleration features for all stages of a fault-injection 
based reliability assessment campaign. The tool throughput and 
the accuracy of the delivered reliability assessments can be 
traded off and allow architects to make informed decisions about 
the most suitable error protection mechanisms of any given 
microarchitecture and workload by studying the reports 
delivered by the toolset. We provide experimental results of the 
different modes of the toolset for both the x86 and ARM out-of-
order models of Gem5. Our experimental results show that up to 
8x acceleration of the fault injection campaigns can be achieved 
with less than 0.5 percentile points of accuracy loss.  

Keywords—microprocessor reliability evaluation; statistical 
fault injection; microarchitecture simulators  

I. INTRODUCTION 
The rapid development of semiconductor technologies is 

continuously increasing the density and complexity of modern 
microprocessor chips in favor of performance and 
functionality. This extreme scaling however has a negative 
impact on the reliable operation of microprocessors, making 
them more vulnerable to cosmic radiation, latent 
manufacturing defects, device degradation and low voltage 
operation [2] [6] [8] [24]. As a result, transient faults tend to 
appear more frequently, which makes them a major threat for 
the reliable system operation. Luckily, not all faults can harm 
the system stability and not all faults have the same severity. 
Several metrics have been proposed to express aspects of the 
system vulnerability from different observation angles. 
Architectural Vulnerability Factor (AVF) [21] was proposed by 
Mukherjee et al. to express the vulnerability factor for transient 
faults; AVF of a microprocessor hardware structure is the 

probability that a bit flip in it affects the correct execution of a 
program. Similarly, IVF [25] and H-AVF [5] have been 
proposed to express the vulnerability of microprocessor 
structures to intermittent and permanent faults.  

Sridharan and Kaeli later proposed finer levels of 
abstraction for the AVF, introducing the Hardware 
Vulnerability Factor (HVF) [30] and the Program Vulnerability 
Factor (PVF) [28], each to quantify the portion of AVF that 
can be attributed to the Hardware layer (including the 
microarchitecture) and the Software layer, respectively.  

Vulnerability assessment is very important during the early 
design stages. Fault-tolerance mechanisms impose area, power 
and performance overheads which can, for example, vary in a 
range between 1% and 125% (in terms of extra memory 
capacity) for typical memory error detection and correction 
[20]. Thus, significant effort must be devoted to effectively 
measure the vulnerability of a system design as early as 
possible and make suitable design decisions for error 
protection.  

Simulation tools that model a system being designed are 
widely used to assess the system vulnerability. The detail of 
their models depends on the requirements of the assessment. 
These requirements may vary on the level of estimation 
accuracy, time limitations, scope (e.g. full-system, processor, 
component etc.) and differences in the software workloads. 
Microarchitectural simulators are excellent candidates for early 
reliability assessment because they provide an ideal balance 
between sufficient modeling detail for most important 
components and a reasonable simulation throughput. 
Compared to simpler functional simulators, they offer 
microarchitectural details on their implementation while, 
compared to RTL models, they are several orders of magnitude 
faster and can combine full-system capabilities. In addition, 
microarchitecture simulators are very flexible and support easy 
modifications of the hardware structures configurations and 
thus offer easier exploration of design alternatives. Different 
approaches, like statistical fault injection [7] [9] [10] [12] [14] 
[15] [16] [26] [33], Architectural Correct Execution (ACE) 
analysis [4] [21] [22] and probabilistic approaches [1] [11] [31] 
can be employed on top of microarchitecture-level simulators 
for measuring the vulnerability of microprocessor components 
to soft errors. ACE analysis and probabilistic methods are quite 
fast methods but require significant modifications of the 
simulator and tend to overestimate the vulnerability by 3x to 7x 
compared to fault injection [12] [19] [32]. Fault injection on 
the other hand needs minimum changes in the simulator, 
delivers very accurate reliability reports, but requires large 
numbers of simulations to reach statistical significance [18].  
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In this work, we focus on the anatomy of 
microarchitecture-level reliability assessments using fault 
injection. We analyze the fault injection simulation lifetime, 
and explore several acceleration opportunities of fault injection 
for transient faults. We propose a variety of approaches for 
finer balancing of the assessment accuracy and the throughput 
of fault injection campaigns. We also present a 
microarchitecture-level fault injection framework which 
integrates the different acceleration options and offers fast 
fault-injection based reliability measurements. Section II 
describes the enhancement of a fault injection framework with 
the proposed acceleration features; Section III presents how 
higher-level workload attributes can be considered for result 
prediction and thus early termination of fault injection; Section 
IV presents our experimental results for x86 and ARM 
microprocessor configurations and Section V concludes the 
paper.  

II. ASSESSING SYSTEM VULNERABILITY 

A. Background, Definitions and Concepts 
The Architectural Vulnerability Factor (AVF) of a 

hardware component was introduced by Mukherjee et al. as the 
probability that a fault in a hardware component affects 
program execution [21]. AVF was presented alongside with 
Architectural Correct Execution (ACE) analysis, a method for 
fast AVF estimation. The set of bits that are required for 
correct operation are called ACE bits; the remaining bits are 
called un-ACE bits. ACE analysis includes the notion of time, 
and thus, each bit is characterized as ACE or un-ACE for a 
certain period of time. AVF can then be defined as the fraction 
of ACE bits in a hardware component. 

