
Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 1 of 30

Version 1.5 – 05/08/2014

Project Number: FP7-611404

Software impact on System Reliability:
Metrics and Models

Authors

A. Savino, G. Di Natale, A. Bosio, M. Kooli, S. Di Carlo, G. Gambardella, D. Gizopoulos,
N. Foutris, S.Tselonis, M.Kaliorakis, F. Reichenbach, A. Grasset, T. Loekstad, R. Canal

Version 1.5 – 05/08/2014

Lead contractor: Politecnico di Torino

Contact person:

Alessandro Savino
Control and Computer Engineering Dep.
Politecnico di Torino
C.so Duca degli Abruzzi, 24 I-10129 Torino TO Italy

Tel. +39-011-090.7198

Fax. +39-011-090.7099
E-mail: alessandro.savino@polito.it

Work package: WP4

Affected tasks: T4.2, T5.1

Nature of deliverable1 R P D O

Dissemination level2 PU PP RE CO

1R: Report, P: Prototype, D: Demonstrator, O: Other

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 2 of 30

Version 1.5 – 05/08/2014

COPYRIGHT

© COPYRIGHT CLERECO Consortium consisting of:

• Politecnico di Torino (Italy) – Short name: POLITO
• National and Kapodistrian University of Athens (Greece) - Short name: UoA
• Centre National de la Recherche Scientifique - Laboratoire d'Informatique, de Ro-

botique et de Microélectronique de Montpellier (France) - Short name: CNRS
• Thales SA (France) - Short name: THALES
• Yogitech s.p.a. (Italy) - Short name: YOGITECH
• ABB (Norway) - Short name: ABB
• Università politecnica della Catalogna (Spain) – Short name: UPC

CONFIDENTIALITY NOTE
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED, OR MODIFIED IN WHOLE OR IN

PART FOR ANY PURPOSE WITHOUT WRITTEN PERMISSION FROM THE CLERECO
CONSORTIUM. IN ADDITION TO SUCH WRITTEN PERMISSION TO COPY, REPRODUCE, OR

MODIFY THIS DOCUMENT IN WHOLE OR PART, AN ACKNOWLEDGMENT OF THE
AUTHORS OF THE DOCUMENT AND ALL APPLICABLE PORTIONS OF THE COPYRIGHT

NOTICE MUST BE CLEARLY REFERENCED

ALL RIGHTS RESERVED.

2PU: public, PP: Restricted to other program participants (including the commission services), RE Restrict-

ed to a group specified by the consortium (including the Commission services), CO Confidential, only for members of the consor-
tium (Including the Commission services)

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 3 of 30

Version 1.5 – 05/08/2014

 INDEX

COPYRIGHT .. 2	

INDEX .. 3	

Scope of the document ... 4	

1. Introduction ... 5	

2. Software Fault Models .. 8	

3. Impact of software on system reliability ... 13	

3.1. Abstract Instruction Set Architecture .. 15	

3.1.1. The LLVM Project ... 17	

3.1.2. The LLVM Simulation Environment ... 18	

3.1.3. LLFI ... 18	

3.1.4. KULFI .. 19	

3.2. Software Development Scenarios ... 19	

3.2.1. Simulink ... 19	

3.2.2. SCADE Suite ... 20	

4. Software Faulty Behavior Classes .. 22	

5. Conclusions ... 25	

6. Bibliography .. 26	

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 4 of 30

Version 1.5 – 05/08/2014

Scope of the document

This document is an outcome of task T4.1, “Software impact on system reliability: Metrics
and Models”, elaborated in the description of work (DoW) of the CLERECO project under the
Work Package 4 (WP4).

This document aims at describing the impact of software on system reliability in terms of
metrics and models. With the term software we consider here both the system software (e.g.,
the operating system) and the application software. In particular, this document focuses on
modeling the way hardware errors can reach the software stack, and on a preliminary analysis
of possible methods to investigate how these errors are propagated and/or masked through
the software stack thus affecting the final system reliability. It has to be pointed out that the
CLERECO project does not focus on software bugs/errors but only on the effect of hardware
faults and their propagation to the software layers.

The document is organized in the following sections:

• Introduction. This section sets the background for the document. The objectives of
the document and the investigations made for its development.

• Software Fault Models. This section describes how hardware faults that are not
masked at the hardware level can be modeled at the software level in order to
analyze their effect on the software execution.

• Impact of software on system reliability: the virtual instruction set defined for the
analysis of Software Resilience to be developed in CLERECO. Moreover, this section
introduces a preliminary description of the environment that will be implemented,
using both already available tools and specific solutions that are going to be de-
veloped within the WP.

• Software faulty behaviors: this section identifies a set of common faulty behaviors
that the software manifests when affected by faults. These software faulty behaviors
are organized and analyzed to properly define the Reliability Metrics for Software
investigation in CLERECO.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 5 of 30

Version 1.5 – 05/08/2014

1. Introduction

System reliability has become an important design aspect for computer systems due to the
aggressive technology miniaturization, which introduces a large set of different sources of fail-
ure for hardware components [1][2][3][4]. Unreliable hardware components affect computing
systems at several levels. Raw errors are strongly related to the technology used to build the
hardware blocks composing the system and are caused by effects such as physical fabrica-
tion defects, aging or degradation (e.g., NBTI), environmental stress (e.g., radiations), etc.

After a raw fault manifests in a given hardware block, it can be propagated through the dif-
ferent hardware structures composing the full system. Even if several faults can be masked dur-
ing this propagation either at the technology or at architectural level ([4][5][8][43]), some of
them can possibly reach the software layer of a system by corrupting either data or instructions
composing a software application. These errors can jeopardize the correct software execution
producing erroneous results if the computation is completed, or even preventing the execution
of the application by causing exceptions, abnormal terminations or leading to an application
hang-up. This may have a serious impact on the overall reliability of the system. The software
stack itself can play an important role in masking errors generated in the underlying layers. This
capability can be further improved by the implementation of software fault tolerance mecha-
nisms [6][7], which enable the improvement of the system reliability but often incur a significant
performance overhead. Therefore, the role of the software stack in the overall system reliability
is carefully considered in CLERECO.

To avoid misunderstanding with terminology used in different research domains, it is im-
portant to clarify in this document that CLERECO focuses on the effect that raw hardware
faults reaching the software stack produce on the correctness of the application outcome
(usually represented by the result of the software computation). The software stack is seen as a
path in which hardware faults can be propagated amplifying and/or masking their effect on
the correctness of the expected system’s outcome. Software reliability engineering, including
software-testing techniques aimed at detecting software design bugs, are out of the scope of
CLERECO.

