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Scope of the document 

This document is an outcome of task T4.1, “Software impact on system reliability: Metrics 
and Models”, elaborated in the description of work (DoW) of the CLERECO project under the 
Work Package 4 (WP4).  

This document aims at describing the impact of software on system reliability in terms of 
metrics and models. With the term software we consider here both the system software (e.g., 
the operating system) and the application software. In particular, this document focuses on 
modeling the way hardware errors can reach the software stack, and on a preliminary analysis 
of possible methods to investigate how these errors are propagated and/or masked through 
the software stack thus affecting the final system reliability. It has to be pointed out that the 
CLERECO project does not focus on software bugs/errors but only on the effect of hardware 
faults and their propagation to the software layers. 
 
The document is organized in the following sections: 

• Introduction. This section sets the background for the document. The objectives of 
the document and the investigations made for its development. 

• Software Fault Models. This section describes how hardware faults that are not 
masked at the hardware level can be modeled at the software level in order to 
analyze their effect on the software execution. 

• Impact of software on system reliability: the virtual instruction set defined for the 
analysis of Software Resilience to be developed in CLERECO. Moreover, this section 
introduces a preliminary description of the environment that will be implemented, 
using both already available tools and specific solutions that are going to be de-
veloped within the WP.  

• Software faulty behaviors: this section identifies a set of common faulty behaviors 
that the software manifests when affected by faults. These software faulty behaviors 
are organized and analyzed to properly define the Reliability Metrics for Software 
investigation in CLERECO. 
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1. Introduction 

System reliability has become an important design aspect for computer systems due to the 
aggressive technology miniaturization, which introduces a large set of different sources of fail-
ure for hardware components [1][2][3][4]. Unreliable hardware components affect computing 
systems at several levels. Raw errors are strongly related to the technology used to build the 
hardware blocks composing the system and are caused by effects such as physical fabrica-
tion defects, aging or degradation (e.g., NBTI), environmental stress (e.g., radiations), etc.  

After a raw fault manifests in a given hardware block, it can be propagated through the dif-
ferent hardware structures composing the full system. Even if several faults can be masked dur-
ing this propagation either at the technology or at architectural level ([4][5][8][43]), some of 
them can possibly reach the software layer of a system by corrupting either data or instructions 
composing a software application. These errors can jeopardize the correct software execution 
producing erroneous results if the computation is completed, or even preventing the execution 
of the application by causing exceptions, abnormal terminations or leading to an application 
hang-up. This may have a serious impact on the overall reliability of the system. The software 
stack itself can play an important role in masking errors generated in the underlying layers. This 
capability can be further improved by the implementation of software fault tolerance mecha-
nisms [6][7], which enable the improvement of the system reliability but often incur a significant 
performance overhead. Therefore, the role of the software stack in the overall system reliability 
is carefully considered in CLERECO. 

To avoid misunderstanding with terminology used in different research domains, it is im-
portant to clarify in this document that CLERECO focuses on the effect that raw hardware 
faults reaching the software stack produce on the correctness of the application outcome 
(usually represented by the result of the software computation). The software stack is seen as a 
path in which hardware faults can be propagated amplifying and/or masking their effect on 
the correctness of the expected system’s outcome. Software reliability engineering, including 
software-testing techniques aimed at detecting software design bugs, are out of the scope of 
CLERECO.  

The reliability stack reported in Figure 1 summarizes the basic idea of system reliability evalu-
ation of CLERECO. Every system is split into three main layers: (1) technology, (2) hardware and 
(3) software. The low-level raw errors of the physical devices are masked in several different 
ways (addressed in the WP2 of CLERECO Project) as their effect is propagated through the 
hardware layer (which is evaluated in the WP3) and the software layer of the system stack to-
wards the final program/application outputs. It is the CLERECO’s goal to contribute with a full 
system reliability estimation methodology, which takes into consideration all these factors 
(technology, hardware and software) to provide an accurate estimate of the expected relia-
bility of the system as early as possible during the design. 



Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 6 of 30 

  

 

 

Version 1.5 – 05/08/2014 

  

Figure 1: CLERECO Reliability stack 

One of the main goals pursued in CLERECO is to be able to analyze the three layers report-
ed in Figure 1 in isolation, and to later combine the outcome of this local analysis in order to 
infer reliability measures at the system level. This is motivated by the requirement of analyzing 
very complex systems in which considering all layers at the same time is computationally infea-
sible. 