Identifying ACE bits is a difficult process since it refers to 
a full-system aspect. Existing techniques of ACE analysis, tend 
to overestimate the AVF by up to 7x [12] [19] and even refined 
methods still report up to 3x overestimations [32]. To better 
address this issue, Sridharan and Kaeli have introduced the 
System Vulnerability Stack [30], where the AVF is separated 
in many fine-grained layers, which are however substitutes of 
two major ones: Hardware and Software layers. They also 
introduced the Hardware Vulnerability Factor (HVF) [30] and 
the Program Vulnerability Factor (PVF) [28], respectively. 
Separating AVF into hardware and software layers can 
accelerate the assessment process since each measurement can 
be performed with different tools. PVF for instance can be 
estimated using fast functional emulators without 
microarchitectural details, only to measure the software 
masking effects. 

Our work proposes acceleration features and techniques for 
faster vulnerability estimation through fault injection. The fault 
injection framework we built provides both AVF estimation 
and hardware vulnerability estimation (not to be confused with 
HVF). Since we utilize concepts like the system vulnerability 
stack, it is important to clearly highlight the differences with 
the existing metrics and define the limits of each approach.  

Statistical fault injection is a reliability estimation 
technique that can bypass the complexity of ACE analysis and 
directly access the program output that was produced with the 
injected faults. Therefore, it can offer complete (full-system) 
AVF estimation. Techniques that target to profile and simulate 
incomplete portions of a program, such as SimPoints [27] the 

capability of accessing the effect of faults on the program 
output. The simulated part of the program may include 
masking effects of both software and hardware layers. 
Comparing the system or the architectural state at the end of a 
portion will give an estimation that does not clearly belong to 
one layer of the system vulnerability stack. Stating that it 
corresponds to the full-system AVF may be inaccurate and 
misleading, since there is not enough evidence of the 
participation of incomplete program parts to the program’s 
final output. 

On the other hand, a clear separation of HVF and PVF can 
be achieved by stopping a simulation whenever a fault reaches 
an architectural visible resource [28] [29]. In [29], a software 
resource is defined as any independently-addressable 
architectural structure. This abstraction level raises several 
issues with the definition of PVF that are not clearly clarified, 
especially for memory structure estimations. Virtual memory 
complicates things significantly. Memory is indirectly accessed 
by the software, involving (in most cases) a hardware 
translation mechanism. A question that is hard to be answered 
is: Which portion of the virtual address space should be 
considered a software resource, the mapped one or the 
complete address space? For the mapped part, multiple 
addresses can correspond to the same hardware structure and 
many can be temporarily mapped to peripheral devices. From 
the HVF point of view, any valid cache line is a visible 
resource as long as the same line is not valid on a higher cache 
level. But an eviction caused by the microarchitecture can 
immediately change this condition and a fault that was 
characterized as software visible can turn to invisible, without 
software interference. 

To address such issues, we use a slightly different variant 
of the Hardware/Software vulnerability separation than HVF 
and PVF. Since both determine jointly the AVF, defining one 
also defines the other. For the software side we use the concept 
of instruction flow, to which we will refer as program flow. 
Program flow is a subset of software resources and limits the 
software bounds only to those resources that are actually used. 
This applies to both registers and memory. The program flow 
consists of: (i) the decoded instruction and its operands, (ii) the 
data transactions in both registers and memory, (iii) the 
program instruction order, and (iv) the execution time of each 
instruction (to monitor performance deviations). Therefore, an 
architecturally mapped register that is not used by the program 
and does not participate in the program flow is not considered 
to reach the software layer, in spite of the fact that it is part of 
the architectural state. 

Software masking can then be defined to express the 
probability that a fault which was involved on the instruction 
flow to be masked by the program. On the complementary 
hardware side, we define as hardware vulnerability the 
probability that a fault on a hardware structure reaches a visible 
point of the program flow. Therefore, unused hardware 
resources are characterized as masked on the hardware layer, 
even if part of them is mapped to architectural resources. 

B. GeFIN – A Gem5 fault injection framework 
In this work, we employ GeFIN, a microarchitecture level 

fault injection framework first presented in [16] built on top of 
the Gem5 simulator [3]. The framework consists of a modified 
Gem5 version that allows fault injection along with 
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instrumentation for running and controlling simulation 
campaigns. It supports all types of fault-models (transient, 
permanent and intermittent) in single or multiple fault 
configurations of any combination. In this paper, we focus of 
the use of GeFIN for transient single-bit faults. 

The GeFIN framework uses faultmasks to describe 
injection of faults. Each faultmask can include one or multiple 
faults for the simulation. It carries sufficient information to 
accurately target one or multiple component(s) at a given time 
or period. Each fault is described by: (i) thread id (cpu id), (ii) 
microarchitecture component, (iii) position within the 
component (bit granularity), (iv) fault model, (v) clock cycle of 
the occurrence, (vi) duration (for intermittent faults) and (vii) 
mask effect (bit flip, stuck-at 1, stuck at 0).  