The reliability stack reported in Figure 1 summarizes the basic idea of system reliability evalu-
ation of CLERECO. Every system is split into three main layers: (1) technology, (2) hardware and
(3) software. The low-level raw errors of the physical devices are masked in several different
ways (addressed in the WP2 of CLERECO Project) as their effect is propagated through the
hardware layer (which is evaluated in the WP3) and the software layer of the system stack to-
wards the final program/application outputs. It is the CLERECO’s goal to contribute with a full
system reliability estimation methodology, which takes into consideration all these factors
(technology, hardware and software) to provide an accurate estimate of the expected relia-
bility of the system as early as possible during the design.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 6 of 30

Version 1.5 – 05/08/2014

Figure 1: CLERECO Reliability stack

One of the main goals pursued in CLERECO is to be able to analyze the three layers report-
ed in Figure 1 in isolation, and to later combine the outcome of this local analysis in order to
infer reliability measures at the system level. This is motivated by the requirement of analyzing
very complex systems in which considering all layers at the same time is computationally infea-
sible.

Each layer included in Figure 1 defines an interface with the upper layer, which in turns sets
how the errors can be propagated from one layer to the next one. In this document we focus
on errors that can cross the interface between the hardware and the software layer. They are
then propagated through the software execution, thus impacting the result of the computa-
tion, i.e., the software outcome. The portion of the reliability stack considered in this deliverable
with the main relevant elements required to analyze the impact of software on the reliability of
a system is shown in Figure 2.

Figure 2: The portion of the system reliability stack considered in this deliverable

The software layer considered in CLERECO includes both the system software (i.e., the oper-
ating system) and the application software. Since the global system outcome is commonly rep-
resent by the outcome of the software executed in the system (both application and system
software), analyzing the software impact on the system reliability implies analyzing the way the
software reacts on faults that reach its interface with the hardware layer. In general, the In-
struction Set Architecture (ISA) of the target hardware platform executing the software defines
this interface between the hardware and the software.

The ability of a software component to mask and/or intrinsically tolerate errors coming from
the hardware is also referred in the literature as software resilience [24]. This term will therefore

Software

Hardware

Technology

System Reliability

Raw error rates

Hardware masking

Software masking

Application
software

System software

Instruction Set
Architecture

Software layer

Software fault models

Software outcome

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 7 of 30

Version 1.5 – 05/08/2014

be used within this document and the following deliverables as a synonymous of software
masking capability or software impact on the system reliability.

To define the resilience of a software application, it is necessary to evaluate the probability
of functional correctness of the software in the presence of hardware faults that propagate in
either the software data or software instructions. The next sections will report the effort per-
formed within CLERECO to identify models and metrics to properly represent faults reaching
the software layer interface, to analyze how these faults are propagated in the system reliabil-
ity stack and finally to classify how the software outcome is impacted by these faults.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 8 of 30

Version 1.5 – 05/08/2014

2. Software Fault Models

Most of the literature that aims at considering the impact of software in the reliability of a full
system still starts from low-level hardware faults [31][32][33], trying to propagate them through
the hardware architecture to the software layers in order to evaluate their impact on to the
final system outcome [34][35][36]. This, in general, requires complex and time-consuming simu-
lations of hardware models that do not enable to analyze complex software stacks. As previ-
ously stated, in CLERECO, we aim at detaching the analysis of the software level from the
hardware level. We therefore need to model how hardware faults manifest at the software
level.

In [34], authors look at the symptoms of transient faults in microprocessors. This observation is
performed at a high abstraction level, very close to the ISA level. Other works use simulations to
generate fault dictionaries that capture the manifestations from the lower level “off-line” and
use them to propagate fault effects during high-level simulations, [37]. Intermittent and Perma-
nent faults started gaining attention very recently. A set of works tries to investigate the effect
of propagation of these types of fault up to the software level, [38][39]. However, most of the
available works still lack a general abstraction about the effect of hardware faults at the soft-
ware level.

It is important to highlight here that the main interaction point between the hardware layer
and the software layer is the ISA of the microprocessors and co-processors (e.g., accelerators
such as GPUs or crypto devices) available in the system. A straightforward way to model the
fault propagation from the hardware layer to the software layer is therefore to map hardware
faults into a set of fault models that affect the ISA instructions and their data. This somehow de-
taches the software analysis form the underlying hardware analysis and moves the work of
combining the obtained results later on. When the effect of hardware faults to the software
layers is accurately modeled at the interface between the hardware and the software (i.e. the
ISA and the data), significantly more complex software stack architectures can be studied and
the effect of faults at the full system level can be correctly analyzed.

Table 1 provides a preliminary taxonomy of software fault models defined at the ISA level
that will be considered in CLERECO. It is worth mentioning here that this taxonomy will be con-
tinuously updated during the project to reflect the results provided by WP3 during its analysis of
relevant classes of hardware components considered in CLERECO. We explicit do not refer to
registers but to (generic) operands in order to maintain a high level description. All considered
models apply both to system and application software.

Table 1 - Software Fault Models

Software Fault Model Description

Wrong Data in an Operand An operand of the ISA instruction shows an incoherent value
(e.g., a value that differs from an expected one).

Not-accessible Operand An operand of the ISA instruction cannot be addressed to
change/retrieve its value.

Operand Forced Switch An operand is used in place of another, at execution time.

Instruction Replacement An instruction is used in place of another (either a valid or
an invalid one). Transition tables can be provided to guide

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 9 of 30

Version 1.5 – 05/08/2014

Software Fault Model Description
the substitution based on statistical evidences in most
common ISA.

Faulty Instruction The instruction produces a wrong result.

Control Flow Error The flow of control is not respected (control-flow faults).

External Peripheral Communica-
tion Error

An input value (from a peripheral) is corrupted or not arriv-
ing

Signaling Error An internal signaling (exception, interrupt, etc.) is wrongly
raised or suppressed.

Execution timing Error An error in the timing management (e.g. PLL) interferes with
the correct execution timing.

Synchronization Error An error in the scheduling processes causes an incoherent
synchronization of processes/tasks.

All models reported in Table 1 are very generic and not tight to a specific ISA, so they can
be applied to several classes of hardware components. To avoid loosing contact with the un-
derlying hardware layer it is however important to correlate each fault model with candidate
hardware fault locations. Table 2 shows a first attempt to perform this mapping that will be
constantly improved and refined during the project to support models and algorithms devel-
oped within WP5.

