
 A tool for the reliability analysis of NAND Flash based SSDs March 2016

Contact Us

Stefano Di Carlo
Phone: +39 011 0907080 Fax: +39 011 0907099

Email: stefano.dicarlo@polito.it

Politecnico of Turin, Department of Controls and Computer Engineering
Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Product Overview
NAND Analyzer is a product for design analysis of NAND Flash based
Solid State Drives (SSDs). In includes models to assess:

• Flash memory error rate prediction based on the workload
• Wear-out analysis
• ECC scheme analysis.

FP7-CLERECO
Grant Agreement FP7-611404

“Evaluate error-rate

and lifetime of your

SSD storage system “

- Testgroup (Polito)
Extensions & Tools

▪ Workload based
characterization

▪ Different ISPP programming
algorithms

▪ Different ECC configurations
▪ Support for YAFFS2 file

system

Target Components
▪ SLC NAND Flash Memories
▪ MLC NAND Flash Memories

Supported Fault Models

✓ Intermittent
✓ Permanent

Measurements
▪ Bit Error Rates
▪ Timing
▪ Power consumption
▪ Full statistics report

NANDANANDA

How To Use NAND Analyzer
• Configure your SSD

characteristics
• Explore different design

dimensions

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:21

1 10 100 1000 10000 1e+005
PE cycles

2500

3000

3500

4000

4500

5000

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

]

ISPP - SV, UBER=1e-11
ISPP - SV, UBER=1e-13
ISPP - SV, UBER=1e-15

Fig. 17. Videoserver throughput with ISPP-SV program. t at different target UBER

1 10 100 1000 10000 1e+005
PE cycles

3500

4000

4500

T
hr

ou
gh

pu
t [

O
pe

ra
tio

ns
/s

] ISPP - DV, UBER=1e-11
ISPP - DV, UBER=1e-13
ISPP - DV, UBER=1e-15

Fig. 18. Videoserver throughput with ISPP-DV program. t at different target UBER

exploiting the ISPP-RV prog. t (Fig. 16) and the ISPP-SV prog. t (Fig. 17) writing al-
gorithms, that provide reduced reliability compared to the ISPP-DV prog. t algorithm,
the ECC subsystem is particularly stressed to guarantee error-free data during the
intensive read activity of the application. Since the ECC correction capability must be
increased with the flash aging, the throughput of the application with these two al-
gorithms decreases over time. Differently, when considering the ISPP-DV prog. t, the
high reliability of this algorithm strongly relaxes the ECC requirements. This strongly
improves the read throughput of the flash at the cost of a decreased write through-
put. Write operations become therefore critical for this operation mode and overall the
throughput of the application decreases. Nevertheless, it is interesting to note that
since the write performance of the flash increases with aging (see Fig. 4e) we observe
a slight improvement in the performance of the application at the end of the flash life-
time. Considering the increased reliability service the target choice will be between
ISPP-SV prog. t and ISPP-DV prog. t. In both cases switching to a higher reliability
level does not introduce major penalties in the performances. However, ISPP-DV prog.
t guarantees performances that are more constant over the full flash lifetime. This
could be a benefit especially when real-time applications are considered. When mov-
ing to the reduced reliability service, instead the choice can be between the ISPP-RV
prog. t and ISPP-SV prog. t. In this case however the choice is a trade-off between
performance and memory endurance.

Finally, Fig. 19 reports how the reliability of the memory sub-system can now be
traded for the reduced power consumption. In power savings scenarios the function-
alities of the system need to be preserved in order to either prolong battery life for
portable and embedded systems or to reduce cooling issues in high performance com-
puting systems. Under such conditions the quality of service (QoS) of a target appli-
cation (i.e., video playback) can be degraded to a minimum acceptance level. This is

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 21 of 25 Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs

Performance and Reliability Analysis of Cross-Layer Optimizations of NAND Flash Controllers A:17

cide which memory access mode to use at run-time is mandatory. While a complete
discussion of this topic is out of the scope of this paper a set of preliminary insights
can be provided here. There are essentially two factors that must be considered, at
run-time, to properly select the optimal flash storage options: (i) the application relia-
bility/performance/power requirements, and (ii) the memory aging.

The first factor is static for a given application or for selected portions of data of
an application. Even if not straightforward, applications can be carefully profiled in
order to assign different reliability/performance/power requirements to the different
set of data they manage. The application profile can be then exploited to choose the
best storage service for each type of information.

We envision in this paper to split the flash memory into different partitions provid-
ing different storage services according to Fig. 12.