GeFIN uses configuration presets. Each preset consists of 
attributes, such as the ISA, memory configuration, CPU core 
(in-order, out-of-order etc.), multicore setup, system setup, disk 
images, kernels etc. along with GeFIN attributes and a list of 
supported components for injections. New presets can be easily 
added to cover different requirements.  

A complete Fault Injection Campaign is initiated on GeFIN 
by selecting: (i) the configuration preset, (ii) the benchmark, 
(iii) the fault model, (iv) the number of faultmasks for the 
simulation and (v) the number of workers (spawned threads to 
work in parallel). Multiple campaigns can also be scheduled 
independently through an appropriate configuration file. 

When a simulation ends, GeFIN stores all its outputs for 
later processing. The fault effects classification phase is an 
offline process initiated (manually or automatically) after the 
end of an injection campaign. Since each configuration preset 
may produce different outputs, each preset is accompanied 
with its own default parser script for the classification phase. 
Different versions of the parser scripts can be used additionally 
to report different fault effect classes. 

The level of flexibility and ease of expansion that GeFIN 
introduces makes it a perfect candidate for our work. 

C. Fault simulation epochs 
There are three possible important events during a fault 

injection run that define different epochs of the simulation. The 
events are: 

• Fault Injection event. It corresponds to the time 
(cycle) of the bit-flip occurrence. 

• First access event. The first access of the faulty entry, 
which can be a read or write. This event may never 
happen during a simulation. 

• Visible fault effect event. The first visible effect of the 
fault on the program flow. This event can only occur 
after a read access of the fault. 

These three events define five different epochs of a fault 
injection run (see Fig. 1): 

Pre-fault epoch. The epoch starts with the simulation and 
ends at the time of the injection of the fault. The pre-fault 
epoch is out of interest for reliability estimation since it has no 
residing faults. The simulation is identical to the fault-free 
(golden) simulation. 
Idle epoch. This epoch starts at fault injection time and ends 
either on the first access of the faulty entry or at the end of 
simulation; whichever comes first. A fault has been injected 
into the system and resides silently unused during Idle epoch.  

Start EndFirst Access Fault Effect

Read

Injection

Inactive Epoch

Pre-fault 
Epoch

Idle
Epoch

Manifestation 
Epoch

Corruption 
Epoch

Case 1

Case 2

Case 3

Case 4
Read

Write

 
Fig. 1: Fault injection timeline illustrates the different epochs defined by the 
fault injection event, the first access of the faulty entry and the first program 
visible fault effect. In Case 1, the fault remains unused (no access); in Case 2, 
the fault gets overwritten before being read; in Case 3 the fault is read but its 
effect is software masked and in Case 4 the fault corrupts the program flow. 
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Fig. 2: Breakdown of the duration of the simulation epochs. 

Inactive epoch. The fault gets overwritten and no longer 
exists on the simulation. 

Manifestation epoch. The first access of the faulty entry 
marks the beginning of the Manifestation epoch. During this 
epoch, a fault has been accessed and can potentially harm the 
program flow.  

Corruption epoch. When a fault reaches the program flow, 
the Corruption epoch starts. From this point onwards, the fault 
resides in the software layer and may cause corruption of the 
program output, may crash the system or may be masked at the 
software layer.  

Idle and Manifestation are the most important epochs, since 
they contain the fault injection, fault propagation and fault 
effect events. Although the Manifestation epoch describes the 
complete lifetime of a fault before propagating to the program 
flow, Idle epoch is an important part of the simulation because 
it contains all the hardware access patterns related to if, when 
and where the fault will be used by the microarchitecture. The 
Idle and Manifestation epochs contain all the required 
information to characterize a fault effect for the hardware layer. 
However it must be pointed out that these epochs can also 
include parts of no interest. For instance, cases where a fault is 
initially propagated to the microarchitecture but then it gets 
hardware masked (e.g. due to a misspeculation and a pipeline 
flush). Such cases waste simulation time as the fault has no 
effect.  

It is important to note that the described epochs are 
determined only by the first occurrence of the three important 
events, which however may not depend on each other. This 
means that the first visible effect of a fault may be due to the 
second or third access of the fault and not necessarily the first. 
We have modified GeFIN to identify these events and 
determine the corresponding epochs.  
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Fig. 2 presents the duration of these epochs during the 
entire simulation timeline. The Pre-fault epoch consumes an 
average 49% of total simulation time with the Corruption and 
the Inactive epoch following with an average of 38%. We can 
also see that the most critical epochs for the effect of a fault 
(the Idle and the Manifestation) only hold an average of 13% 
of simulation time.  

The fact that only 13% of the baseline simulation time is 
enough to characterize the hardware vulnerability is the 
motivation of our work. Our efforts focus to reduce the 
simulation time only to the critical parts.  

D. Acceleration features 
In this subsection we will describe the new acceleration 

features integrated into GeFIN. The baseline tool presented in 
[16] was enhanced to monitor and detect the events and 
successfully identify the epochs described in the previous 
section. By knowing which epoch the simulation is going 
through, the corresponding acceleration potential is 
automatically revealed. Each epoch has some special attributes 
to which the simulator can adapt and either reduce some of the 
monitoring overhead, or even apply more aggressive 
approaches, such as fast forwarding or fault effect prediction.  