Table 2 - Software Fault Model correlation with Hardware Fault Location

Software Fault
Model

Location

Microprocessor Accelerators Memories Peripherals Interconnect

Wrong Data in
Operand

• Register file
• Program

counter
• Buffer
• Fetch buffer
• Reorder buff-

er
• Load buffer
• Store Buffer
• Instruction

scheduler
• Issue queue
• ALU
• FPU
• Pipeline

latches

• Register
file

• Instruction
buffer

• Score-
board

• Processing
Units

• Main
Memory

• Cache
Memories

• TLB

• DMA
controller

• Infiniband
• Ethernet
• Gemini in-

terconnect
• Myrinet
• Fat Tree
• Bi-

Directional
Link

• Wishbone
• AMBA
• Pair of

Northbridge
and South-
brige

Not-accessible
Operand

• Register File
• Fetch buffer
• Store Buffer
• Issue queue
• Reorder buff-

er

• Register
file

• Instruction
buffer

• Operand
collector

• Main
Memory

• Cache
Memories

• DMA
controller

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 10 of 30

Version 1.5 – 05/08/2014

Software Fault
Model

Location

Microprocessor Accelerators Memories Peripherals Interconnect
• Pipeline

latches

• Score-
board

Source Oper-
and Forced
Switch

• Register File
• Instruction

decoder
• Fetch buffer
• Load buffer
• Store Buffer
• Instruction

decoder
• Issue Queue
• Reorder buff-

er
• Pipeline

latches

• Register
file

• Instruction
buffer

• Operand
collector

• Main
Memory

• Cache
Memories

• DMA
controller

Instruction Re-
placement

• Program
Counter

• Buffer
• Microcode

storage
• Fetch buffer
• Load buffer
• Store Buffer
• ICache
• Instruction

decoder
• Issue Queue
• Reorder buff-

er
• Pipeline

latches

• Instruction
buffer

• Main
Memory

• Cache
Memories

• TLB

• DMA
controller

Control Flow
Error

• Program
counter

• Microcode
storage

• Fetch buffer
• Reorder Buff-

er
• Load buffer
• Instruction

Decoder
• Instruction

scheduler
• Issue queue
• Pipeline

latches

• Instruction
buffer

• Handlers
of branch
diver-
gence

• Main
Memory

• Cache
Memories

• PIC

External Periph-
• Buffer
• Microcode

• Main

Memory
• DMA

controller
• Infiniband
• Ethernet

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 11 of 30

Version 1.5 – 05/08/2014

Software Fault
Model

Location

Microprocessor Accelerators Memories Peripherals Interconnect
eral Communi-
cation Error

storage
• Pipeline

latches

• Cache
Memories

• TLB
• Lo-

cal/Privat
e
Memory

• PIC
• UART
• PCI Ex-

press
• USB
• Bluetooth

• Gemini in-
terconnect

• Myrinet
• Fat Tree
• Bi-

Directional
Link

• Wishbone
• AMBA
• Pair of

Northbridge
and South-
brige

Signaling Error
• Microcode

storage
• Reorder buff-

er
• Instruction

decoder
• Instruction

scheduler
• Pipeline

latches

• Operand
collector

• Main
Memory

• Cache
Memories

• TLB

• DMA
controller

• UART
• PCI Ex-

press
• USB
• Bluetooth

• Infiniband
• Ethernet
• Gemini in-

terconnect
• Myrinet
• Fat Tree
• Bi-

Directional
Link

• Wishbone
• AMBA
• Pair of

Northbridge
and South-
brige

Execution tim-
ing Error

• Program
counter

• Branch pre-
dictors

• Branch target
buffers

• Return Ad-
dress Stack

• Fetch buffer
• Reorder buff-

er
• Instruction

decoder
• Instruction

scheduler
• Issue queue
• Pipeline

latches

• Operand
collector

• Scheduler
of blocks
or work
groups

• Main
Memory

• DMA
controller

• PIC
• UART
• PCI Ex-

press
• USB
• Bluetooth

Synchronization
Error

• Instruction
scheduler

• Pipeline

• Score-
board

• Operand

• TLB • DMA
controller

• PIC

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 12 of 30

Version 1.5 – 05/08/2014

Software Fault
Model

Location

Microprocessor Accelerators Memories Peripherals Interconnect
latches

collector
• Scheduler

of blocks
or work
groups

• Vector
Processing
Unit

• UART
• PCI Ex-

press
• USB
• Bluetooth

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 13 of 30

Version 1.5 – 05/08/2014

3. Impact of software on system reliability

While the definition of methods to analyze the impact of software on system reliability are
out of scope of this deliverable and will be properly described in deliverables D4.2.1, D4.2.2
“Software Characterization Methods” that will be released later in the project (M12), a prelimi-
nary analysis and discussion is required to proper setup the background for the core activity of
WP4.

Similarly to the hardware layer, the software layer has several error masking/amplifying ca-
pabilities. Figure 3 summarizes the main error masking effects at software level [7].

An error can be masked at the operating system level if:

• It affects the architecture state components that are not used by the OS.
• It does not raise any Fatal Trap or Hang.
• It does not affect the process state of the current application.

An error can be amplified at the operating system level if:

• It affects hardware status resources (e.g., machine control registers, operating sys-
tem control registers).

• It affects the operating system memory management module.
• It affects the processes/threads scheduling capabilities.
• It propagates to any other resource.

An error can be masked by the application software if:

• It affects the control flow without leading to an abnormal application exit or skip of
functions.

• It affects the program without leading to an output that differs from the expected
one at the expected time.

• It does not raise any Fatal Trap or Hang of the application.
• It has no impact on the execution times and on the responsiveness of the applica-

tion.

An error can be amplified by the application software if:

• It affects the control flow leading to wrong paths.
• It affects application resources in their initialization phase.
• It raises wrong Fatal Traps.
• It propagates to any other resource.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 14 of 30

Version 1.5 – 05/08/2014

Figure 3: Masking effects on System Vulnerability Stack

Analyzing this masking capability requires to set a common ground, in terms of execution
platform, to cope with the huge diversity of available software platforms and computer archi-
tectures.

Common software engineering techniques resort to high-level programming languages
(e.g., C/C++ or Java) or data-flow (graphical) programming languages (e.g., MathWork Sim-
ulink) to describe software routines independently from the target execution platform3.

High-level programming languages are then mapped to the ISA of the final system. The
mapping can be done statically (at compile time) or dynamically (at run-time). In both cases
the high-level program is translated into a sequence of low-level instructions that can be exe-
cuted by the selected hardware thus creating a very specific link between the software layer
and the hardware layer of a system (Figure 1).