StorageI/O
requests$

Storage$service$

Flash&file&system&

R/W$flash$API$ PagePEstatus$cache$

PE$vs.$ECC$correcQon$
capability$hash$table$

OS&

Applica8on&

Driver&
Flash$access$

mode$

Access$mode:$
Write$alg.$
ECC$corr.$cap.$

Flash&controller&
ECC$correcQon$capability$

Flash$write$algorithm$

PageECCPE$

PageECCPE$

PageECCPE$

High<performance$
Low<reliability$
ISPP<RV$

Low<performance$
High<reliability$
ISPP<DV$

Mid<performance$
mid<reliability$
ISPP<SV$

Flash&memory&
So<ware&layer&

Hardware&layer&

Fig. 12. Exporting storage services to the software layer.

The flash filesystem can therefore be extended in order to provide dedicated API to
request different classes of storage services and to properly redirect the data to the
partition implementing the requested access mode. Each application can be then in-
strumented in order to request for each flash memory access the storage service that
is more suited for the specific data that is going to be accessed. A single application
can therefore benefit from data stored in different partitions with different services
in order to optimize the overall reliability/performance. Moreover, considering a dif-
ferent scenario, the choice of the target service may be also handled by the operating
system to shield the user from details of the hardware implementation and to avoid
erroneous selection of the target service. The operating system may be delegated to
select different access modes for an application by exploiting routines that continu-
ously analyze the behavior of the application in order to determine the optimum per-
formance/reliability/power trade-off configuration for the problem, and supervise the
program execution. Using program instrumentation gives the programmer flexibility
in choosing the system configuration needed for a particular non-functional require-
ment, while, the implicit approach reduces programming effort and speeds up program
development.

While for a given access mode the selected programming algorithm is in general
constant over the memory life-time, the ECC correction capability must be continu-
ously tuned at run-time to compensate for the memory aging. Several models in the
literature correlate the RBER of a page to the number of performed PE cycles [Sun
et al. 2011], and enable to build models fitted on experimental data to compute the
best ECC correction capability to apply when a page is programmed. If the PE count

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 17 of 25 Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs

A:16 D. Bertozzi et al.

programming algorithms in fresh devices. On the one hand this means that the RT
improvement with respect to the reference case will be achieved only after hundreds
of PE cycles. On the other hand, this also means that in fresh devices the WT can be
broadly modulated at marginal RT penalty. Overall, Fig. 10 shows a usage model of
the access modes: the correction capability is used to preserve a target UBER over the
flash life, whereas the programming algorithm is used to trade the WT with the RT. At
a given PE cycle a higher RT can be achieved by switching the programming algorithm
(i.e., from ISPP-SV prog. t to ISPP-DV prog. t), and the ECC correction capability (since
ISPP-DV needs a lower t to preserve the target UBER with respect to ISPP-SV). The
WT can be traded-off similarly. Regardless the selected programming algorithm, Fig.
10b clearly shows that for most of the memory life the non-adaptive approach produces
a significant device under-utilization from the RT standpoint.

Other usage models are clearly feasible. For instance, switching from ISPP-SV prog.
t to ISPP-DV prog. t, while keeping t unchanged, minimizes the UBER beyond 10�13

leaving the RT unaltered at the cost of the WT. Similarly, switching to ISPP-RV progr.
t achieves a WT improvement. If at the same time we decrease t the UBER is largely
degraded while the RT is improved. Otherwise with a constant t the UBER is degraded
to the lower extent but RT is unaltered. Finally, the upper-left access mode in Fig. 9
can be used in those cases where an ultra-low power operating mode is required while,
at the same time, largely degrading UBER and therefore application-perceived low
reliability are accepted. Approximately storage of data to improve performance when-
ever high-precision storage is not required has been already investigated in previous
studies [Sampson et al. 2013] and the considered service represents a very efficient
way for its implementation. In contrast, the lower-right access mode in Fig. 9 provides
the best achievable reliability at the cost of increased power consumption and largely
degraded performance.

Fig. 11 summarizes the way UBER can be tuned by selecting different ECC correc-
tion capability or programming algorithm. Values in the figure are computed consid-
ering the RBER of the flash at 10,000 PE cycles, i.e., quite late in the flash lifetime.
Similarly to the performance characterization, Fig. 11 shows that we can achieve im-
portant trade-offs in the reliability of the access modes, with the possibility of varying
the UBER of the NVM system of several orders of magnitude.

1 10 20 30 40 50 60 70 80 90
Correction capability (t)

1e-018

1e-016

1e-014

1e-012

1e-010

1e-008

1e-006

1e-004
1e-003

U
B

E
R

ISPP - RV
ISPP - SV
ISPP - DV

Fig. 11. Trade-off on the storage reliability by selecting different programming algorithms and different
ECC correction capability. UBER is computed at 10,000 PE cycles of the flash.

4.2. Implementation of the access modes
In order to properly exploit the advantages provided by the combined adaptation of
the flash programming algorithm and the ECC correction capability, a strategy to de-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Page 16 of 25Transactions on Embedded Computing Systems

http://mc.manuscriptcentral.com/tecs