The features are separately described as direct features, the 
ones that lead to pure acceleration without any loss of accuracy 
in the vulnerability measurements; and indirect features, which 
can further reduce the simulation time significantly but can 
lead to some loss of accuracy in the vulnerability 
measurements. All these features can be independently enabled 
or disabled, giving the flexibility of different combinations, 
according to the estimation requirements of a particular 
campaign. 

1. Direct Features 
Enhanced checkpointing and fast-forwarding. The Pre-

fault epoch does not contain any faults and thus, it is out of 
interest for the reliability assessment. Each GeFIN run is aware 
of the fault injection time and therefore can eliminate the Pre-
fault epoch by starting simulation from the point of the fault 
injection. Checkpointing is a widely known method employed 
to skip insignificant parts of the simulation and fast-forward 
the execution of a program. However, checkpoints come at a 
cost. The loss of microarchitectural state cannot be ignored, 
especially when considering large trained components, such as 
cache memories. This is the reason why checkpoints are 
usually accompanied with warm-up intervals.  

To address this accuracy loss, we have enhanced Gem5 
checkpoint infrastructure to also include the state and data of 
all cache memories. This significantly reduces the loss of 
microarchitectural state and allows direct restoring of 
checkpoints, without the requirement of warm up. With the 
enhanced checkpoints, we can completely skip the Pre-fault 
epoch with a minimal deviation of the final vulnerability 
estimations, caused by the minimal pipeline detail loss (which 
is measured to less than 1 percentile point). 

Early stop on overwrite/invalid. Injected faults that get 
overwritten before being read cannot harm the system state and 
they can be considered as masked prior to the completion. The 
same applies to faults injected in inactive (invalid) structure 
entries, which will be overwritten upon allocation. The epoch 

that follows the overwriting is the Inactive epoch, which can be 
safely discarded (simulation stops). 

Skipping the Inactive epoch can save up to 50% of a 
campaign time without any impact on the final result. GeFIN 
was enhanced to recognize Inactive epochs and stop the 
simulation, marking the injected fault as masked. 

2. Indirect features  
Early stop on program corruption. This feature aims to 

skip the entire Corruption epoch. By monitoring the instruction 
commit flow, in terms of static instructions, operands, data 
transactions and time, we can detect changes on the expected 
program flow. Any kind of mismatch that is observed to the 
program flow marks the fault effect event. Stopping at that 
time, changes the observation point of the simulation result and 
limits the AVF estimation only to the hardware portion, as 
described in Section II.A. If this feature is enabled during an 
injection campaign the software masking portion of AVF is 
ignored. This is a useful feature when the hardware 
vulnerability report it delivers is combined with a software 
vulnerability estimation (using for example a functional 
simulator and software-level fault injections). 

GeFIN was expanded with the capability to monitor and 
compare on-line the commit stage of the processor and stop on 
the first mismatch of the program flow. An initial fault-free 
execution is used to produce the correct instruction trace, 
which is then supplied to the campaign workers for on-line 
comparison.  

Early switch to functional emulation. Unlike the previous 
features that target to skip portions of the simulation, early 
switch intends to fast-forward an epoch, in particular the 
Corruption epoch. Gem5 supports different operation modes. 
Among others, it includes simple functional CPU models 
which have no microarchitectural details and operate at a 20x 
higher throughput than the detailed models.  

Following the early stop on program corruption feature, 
and considering that Gem5 supports switching to the functional 
model at any time, the missing software vulnerability part of 
the complete AVF estimation for that particular experiment can 
be measured using the same tool. By switching to emulation 
mode, we can move the observation point at the end of the 
program execution and report the complete AVF measurement. 
The source of potential accuracy losses is only the possibility 
that the fault would cause further problems after its first visible 
effect; switching to emulation will only capture this effect on 
the final output. However, our results (Section IV.B) show that 
these cases are rare and barely have any impact on the final 
fault effects classification. 

Start EndFault EffectInjection

Man. limit

Man. limit + switch

Idle limit

Idle limit + switch

Read

Read

Early limit Early limit
Functional 
Emulation

End

End

 
Fig. 3: Effect of Manifestation early limit and Idle early limit individually or 
combined with early switch feature. 

Early limit. This feature is used to stop the simulation 
early after the first access of the faulty entry. It condenses the 
manifestation epoch to a user-defined amount of time, during 
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which the fault has the opportunity to manifest itself. This 
feature is intended to be used along with fault effect prediction. 
In Section III we present how we can effectively use prediction 
to get high acceleration with minor loss of accuracy, depending 
on behavior patterns of some hardware structures.  

Early limit comes also in an alternative form aiming to 
condense the Idle epoch. This form of the feature is only 
recommended for use in strict campaign time constraints. 
When employed, it can lead to significant loss of accuracy 
since it adds a large number of unknown cases. However, it can 
be combined with early switch to indicate a switch instead of 
stop after the defined time.  

Fig. 3 illustrates how early limit and early switch features 
apply to the simulation timeline. 