This is in contrast with the CLERECO main idea, which aims at performing reliability evalua-
tion in the early stage of the system design when the selection of the hardware is still an open
choice. This in turns requires investigating methods and tools to model the software inde-
pendently from the target hardware architecture, and to link later on the results of the software
analysis to the specific reliability metrics collected for the selected hardware architecture. At
this early stage the target ISA is still unknown and therefore cannot be exploited either to de-
fine fault models according to the taxonomy presented in Table 1 or to perform simulations to
analyze how faults propagate through the software modules.

3 Embedded systems applications, which highly depend on the system platform and/or peripheral drivers in common operat-

ing systems, may represent an exception to this practice.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 15 of 30

Version 1.5 – 05/08/2014

In this scenario, one of the natural solutions to tackle this problem is to resort to virtualization
techniques enabling to abstract the ISA used to describe the software from the target hard-
ware architecture. This solution introduces an additional abstraction layer between the hard-
ware ISA and the software layer that further decouple the hardware and the software layers
[16].

The concept of software virtualization is gaining increasing importance since it ensures effi-
cient and flexible performance, and enables cost saving from sharing the same physical
hardware. Therefore, several projects proposing virtualization infrastructures are available. The
next subsections report the effort performed in CLERECO to identify a candidate virtualization
framework that can serve as a starting point to implement the infrastructure required to ana-
lyze parameters that are relevant to evaluate the software resilience to hardware faults.

3.1. Abstract Instruction Set Architecture

Virtualization technologies can separate hardware and software management and provide
useful features, including performance isolation [46]. Moreover, virtualization technologies can
also provide portable environments for the modern computing systems [47]. In fact, a virtual
machine (VM) is a logical machine having almost the same architecture of a real host ma-
chine, running an operating system in it. Virtual machines allow users to create, copy, save
(checkpoint), read and modify, share, migrate and roll back the execution state of a machine
with simple file manipulation tools. This flexibility provides significant value for users and adminis-
trators. Traditionally, virtual machines have focused on fairly sharing the processor resources
among domains, [47].

In the WP4, one of the main aims is to investigate the software reaction to hardware faults,
without knowing the target hardware architecture. In this context, a virtualized environment
perfectly matches our needs

Following [16], available technologies for the implementation of VMs can be classified in
two main categories:

• System Virtual Machines (VMs) provide a complete environment that supports the
execution of a complete operating system. System VMs issue a platform to run pro-
grams in which the real hardware is not available for use, and to run multiple OS en-
vironments concurrently on the same computer with a strong isolation. The virtual
machine relies on an ISA that is different from the one of the physical machine. In this
situation the whole software is virtualized, therefore the VM has to emulate both the
application and the OS code.

• Process Virtual Machines are virtual platforms that execute a single process. The VM
is created when the process is started and deleted when it terminates. Its goal is to
provide an independent programming environment platform, which abstracts the
details of the underlying hardware or operating system, and enables a program to
execute in the same way on any platform. Process VMs using different guest and
host ISAs are implemented using an interpreter, which fetches, decodes and emu-
lates the execution of individual guest instructions. Since this process is relatively slow,
dynamic binary translation can provide better performance by converting guest in-
structions to host instructions in blocks rather than instruction by instruction, and sav-
ing them in a cache for later reuse.

The main drawback of most available System and Process VMs is that they are still bounded
to specific ISAs implemented by real hardware architectures. In CLERECO we need to over-
come this limitation by working with an ISA that is independent from the final hardware used in
the system. As depicted in Figure 4, we therefore plan to identify a virtualization environment

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 16 of 30

Version 1.5 – 05/08/2014

able to develop software using a Virtual Instruction Set Architecture (VISA), creating an addi-
tional layer between the software stack and the actual hardware architecture. The VISA must
be later translatable into a real ISA in order to better analyze the software behavior on the tar-
get system when the hardware architecture is finally defined.

Both the Operating System and the Application Software will be described in CLERECO ac-
cording to this VISA. Following [42], adding this additional level of abstraction still enables us to
investigate the error propagation properties of the software and to efficiently correlate them
with errors arising in the actual hardware.

Figure 4: CLERECO System Stack exploited in terms of the Software execution stack

There are several frameworks in the literature to use virtualization with virtual instruction sets
to perform complex analysis of software applications on different architectures
[19][25][26][27][28]. The software under analysis is compiled into a sequence of abstract in-
structions. Software compiled using this abstract instruction set can then be directly executed
on a specific host microprocessor’s architecture (via further translation/synthesis, [25][26]) or on
virtual machines (without requiring further translations).

WP4 is investigating different alternatives of available virtualization environment implement-
ing VISAs to exploit for the analysis of software resilience. Three realistic options have been con-
sidered so far:

• Java. Java applications are typically compiled to byte-code (class file) that can run
on any Java virtual machine (JVM) regardless the underlying microprocessor archi-
tecture. The Java byte-code is a form of ISA virtualization. Based on Java, Jaca is a
fault injection tool that is able to inject faults in object-oriented systems and can be
adapted to any Java application without need of its source code. To perform injec-
tion it is enough to know just few information about the application like the classes,
methods, and attributes names [44].

• .NET / Mono. The .NET framework follows the same philosophy of Java. It consists of a
virtual machine able to run Common Languages Infrastructure (CLI) code. The CLI is
an object-oriented VISA that is the lowest level of the framework, [49]. Mono is the
open version of the .NET VM, [50]. To the best of our knowledge, no fault injection
environment is actually available.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 17 of 30

Version 1.5 – 05/08/2014

• LLVM. LLVM is a Process Virtual Machine that implements a virtualized instruction set
architecture. A wide community of developers (including Intel [29], NVIDIA[30], and
others) uses and develops tools having LLVM at their core. Among them, several
fault injection tools are currently developed [23],[24],[45]. They are research tools re-
leased under the open source code licenses.

Among the considered environments a very promising solution for CLERECO is LLVM. Java,
while being widely used in web-based applications, has the disadvantage of not being really
suitable for both HPC and embedded applications, where the final application will be de-
signed specifically for the target hardware in order to fully exploit all capabilities (speed, pow-
er) of the system. Moreover, the JVM is restricted to the Java programming language thus limit-
ing the spectrum of software that can be analyzed.

While LLVM is not the final decision for the implementation of the CLERECO software analysis
framework, and further investigations will be performed, in the next subsections we will report
additional information regarding the LLVM infrastructure in order to highlight interesting fea-
tures and missing functionalities of this environment.

3.1.1. The LLVM Project

LLVM (formerly Low Level Virtual Machine) [17] is a compiler infrastructure designed for
compile-time, link-time, run-time optimization of programs written in arbitrary programming
languages (see Figure 5). Originally implemented for C and C++, nowadays, the languages
with compilers that use LLVM include D, Fortran, Julia, Objective-C, Python, Ruby, Rust, Scala,
C# and so on. It also supports, as back ends, a huge set of ISAs: ARM, MicroBlaze, MIPS, NVidia
PTX (called "NVPTX' in LLVM documentation), PowerPC, SPARC, x86/x86-64, and so on. Moreo-
ver, modern programming paradigms and architectures, such as GPU accelerators and Intel
Phi architectures, are supported both in terms of front-end (i.e., CUDA C/C++ API) and
backend, [10],[11].

Figure 5: LLVM Abstraction Example

Together with the full tool chain required for software design (e.g., compiler, optimizer, etc.),
LLVM provides a set of additional tools explicitly devoted to perform investigation of different
software properties. The LLVM tool kit includes:

• The LLVM Core: it includes a code optimizer and the generator.
• CLang: it is a native C/C++/Objective-C compiler.
• Dragonegg: a tool for the integration with GCC parsers.
• LLDB: a native debugger.
• Libc++: a native C++ Standard Library implementation.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 18 of 30

Version 1.5 – 05/08/2014

• Compiler-rt: one of the most useful tools for the project. It is a low-level target specif-
ic code generator, which includes a set of promising facilities:

o Sanitizers’ runtimes: runtime libraries to run the code with sanitizer instrumen-
tation. This includes a Data Flow Sanitizer to perform a dynamic flow analysis
and an Address Sanitizer to help in the memory error detection.

o Profile: a library to collect profiling information about the software.
• OpenMP: a native OpenMP implementation, particularly helpful for implementing

parallel version of single-threaded algorithms.
• vmkit: a native JAVA and .NET virtual machine.
• Klee: is a symbolic virtual machine that uses a theorem prover to evaluate the dy-

namic paths of software. It has been successfully used for software testing purposes
[21].

LLVM is also supported by a large community of developers, which contributes with extra
components. The open source license, the continuous updates, the high availability of tools,
and the large community of users make LLVM a good starting point for the CLERECO software
analysis infrastructure.

Eventually, as it will be described in the next subsection, the LLVM project comes with a well-
known implementation of simulation environments, which also include fault injection/simulation
engines.

3.1.2. The LLVM Simulation Environment

This subsection aims at summarizing the LLVM state-of-the-art tools to build a simulation envi-
ronment able to collect data about software resilience at high level.

3.1.3. LLFI

LLFI [23],[45] is an LLVM based fault injection tool that enables to inject faults into the LLVM
intermediate level of the application source code. Using LLFI, faults can be injected at specific
program points and data types. The effect can be easily tracked back to the source code. LLFI
is typically used to map fault characteristics back to source code, and to understand program
characteristics or source level for various kinds of fault outcomes. The reason why LLFI injects
faults at this level is that the LLVM intermediate code is at a higher level than the assembly
code, and is able to encode more information than the source code. In fact, at the assembly
level, it is not easy to track back the fault behavior to the source level. This problem could be
solved with a fault injection at the source code level. However, this solution does not allow
modeling hardware faults because many hardware faults, that affect some control flow in-
structions and registers are masked at the lower layers of the system and cannot be simulated
at the application layer.

The goal behind LLFI is to identify source level heuristics that enable to identify optimal loca-
tions for high coverage detectors of faults causing Egregious Data Corruptions (EDCs). EDCs
are application outcomes that deviate significantly from the error-free outcome [6]. Non-EDCs
are application outcomes with small deviations in output. EDCs and non-EDCs define the Silent
Data Corruptions (SDCs), which are the outcomes that result from any deviation from the fault
free outcome. A threshold between EDC and non-EDC can be defined; if set to zero, even sin-
gle bit errors are considered SDCs.

LLFI supports fault injection errors that model the effect of transient hardware faults occur-
ring in the processor (e.g., errors caused by cosmic ray or alpha particle strikes affecting flip
flops and logic elements). It considers faults in the functional unit (the ALU and the address
computation for loads and store). However, the tool does not consider faults in the memory

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 19 of 30

Version 1.5 – 05/08/2014

components, in the control logic of the processor, and in the instructions, which is a huge limi-
tation of the approach.

3.1.4. KULFI

KULFI [24] (Kontrollable Utah LLVM Fault Injector), developed by Gauss Research Group at
School of Computing, University of Utah, Salt Lake City, USA, is an LLVM based fault injection
tool, which enables to inject random single bit errors at instruction level. It allows injecting faults
into both data and address registers. It simulates faults occurring within CPU state elements,
providing a finer control over fault injection. For example, it enables the user to define options
related to the fault injection mechanism, such as the probability of the fault occurrence, the
byte position in which the fault could be injected, the suitable choice whether the fault should
be injected into the pointer register or the data register.

KULFI considers the injection of both dynamic and static faults. Dynamic faults represent
transient faults and they are injected to a fault site randomly selected during program execu-
tion. Static faults represent permanent faults and are injected to a fault site selected randomly
before the program execution.

3.2. Software Development Scenarios

In addition to the classical C/C++ development scenario, we identified two de-facto
standards for development environments exploited in real software contexts. The two environ-
ments have been identified to support the LLVM introduction as Virtual ISA. They are deeply
investigated since we plan to resort to them for the demonstrator implementation expected in
WP 6.

3.2.1. Simulink

The first scenario we are going to describe in terms of LLVM impact is a common early stage
software development: modeling via Simulink. It is common to start developing the software by
designing its flow via Simulink modules. The main advantage is the creation of an interactive
model, which can be already used for simulations and test cases.

LLVM does not natively supports to compile and execute Simulink models. Nevertheless,
MathWorks provides a set of add-ons to the Simulink development environment (e.g., the Sim-
ulink Coder [13] and the Embedded Coder [12]), able to generate C and C++ code from Sim-
ulink diagrams and Stateflow charts that can be then compiled for the execution within LLVM
using the LLVM Clang Compiler [9] as reported in Figure 6.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 20 of 30

Version 1.5 – 05/08/2014

Figure 6: Simulink integration with LLVM

In details, the Simulink Coder tool allows the user:

• ANSI/ISO C and C++ code for discrete, continuous, or hybrid Simulink and State-
flow models generation;

• Incremental code generation;
• Integer, floating-point, and fixed-point data type support;
• Code Generation for single-rate, multi-rate and asynchronous models;
• Single-tasking, multitasking, and bare-board compatibility;
• External mode simulation for code tuning and monitoring.

It therefore provides a very general way to transform Simulink models into programs that
can be executed and analyzed in LLVM.