III. WORKLOAD STUDIES 
Although skipping uninteresting epochs and stopping 

earlier can be effective for speeding up the vulnerability 
estimation, the simulation still doesn’t completely focus on 
critical parts of the fault simulation timeline. As we already 
mentioned, the Idle and Manifestation epochs also include 
masked cases. In the workloads study of this section we 
investigate component behaviors in order to detect and stop 
simulations that have little or no chances to report any fault 
effects. At this point, it is important to mention that there is a 
fundamental difference between components in the pipeline 
(e.g. register file) and components out of it (e.g. cache 
memories). Allocated pipeline resources have a very short 
residency time and hence, very small Idle epochs, while on the 
other hand, memory entries (especially in lower levels) may 
even never be used again (long Idle or Manifestation epochs). 

Using a very extensive simulation-based study, we 
collected a set of interesting observations that reveal 
opportunities for further speeding up the vulnerability 
estimation process. Our benchmarks base consists of 10 
benchmarks (see Section IV.C), simulated for 5 hardware 
components in 2 different ISAs with 2,000 faults injected per 
component. This corresponds to 40,000 injections for each 
component (20,000 injections per ISA).  

This section presents the fault effect patterns observed in 
our study for different hardware components and can be taken 
into account for predicting the effects of faults significantly 
earlier.  

Register file. Out-of-order processors come in two flavors: 
The traditional Reorder Buffer & Architectural register file 
concept, where the ROB also holds the data for the pending 
dynamic instruction values, and the Physical register file & 
Active List (ROB term is also commonly used) scheme, where 
all data is stored to the physical register file and the ROB 
contains pointers to those resources. Both approaches have 
pros and cons and both can be found in modern processor 
chips. Gem5 uses the latter approach on its out-of-order core, 
with a Physical register file combined with a rename map to 
indicate the current up-to-date committed values for the 
architectural registers.  

Allocated resources in the physical register file come at two 
different types: architectural and dynamic. In a typical case, 
the physical register file has allocated at a minimum the 
number of architectural registers (along with any micro-
implementation static registers; e.g. Fault handling, ALU side 
utility etc.) at any time, and from that point on, it additionally 

allocates resources for the in-flight dynamic instructions. Each 
dynamic instruction usually allocates two source and one 
destination registers. Upon renaming, the real dependencies are 
resolved and the operands of static instructions may change to 
temporal resources. The order is restored upon commit (alt. 
retire) stage and the rename map is updated to the current 
architectural values. We will use the terms dynamic registers 
and architectural registers to express the nature of the 
allocated resource in the physical register file.  

The fundamental difference between architectural and 
dynamic registers is their residency time. Dynamic registers 
remain active as long as their instruction lives inside the 
pipeline (usually a few clock cycles) while on the other hand, 
architecturally mapped registers are part of the program state 
and may be used millions of cycles later, or even not used at 
all. This implies that any fault in a dynamic register has a short 
window of opportunity to lead to a state corruption. Our 
experimental sample of 40,000 injections confirms that all of 
the faults that hit dynamic registers and led to a state 
corruption, did reach a visible point in the program flow in less 
than 500 clock cycles, indicating a safe point of time to stop 
the simulation without loss of accuracy.  

The architectural registers on the other hand do not follow 
this behavior pattern. In fact, each ISA reports different 
behavior and thus, our analysis is separated on an ISA basis.  

ARM ISA defines 31 architectural registers, 16 for the used 
mode and 15 for the FIQ, IRQ, SVC, Undefined and Abort 
modes. In addition, Gem5 implementation also includes 12 
microarchitectural registers, totaling up to 43 entries in the 
rename map.  

The hardware vulnerability of architectural registers is 
presented in Fig. 4 (top). The Stack Pointer of SVC, ABT and 
IRQ modes seems to be highly critical (100% vulnerability) 
while the Link Register in these modes is not critical and 
always gets masked (0% vulnerability). The diagram does not 
include the 12 micro-architectural registers (due to space 
limitations) that are also held in rename map, which also have 
a similar trend in severity: some are highly critical and others 
are not critical at all. It is important to mention that these 
behaviors highly rely on the system platform. A system that 
uses Fast Interrupts would have different vulnerability 
compared to our system that does not use the FIQ mode at all. 

The lower diagram of Fig. 4 shows how long it takes before 
a fault in each of the registers becomes visible on the program 
flow (hardware vulnerability). This time is equal to the 
duration of the Manifestation epoch. All registers (except for 
the different mode ones) have a Manifestation epoch of less 
than 10,000 clock cycles for more than 90% of the cases. The 
remaining mode registers have a standard trend on their 
vulnerability (as shown on the upper diagram of Fig. 4). In 
summary, we can conclude that it could be enough to stop 
simulation 10,000 clock cycles after the first fault access and 
only lose less than 10% of the corrupted cases. Considering 
that the register file vulnerability is estimated approximately at 
around 5% (see next section), the inaccuracy of this under-
estimation will be less than 0.5 percentile points.  
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Fig. 4: ARM ISA. Red color is used for the registers with long Manifestation 
epochs and Green for the rest (top) Hardware vulnerability per architectural 
register (bottom) manifestation epoch length per architectural register 

x86 ISA is a CISC ISA that supports more complex 
operations and direct memory operations. Fig. 5 shows the HW 
vulnerability of x86 registers and the Manifestation epochs 
duration of the x86 ISA. Unlike ARM, in x86 ISA there are no 
clear trends. The special purpose registers (RSP, RBP, RDI, 
RSI) have a relatively consistent behavior and tend to have a 
Manifestation epoch of 10,000 cycles for more than 90% of the 
cases. In contrast, for the same period, the percentage of the 
remaining general purpose registers is between 70% and 90%.  