Another feasible alternative is to exploit the MathWorks Embedded Coder, an add-on de-
signed for the generation of C code for embedded systems. The tool can be set-up in order to
optimize the code for specific target architectures (e.g., ARM, AMD, Freescale, Intel, TI), thus
extending the native capabilities of Simulink Coder. For more information please refer to [13].
Differently from the Simulink Coder, this translation performs a preliminary assumption on the
target microprocessor architecture. It cannot therefore be used in the very early stages of the
design process, but only in the later stages when the target hardware platform has been iden-
tified. Moreover, this tool can be exploited to generate different versions of the software that
can be compared in the study of the overall system reliability.

It is important to notice that there are several limitations on the Simulink blocks accepted as
part of the input model. In fact, the coder is not able to generate the corresponding C code
for all available Simulink blocks. Industrial partners may investigate their usage of Simulink mod-
els to fit the issue. For more information on the limitations refer to [14].

3.2.2. SCADE Suite

The second development scenario considered here is a development based on a formal
description in the SCADE Suite. The SCADE Suite is an integrated design environment and de-
velopment for critical embedded software applications. The tools enable graphic design, veri-
fication through simulation and formal methods, and certified code generation. Products re-
quirements management, configuration management and automatic documentation gener-
ation are also included, reducing the time of certification applications. The tool suite is dedi-
cated to the development of critical embedded applications using formal description, in in-
dustries Aerospace, Defense, Rail Transport, Energy and Industry.

Simulink	
 /	

Matlab	

Models	

Simulink	

Coder	
 /	

Embedde
d	
 Coder	

clang	
 LLVM	

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 21 of 30

Version 1.5 – 05/08/2014

Similarly to the Simulink scenario, LLVM is not integrated natively within the SCADE Suite, but
it can be used for the compilation of the code generated by the tool suite (see Figure 7).

Figure 7: SCADE Suite integration with LLVM

The SCADE Suite KCG code generator is certified/qualified according to following interna-
tional safety standards:

• DO-178B qualified up to Level A and DO-178C Ready for Civilian and Military Aero-
nautics.

• IEC 61508 certified at SIL 3 by TÜV for Industry.
• EN 50128 certified at SIL 3/4 by TÜV for Rail Transportation.
• IEC 60880 compliant for Nuclear Energy.
• ISO 26262 for Automotive.

The SCADE Suite generates ANSI C code that can be directly compiled with LLVM frame-
work. LLVM can thus fit in different development scenarios used in different application do-
mains.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 22 of 30

Version 1.5 – 05/08/2014

4. Software Faulty Behavior Classes

Once the hardware faults that can affect the software layer have been properly modeled,
and a platform to analyze how these faults propagate during the execution has been identi-
fied, the investigation of the impact of these faults on the software still requires analyzing how
they affect the final software result. Basically, two main classes of errors can be observed at the
output interface of the software layer [18]:

1. Incorrect output: the hardware error propagation only affects the output of the ap-
plication.

2. Application failure: an error produces a software failure that forces the application
to interrupt its execution prematurely by crashing or keeping it in an unresponsive
state (e.g., hangs). In this case, no output might be produced.

In both situations, the key concept is that, whenever the error is located in software, there
exists an error masking chain that links it to the underlying reliability layer. Nevertheless, this very
simple classification requires to be elaborated in order to identify a more fine-grained set of
behaviors, named here software faulty behaviors (SBFs), the software may produce when af-
fected by the faults defined in Section 2.

In a complex system, the SBF combines both the behavior of the operating system activity
and the application software activity. Some publications try to define possible classes of SBFs to
be used for the analysis of Software Resilience.

By the analysis of the literature [15][20][22][40][34][41], three main classes of SBFs can be de-
fined:

1. Timing: they are related to the ability of the software to respect the target time con-
straints. Since the time is always related to a metric, a set of metrics (e.g., IPC, clock
cycles, etc.) will be proposed and discussed, in order to deal with the accuracy of
the timing in proper ways.

2. Unresponsiveness: once the software is affected by a fault, it may become unre-
sponsive, thus (most of the time) preventing the production of its outputs. Full unre-
sponsiveness arises when the whole software stack crashes (both the application
and the OS). Partial unresponsiveness is instead generated whenever the operating
systems remains active, while the application software stops working. Whenever the
unresponsiveness can be detected only by analyzing some time-related characteris-
tic of the system execution, a set of proper metrics and related parameters have to
be defined to cope with that.

3. Data Integrity: this class comprises errors in application data. Two cases may arise:
(1) the result produced by the application is correct (Benign) and no faulty behavior
is observed; (2) the output contains errors (Data Corruption, DC). DCs may be further
split into two sub cases. Applications that provide an output that meaningfully differs
from the expected one lead to Egregious Data Corruption (EDC), while applications
that generate small changes (where the meaning of small is discretional) produce
so called Non-Egregious Data Corruption (Non-EDC). This latter case is mainly a mat-
ter of how the System Requirements describe the ability of the application to toler-
ate errors in the final output.

Table 3 summarizes a preliminary set of possible SBFs identified in CLERECO. These outcomes
can be mapped into the three general classes introduced previously in this section.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 23 of 30

Version 1.5 – 05/08/2014

Table 3: CLERECO Software Outcomes

SBF Class SBF SBF Subclass Description

Timing In-Time The software execution timing is
well respected.

Wrong timing /

Out of sync

Early Given the expected execution
time, the software finishes earlier
than expected (due to a threshold
parameter to be defined). This
could also mean that it is out of
sync, with respect to the whole sys-
tem.

Late Given the expected execution
time, the software ends later than
expected (due to a threshold pa-
rameter to be defined). This could
also mean that it is out of sync, with
respect to the whole system.

Unresponsiveness Full Unresponsive Fatal Hardware
Traps [22]

A fatal hardware trap occurs in
either the application or the oper-
ating system. A fatal trap is typical-
ly not thrown during a correct pro-
gram and can cause the system to
shut down.

Hangs [22] Hangs due to an abnormal behav-
ior. Usually detected by looking at
the all executed branch.

Partial Unre-
sponsive

Abnormal Applica-
tion Exit [22]

In a whole system, when an appli-
cation crashes, the OS is aware of
this event, so the system is not un-
responsive. Avoiding Abnormal
application exit could improve reli-
ability of whole system.

High OS Activity [22] The OS is invoked via system trap
and the execution remains in the
OS without returning to the appli-
cation.

Responsive The system is working as expected.
In these cases, the error has been
masked by either an internal mask-
ing effect in the system or by a pro-
tection mechanism added in the
design phase.

Data Integrity Benign The software only produces correct
results (by results we mean mes-

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 24 of 30

Version 1.5 – 05/08/2014

sages, direct actions to the outside
world, etc.). If incorrect results are
generated as a consequence of a
fault then the software does not
output them (remains silent).

Silent Data Cor-
ruptions (SDCs)

Egregious Data Cor-
ruption (EDC)

The application outcomes deviate
significantly from the fault free out-
come. The deviation ratio has to
be defined, case-by-case, choos-
ing a threshold parameter and the
metric used to measure that devia-
tion.

Non Egregious Data
Corruption (Non-
EDC)

SDCs that result in any deviation in
the output from the fault free out-
come with small deviation in out-
put that could be tolerate by the
system. The deviation refers to the
same defined for EDC.

Every time designers need to analyze a given software application, they can define their
own custom SBFs as combinations of the ones presented in. Table 3

As an example, for a given application designer may consider as an abnormal situation
every case in which the data integrity is corrupted by a SDC, or the system is unresponsive (ei-
ther fully or partially), ignoring for example timing issues generated by errors (i.e., out of sync
execution of the software is not considered as an error).

This preliminary taxonomy, even if simple, should be enough to model most of real situations
that may arise during the software execution in presence of faults.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 25 of 30

Version 1.5 – 05/08/2014

5. Conclusions

Work Package 4 (WP4) aims at analyzing the software resilience to hardware faults consid-
ering both system and application software. This report represents the first step toward this goal.
It contributes to providing:

• A preliminary set of models to represent hardware faults at the software level.
• The basis to identify a software virtual architecture to analyze software modules.
• A definition for a set of preliminary software fault behaviors to evaluate the effect of

the faults on the software results.

The content of this deliverable impact on the way WP4 is going to characterize the Software
(refer to Deliverable D4.2.x) modules in the forthcoming future. WP5 will also be affected be-
cause it is going to be influenced by software fault models and SBFs when dealing to the input
parameters for the estimation model (refer to Deliverable 5.1.x). Moreover, the SBFs help the
definition of (new) system level metrics (refer to WP2’s Deliverable 2.4.x) and, consequently, on
the way the WP5 system reliability estimation model will provide the output of the estimation
(refer to Deliverable 5.2.x and 5.3).

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 26 of 30

Version 1.5 – 05/08/2014

6. Bibliography

[1] Robert Baumann, "Soft Errors in Advanced Computer Systems," IEEE Design & Test of Com-

puters, vol. 22, no. 3, pp. 258-266, May/June, 2005.

[2] S. Borkar et al., "Design and Reliability Challenges in Nanometer Technologies", IEEE DAC,

pp. 75-75, 2004.

[3] P. Shivakumar, M. Kistler, "Modeling the effect of technology trends on the soft error rate of

combinational logic". IEEE DSN, 2002.

[4] S. S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, T. Austin, "A systematic methodology to

compute the architectural vulnerability factors for a high-performance microprocessor",

MICRO, pp. 29-40, 2003

[5] D. Ernst et al., "Razor: circuit-level correction of timing errors for low-power operation," IEEE

MICRO, Vol. 24, no. 3, pp. 10-20, 2004.

[6] M. Dimitrov and H. Zhou, “Unified Architectural Support for Soft-Error Protection or Software

Bug Detection”, International Conference on Parallel Architectures and Compilation Tech-

niques, 2007

[7] Nithin Nakka, Giacinto Paolo Saggese, Zbigniew Kalbarczyk, Ravishankar K. Iyer, An archi-

tectural framework for detecting process hangs/crashes, Proceedings of the 5th European

conference on Dependable Computing, April 20-22, 2005, Budapest, Hungary,

doi:10.1007/11408901_8

[8] R. Vadlamani et al., "Multicore soft error rate stabilization using adaptive dual modular re-

dundancy", IEEE DATE, pp. 27-32, 2010.

[9] Clang: a C Language Family frontend for LLVM. http://clang.llvm.org

[10] CUDA LLVM Compiler, https://developer.nvidia.com/cuda-llvm-compiler

[11] Intel ispc compiler, http://ispc.github.io

[12] MathWorks. "Embedded Coder - Datasheet."

http://www.mathworks.it/products/datasheets/pdf/embedded-coder.pdf

[13] "Simulink Coder - Datasheet." http://www.mathworks.it/products/datasheets/pdf/simulink-

coder.pdf

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 27 of 30

Version 1.5 – 05/08/2014

[14] Simulink Coder - Product Limitations Summary:

http://www.mathworks.com/help/toolbox/rtw/ref/brl3tbg.html

[15] Slot, D.T., N.A. Speirs, Z. Kalbarczyk, S. Bagchi, J. Xu, and R.K. Iyer. "Comparing Fail-Silence

Provided by Process Duplication versus Internal Error Detection for DHCHP Server." 15th In-

ternetional Parallel and Distributed Processing Symposium. San Francisco, CA : IEEE, 2001.

[16] Smith, J.E.; Nair, R., "The architecture of virtual machines," Computer , vol.38, no.5, pp.32,38,

May 2005, doi: 10.1109/MC.2005.173

[17] The LLVM Compiler Infrastructure. http://llvm.org

[18] Rehman, Semeen; Shafique, Muhammad; Aceituno, Pau Vilimelis; Kriebel, Florian; Chen,

Jian-Jia; Henkel, Jorg, "Leveraging variable function resilience for selective software reliabil-

ity on unreliable hardware," Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2013 , vol., no., pp.1759,1764, 18-22 March 2013, doi: 10.7873/DATE.2013.354

[19] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and Brian Gaeke, “LLVA: A

Low-level Virtual Instruction Set Architecture", Proceedings of the 36th annual ACM/IEEE in-

ternational symposium on Microarchitecture (MICRO-36), San Diego, California, Dec. 2003.

[20] Thomas, Anna, and Karthik Pattabiraman. "LLFI: An Intermediate Code Level Fault Injector

For Soft Computing Applications." 9th Workshop on Silicon Errors in Logic (SELSE-09). IEEE,

2013

[21] Cristian Cadar, Daniel Dunbar, Dawson Engler, ”KLEE: Unassisted and Automatic Genera-

tion of High-Coverage Tests for Complex Systems Programs”, USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI 2008), San Diego, CA, December 2008

[22] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S. Ad-

ve, and Yuanyuan Zhou, “Understanding the propagation of hard errors to software and

implications for resilient system design”, In Proceedings of the 13th international conference

on Architectural support for programming languages and operating systems (ASPLOS XIII),

2008. ACM, New York, NY, USA, 265-276. DOI=10.1145/1346281.1346315

[23] A. Thomas and K. Pattabiraman, “LLFI: An intermediate code level fault injector for soft

computing applications,” 2013.