In practice, x86 is less “friendly” to this estimation 
approach, as it will lead to a larger number of unresolved 
corruptions for the same early-limit, compared to the ARM 
ISA. 

Load-Store queue. The Load-Store Queues are pipeline 
components with short residency time. The role of LSQ is to 
support the Load-Store dependency resolution for the in-flight 
memory instructions. Store queue also holds data along with 
the referred address which is then forwarded to the memory 
hierarchy.  

A similar timing analysis on the LSQ reveals that all the 
corrupt cases reached the program flow in less than 500 clock 
cycles. The Manifestation epoch for the corrupt cases is very 
short and thus, the possible estimation loss (if any) that will 
occur with early stopping will be virtually zero.  

Instruction & Data cache. Instruction cache is exploited 
by the CPU front-end, the fetch stage. Requests that come from 
the instruction port either follow the program flow or, in cases 
of control instructions, are predicted by the branch prediction 
units. In both cases, the incoming memory block contains 
instructions with high probability to be used, due to locality 
and accurate branch prediction. This further implies that a 
faulty fetched cache block is very likely to be used by the core. 
The upper diagram of Fig. 6 presents the Manifestation epoch 

of the corrupt cases for the instruction cache, per benchmark. 
We can observe a clear trend, similar to the pipeline-structures, 
but with longer Manifestation epochs. All benchmarks follow 
similar trend lines, with 90% of corruption cases to appear in 
less than 100,000 clock cycles. 
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Fig. 5: x86 ISA. Blue is used for special purpose, Red for general purpose and 
Green is used for double purpose registers. (top) Hardware vulnerability 
(bottom) manifestation epoch length per architectural register. 
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Fig. 6: Manifestation epochs duration for the L1 instruction and data cache, 
per benchmark. 
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Data cache requests on the other hand are guided by 
memory operations of the program flow, mispeculated load 
instructions, prefetching and unresolved load/store 
dependencies. Unfortunately, there is no standard ratio among 
these sources of data cache requests and the workload itself can 
have a severe impact on each one of them. We have 
experimented using functional cores against the detailed for 
cache memory vulnerability estimation and the results 
reinforced the argument that speculation can severely affect the 
measurements. Data cache accessing is highly unpredictable 
and this is also observed in the lower diagram of Fig. 6. Our 
analysis did not identify clear behavior patterns for the cache 
memories that would reveal any acceleration potential for the 
early stop features of our fault injection framework.  

L2 cache. The unified second level of cache memory has 
similarities with L1 cache. It includes both data and instruction 
blocks and behaves accordingly, similar to the corresponding 
L1 cache. The data part is highly unpredictable similarly to the 
L1 data cache. However, the findings of the L1 instruction 
cache also apply for L2. Instructions in L2 follow the similar 
but more slackly trend lines than L1 instruction cache and are 
normalized above 80% on a Manifestation epoch of 100,000 
clock cycles. Considering that the number of corruptions in the 
L2 that were caused because of faults in instruction blocks is 
very small (see the experimental results section), the loss of 
accuracy is marginal. 

TABLE I summarizes the conclusions that can be extracted 
by our workload analysis. These conclusions are provided as 
input for the parser in order to be used for result prediction of 
early-stopped cases. 

TABLE I: WORKLOAD ANALYSIS CONCLUSIONS 
Component Comments 

Register File 

Faults in dynamic registers reach the program flow in less 
than 500 clock cycles. It is safe to consider a simulation as 
masked after 1000 clock cycles. 
Architectural registers are significantly different. For the 
ARM ISA, if the fault hits a mode SP register, it can be 
considered as corruption. If the fault hits a mode RA 
register, it can be considered as masked.  
90% of the corruptions in the general purpose registers 
appear in less than 10,000 clock cycles. 
For the x86 ISA there are no safe guidelines. Special 
purpose registers tend to follow a pattern, with 90% of the 
corruptions to appear in the first 10,000 clock cycles. The 
remaining registers have smaller percentages that range 
between 70% and 90%, for the same Manifestation epoch. 

LSQ 
Program flow corruptions appear in less than 500 clock 
cycles. It is safe to consider a fault as masked after 1000 
clock cycles in the Manifestation epoch. 

Instruction 
cache 

All benchmarks follow steady trend lines, with more than 
90% of the corruptions to appear in less than 100,000 clock 
cycles. Stopping after 100,000 clock cycles and assuming 
that 10% of the corruptions was missed.  

Data cache The component is highly unpredictable and no assumptions 
can be drawn to make early predictions of the fault effect.

L2 

The unified L2 cache follows similar trends with the
instruction cache for instruction cache lines. Data cache 
lines in the L2 are unpredictable similarly to the L1 data 
cache.  

IV. EXPERIMENTAL RESULTS 
The enhanced GeFIN framework offers a variety of fault 

injection acceleration features that can be used individually or 
combined. In this section we present the results of our 
experiments for different combinations of these features and 

how the final vulnerability estimation as well as the campaign 
throughput is affected compared to the baseline fault injection 
without the new features.  

A. Experimental Setup 
Our GeFIN framework can perform two types of 

vulnerability estimation: complete AVF estimation and 
Hardware vulnerability estimation (as described in Section 
II.A). Our experimental setup includes 4 different 
configurations for each mode, for a total of 8 sets of simulation 
campaigns. TABLE II summarizes the features that were 
enabled for each preset.  

The choice of the configuration intends to show the tradeoff 
between accuracy and performance. Most of the acceleration 
features introduce some inaccuracy on the final outcome and 
thus, we expect the configurations with the most acceleration 
features enabled to be also the most inaccurate.  

TABLE II: GEFIN CONFIGURATIONS 

Acronym AVF  
measurement 

Hardware vulnerability
measurement

Baseline 
 Baseline fault inject  Early stop on program 

corruption 

Early  Early stop on overwrite  Early stop on overwrite 

Early-Fwd 
 Fast forwarding 
 Early stop on overwrite 

 Fast forwarding 
 Early stop on overwrite 

Early-Fwd-Sw 

 Fast forwarding 
 Early stop on overwrite 
 Early switch after 

100,000 cycles 

 Fast forwarding 
 Early stop on overwrite 
 Early stop after 100,000 

cycles 

B. Fault effect classification 
Each fault injection run is classified depending on the effect 

that the fault had on the program execution. Since the 
observation point is different in the AVF measurements and the 
hardware vulnerability measurements, each mode has different 
classes to characterize a fault. 

The AVF measurement campaigns have a finer grained 
fault effect classification which consists of 5 classes: 

Masked: Complete program execution with no deviations 
from the fault-free simulation. The fault did not affect the 
system or the application in this class. The results of a masked 
simulation is identical to the fault-free simulation 

Silent Data Corruption (SDC): Complete program 
execution where the program output was different compared to 
the fault-free simulation, without any observable indications of 
this effect.  

Crash: A simulation that did not reach the end of the 
program, as it was disturbed by a catastrophic event. The crash 
may refer to process crash (killed process) or system crash 
(kernel panic). 

Assert: A simulation that was unexpectedly terminated due 
to a simulator failure. If the simulator crashes or reaches a high 
level condition that it is unable to handle, it raises an assertion 
to stop the simulation. 

Timeout: Includes all cases where the simulation did not 
finish within a certain amount of time (that equals to 4x the 
fault-free execution time). Simulations are stopped to solve 
possible deadlock or livelock situations. 

The Hardware vulnerability measurement campaigns, on 
the other hand, have only 2 classes of fault effect classification: 
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Masked: The fault did not reach the program flow until the 
end of simulation. 

Corrupt: A mismatch was detected on the program flow 
compared to the fault-free trace. The mismatch could be on the 
instruction, operands, data transactions or program order. 
Performance deviations are ignored in this particular setup. 

C. Benchmarks 
In our experiments we use a subset of MiBench 

benchmarks suite [13]. These are: FFT, djpeg, stringsearch, 
smooth, edge, corners, sha, qsort, cjpeg, rijdnael. 

The suite is commonly used in reliability studies [12] [16] 
[17] [23] [34], since it contains benchmarks from different 
application domains that also have similar instruction mixes, 
with SPEC benchmark suite [13]. The validation of our toolset 
requires complete executions for comparison with AVF 
estimation. The MiBench suite is the perfect candidate due to 
the small execution times of the programs which permits a 
large number of fault injections.  

D. Reliability Measurements 
Fig. 7 and Fig. 8 present the fault effects classifications for the 
AVF measurements and the hardware vulnerability 
measurements, respectively, for the different GeFIN 
configurations using the ARM and the x86 ISA. As expected, 
the Baseline and Early configurations have identical 
estimations as they only skip 100% masked Inactive epochs 
and don’t suffer any accuracy loss. Early-Fwd configuration 
shows that the integration of the cache memories states to the 
checkpoint mechanism of Gem5 significantly improves the 
accuracy, however we can see that x86 ISA is more affected by 
the microarchitectural state loss caused by the fast forwarding. 
Early switching capability seems to fail in some cases for the 
LSQ. This is due to the fact that store instructions may be 
forwarded to the memory hierarchy after the instruction 
commits; the LSQ entry is marked as “ready to write back” and 
the store is forwarded to the memory hierarchy as long as the 
cache port is available. If the store is blocked due to other 
pending stores, the instruction will not stall the back end and 
will get committed. At that point, the LSQ entry may get 
detached by the committed instruction, which no longer exists 
in the pipeline. Switching to emulation mode with this situation 
raises assertions because the architectural state is not 
synchronized with the CPU core and fails to drain. This 
explains the large percentage of assert cases for the LSQ. 

Hardware vulnerability measurements on the other hand 
introduce the fault effect prediction concept that is based on the 
analysis presented at Section III. The results show that the 
approach can be potentially used for components with steady 
behavior patterns, such as register file, LSQ or Instruction 
cache. In components with unpredictable behavior like the L1 
data cache and the L2, results show a large loss of accuracy. 