[24] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, “Towards formal approach-

es to system resilience,” in Proceedings of the 19th IEEE Pacific Rim International Symposium

on Dependable Computing (PRDC), 2013.

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 28 of 30

Version 1.5 – 05/08/2014

[25] Balboni, A.; Fornaciari, W.; Sciuto, D.; Vincenzi, M., "The use of a virtual instruction set for the

software synthesis of Hw/Sw embedded systems," System Synthesis, 1996. Proceedings., 9th

International Symposium on , vol., no., pp.77,82, 6-8 Nov 1996, doi: 10.1109/ISSS.1996.565883

[26] Smith, J.E.; Sastry, S.; Heil, T.; Bezenek, T.M., "Achieving high performance via co-designed

virtual machines," Innovative Architecture for Future Generation High-Performance Proces-

sors and Systems, 1998, vol., no., pp.77,84, 24-24 Oct. 1998, doi: 10.1109/IWIA.1998.779076

[27] Adve, V.; Brukman, M.; Evlogimenos, A.; Gaeke, B., "Software implications of virtual instruc-

tion set computers," Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th

International, vol., no., pp.201,, 26-30 April 2004, doi: 10.1109/IPDPS.2004.1303226

[28] Gremzow, C., "Quantitative global dataflow analysis on virtual instruction set simulators for

hardware/software co-design," Computer Design, 2008. ICCD 2008. IEEE International Con-

ference on, vol., no., pp.377,383, 12-15 Oct. 2008, doi: 10.1109/ICCD.2008.4751888

[29] Intel Corporation, “Why we chose LLVM”, https://software.intel.com/en-

us/blogs/2009/05/27/why-we-chose-llvm

[30] NVIDIA, CUDA compiler, https://developer.nvidia.com/cuda-llvm-compiler

[31] M.Abramovici, M.A.Breuer, A.D.Friedman, Digital Systems Testing and Testable Design,

Wiley-IEEE Press, 1994.

[32] M.Bushnell, V.Agrawal, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal

VLSI Circuits, Kluwer academic publishers, 2002.

[33] S.Mukherjee, Architecture Design for Soft Errors, Morgan Kaufmann, 2008.

[34] N. Wang and S. Patel. ReStore: Symptom-Based Soft Error Detection in Microprocessors. IEEE

Transactions on Dependable and Secure Computing, 3(3), July-Sept 2006.

[35] H. Cha et al. A Gate-Level Simulation Environment for Alpha-Particle-Induced Transient

Faults. IEEE Transactions on Computers, 45(11), 1996.

[36] S. Mirkhani, M. Lavasani, and Z. Navabi. Hierarchical Fault Simulation Using Behavioral and

Gate Level Hardware Models. In 11th Asian Test Symposium, 2002.

[37] Z. Kalbarczyk et al. Hierarchical Simulation Approach to Accurate Fault Modeling for Sys-

tem Dependability Evaluation. IEEE Transactions on Software Engineering, 25(5), 1999.

[38] Rashid, L.; Pattabiraman, K.; Gopalakrishnan, S., "Towards understanding the effects of in-

termittent hardware faults on programs," Dependable Systems and Networks Workshops

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 29 of 30

Version 1.5 – 05/08/2014

(DSN-W), 2010 International Conference on , vol., no., pp.101,106, June 28 2010-July 1 2010

doi: 10.1109/DSNW.2010.5542613

[39] Sharma, A.; Sloan, J.; Wanner, L.F.; Elmalaki, S.H.; Srivastava, M.B.; Gupta, P., "Towards ana-

lyzing and improving robustness of software applications to intermittent and permanent

faults in hardware," Computer Design (ICCD), 2013 IEEE 31st International Conference on ,

vol., no., pp.435,438, 6-9 Oct. 2013, doi: 10.1109/ICCD.2013.6657076

[40] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep Ramachandran. 2012.

Relyzer: exploiting application-level fault equivalence to analyze application resiliency to

transient faults. SIGPLAN Not. 47, 4 (March 2012), 123-134. DOI=10.1145/2248487.2150990

http://doi.acm.org/10.1145/2248487.2150990

[41] Jiesheng Wei; Rashid, L.; Pattabiraman, K.; Gopalakrishnan, S., "Comparing the effects of

intermittent and transient hardware faults on programs," Dependable Systems and Net-

works Workshops (DSN-W), 2011 IEEE/IFIP 41st International Conference on, vol., no.,

pp.53,58, 27-30 June 2011, doi: 10.1109/DSNW.2011.5958835

[42] Garcia, P.; Gomes, T.; Salgado, F.; Cardoso, P.; Cabral, J.; Ekpanyapong, M., "Reliability cor-

relation between physical and virtual cores at the ISA level," Emerging Technologies & Fac-

tory Automation (ETFA), 2012 IEEE 17th Conference on , vol., no., pp.1,4, 17-21 Sept. 2012,

doi: 10.1109/ETFA.2012.6489725

[43] Kaliorakis, M.; Tselonis, S.; Foutris, N.; Gizopoulos, D., “D3.1 – Report on major classes of hard-

ware component”

[44] R. de Oliveira Moraes and E. Martins, “Jaca - a software fault injection tool,” Dependable

Systems and Networks, 2003. Proceedings. 2003 International Conference on, p. 667, June

2003.

[45] Jiesheng Wei, Anna Thomas, Guanpeng Li and Karthik Pattabiraman, “Quantifying the Ac-

curacy of High-Level Fault Injection Techniques for Hardware Faults”, IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2014.

[46] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. “Enforcing Performance Isolation

across Virtual Machines in Xen”. In Proceedings of the 7th International Middleware Con-

ference, LNCS Press, 2006. pp.342-362

[47] Yunfa Li; Wanqing Li; Congfeng Jiang, "A Survey of Virtual Machine System: Current Tech-

nology and Future Trends," Electronic Commerce and Security (ISECS), 2010 Third Interna-

tional Symposium on , vol., no., pp.332,336, 29-31 July 2010, doi: 10.1109/ISECS.2010.80

Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 30 of 30

Version 1.5 – 05/08/2014

[48] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. “Safe Hardware

Access with the Xen Virtual Machine Monitor”. Proceedings of the 1st Workshop on Operat-

ing System and Architectural Support for the on demand IT InfraStructure (OASIS), Boston,

MA, October 2004.

[49] Microsoft Corporation, .Net Framework 4, http://msdn.microsoft.com/en-

us/library/vstudio/w0x726c2%28v=vs.100%29.aspx

[50] Mono Project, http://www.mono-project.com