TABLE III summarizes the configuration fault effect 
measurement deviations in percentile units (vulnerability 
expressed as summary of the not-masked classes). The most 
interesting finding is that the switching to emulation mode after 
a program flow corruption or the 100,000 cycles limit seems to 
have small impact on the overall vulnerability estimation. This 
applies especially to the cache memories, where we could not 
identify trends on the behavior and get close estimations using 
prediction. 
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Fig. 7: Fault effects classification for the (top) ARM ISA and (bottom) x86 
ISA for AVF measurements for the different modes of operation of the fault 
injector. 
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Fig. 8: Fault effects classification for the (top) ARM ISA and (bottom) x86 
ISA for the hardware vulnerability measurements for the different modes of 
operation of the fault injector. 
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TABLE III: AVERAGE VULNERABILITY DEVIATIONS COMPARED TO THE 
BASELINE. 

C
om

p GeFIN 
Configuration 

AVF deviation 
Hardware 

vulnerability 
deviation 

ARM x86 ARM X86 

I$
 Early 0 p.u. 0 p.u. 0 p.u. 0 p.u. 

Early-Fwd 0.16 p.u. 1.86 p.u. 0.57 p.u. 3.58 p.u. 
Early-Fwd-Sw 0.59 p.u. 2.58 p.u. 0.26 p.u. 3.70 p.u. 

D
$ 

Early 0 p.u. 0 p.u 0 p.u. 0 p.u 
Early-Fwd 0.36 p.u. 1.86 p.u 0.34 p.u. 4.1 p.u 

Early-Fwd-Sw 0.16 p.u. 2.02 p.u 20.8 p.u. 24.9 p.u 

L2
 Early 0 p.u. 0 p.u 0 p.u. 0 p.u 

Early-Fwd 0.03 p.u. 0.37 p.u 0.01 p.u. 0.77 p.u 
Early-Fwd-Sw 0.38 p.u. 0.15 p.u 4.29 p.u. 5.93 p.u 

R
eg

 Early 0 p.u. 0 p.u. 0 p.u. 0 p.u. 
Early-Fwd 0.19 p.u. 0.03 p.u. 0 p.u. 0.2 p.u. 

Early-Fwd-Sw 0.51 p.u. 0.15 p.u. 0.19 p.u. 0.1 p.u. 

LS
Q

 Early 0 p.u. 0 p.u. 0 p.u. 0 p.u. 
Early-Fwd 0.03 p.u. 0.64 p.u. 0.21 p.u. 1.84 p.u. 

Early-Fwd-Sw -- -- 0.19 p.u. 1.84 p.u. 

E. Fault simulation throughput  
The major outcome of this paper is to successfully 

accelerate the fault injection based vulnerability estimation. 
Fig. 9 presents the average simulation time speedup of each 
configuration for the two types of vulnerability measurements 
(AVF measurements and hardware vulnerability 
measurements). Each feature of GeFIN delivers a speedup that 
depends on the duration of the epoch it targets. Enhanced fast 
forwarding for instance aims to skip the Pre-fault epochs. Pre-
fault epoch occupies 49% of the total simulation time and 
therefore, the ideal performance benefits of skipping this epoch 
is up to 2x speedup. This is observable on the speedup graphs, 
where the modes that have fast forwarding enabled report more 
than 1.8x speedup (the expected speedup gain with 10 
checkpoints that was used in our experiments). 

We can observe the simulation performance gains of the 
newly presented features of GeFIN. Pipeline components 
benefit the most of the implemented techniques, while the AVF 
Early-Fwd-Sw mode offers the best balance between accuracy 
and acceleration, by achieving an average speedup of 4.4x and 
deviating from the baseline fault injection AVF measurement 
at less than 0.5 percentile points on average (apart from the 
LSQ).  

On the hardware vulnerability estimation, we can see that 
Early-Fwd-Sw mode speeds up the simulation at an average of 
6x for the register file and the LSQ, which are also the 
components with the greatest accuracy for the configuration. 
The L2 and L1 instruction caches obtain a 2.9x speedup for the 
Early-Fwd mode and at the same time report deviations of less 
than 0.4 percentile points on the classification. 

An observation that is not visible on the presented graphs is 
that longer benchmarks tend to benefit more from the 
acceleration features of GeFIN, and this is due to the fact that 
the instrumentation part of the simulation remains the same.  

V. CONCLUSION AND FUTURE WORK 
In this work, we propose several acceleration techniques for 
fault-injection based reliability estimation at the 
microarchitecture level. By analyzing the lifetime of a fault 
injection simulation, we are able to extract behavior patterns 
that can be used for stopping simulations earlier and predicting 

the effect of faults. We have implemented all of the described 
techniques on the GeFIN fault injection framework and our 
experimental results show that the proposed methods maintain 
high accuracy in the vulnerability measurements while offering 
significant simulation speed up for certain components.  
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Fig. 9: Fault injeciton campaigns speedups compared to baseline per 
configuration. (top) for AVF measurements; (bottom) for Hardware 
vulnerability measurements. 

Among the presented techniques, the combination of early 
stop on overwrite, early stop on program corruption, enhanced 
fast forwarding and early switching to emulation offers the 
most efficient tradeoff between accuracy loss and simulation 
speed up. We have also concluded that some of the techniques 
are not applicable for certain components, such as the data 
cache, and further improvements are required. The long Idle 
epochs that are detected in these components indicate that a 
profiling process is required to efficiently evade injection on 
unused resources. 
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