Each layer included in Figure 1 defines an interface with the upper layer, which in turns sets 
how the errors can be propagated from one layer to the next one. In this document we focus 
on errors that can cross the interface between the hardware and the software layer. They are 
then propagated through the software execution, thus impacting the result of the computa-
tion, i.e., the software outcome. The portion of the reliability stack considered in this deliverable 
with the main relevant elements required to analyze the impact of software on the reliability of 
a system is shown in Figure 2. 

 

Figure 2: The portion of the system reliability stack considered in this deliverable 

The software layer considered in CLERECO includes both the system software (i.e., the oper-
ating system) and the application software. Since the global system outcome is commonly rep-
resent by the outcome of the software executed in the system (both application and system 
software), analyzing the software impact on the system reliability implies analyzing the way the 
software reacts on faults that reach its interface with the hardware layer. In general, the In-
struction Set Architecture (ISA) of the target hardware platform executing the software defines 
this interface between the hardware and the software. 

The ability of a software component to mask and/or intrinsically tolerate errors coming from 
the hardware is also referred in the literature as software resilience [24]. This term will therefore 
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be used within this document and the following deliverables as a synonymous of software 
masking capability or software impact on the system reliability. 

To define the resilience of a software application, it is necessary to evaluate the probability 
of functional correctness of the software in the presence of hardware faults that propagate in 
either the software data or software instructions. The next sections will report the effort per-
formed within CLERECO to identify models and metrics to properly represent faults reaching 
the software layer interface, to analyze how these faults are propagated in the system reliabil-
ity stack and finally to classify how the software outcome is impacted by these faults. 
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2. Software Fault Models 

Most of the literature that aims at considering the impact of software in the reliability of a full 
system still starts from low-level hardware faults [31][32][33], trying to propagate them through 
the hardware architecture to the software layers in order to evaluate their impact on to the 
final system outcome [34][35][36]. This, in general, requires complex and time-consuming simu-
lations of hardware models that do not enable to analyze complex software stacks. As previ-
ously stated, in CLERECO, we aim at detaching the analysis of the software level from the 
hardware level. We therefore need to model how hardware faults manifest at the software 
level. 

In [34], authors look at the symptoms of transient faults in microprocessors. This observation is 
performed at a high abstraction level, very close to the ISA level. Other works use simulations to 
generate fault dictionaries that capture the manifestations from the lower level “off-line” and 
use them to propagate fault effects during high-level simulations, [37]. Intermittent and Perma-
nent faults started gaining attention very recently. A set of works tries to investigate the effect 
of propagation of these types of fault up to the software level, [38][39]. However, most of the 
available works still lack a general abstraction about the effect of hardware faults at the soft-
ware level. 

It is important to highlight here that the main interaction point between the hardware layer 
and the software layer is the ISA of the microprocessors and co-processors (e.g., accelerators 
such as GPUs or crypto devices) available in the system. A straightforward way to model the 
fault propagation from the hardware layer to the software layer is therefore to map hardware 
faults into a set of fault models that affect the ISA instructions and their data. This somehow de-
taches the software analysis form the underlying hardware analysis and moves the work of 
combining the obtained results later on. When the effect of hardware faults to the software 
layers is accurately modeled at the interface between the hardware and the software (i.e. the 
ISA and the data), significantly more complex software stack architectures can be studied and 
the effect of faults at the full system level can be correctly analyzed. 

Table 1 provides a preliminary taxonomy of software fault models defined at the ISA level 
that will be considered in CLERECO. It is worth mentioning here that this taxonomy will be con-
tinuously updated during the project to reflect the results provided by WP3 during its analysis of 
relevant classes of hardware components considered in CLERECO. We explicit do not refer to 
registers but to (generic) operands in order to maintain a high level description. All considered 
models apply both to system and application software.  

Table 1 - Software Fault Models 

Software Fault Model Description 

Wrong Data in an Operand An operand of the ISA instruction shows an incoherent value 
(e.g., a value that differs from an expected one). 

Not-accessible Operand  An operand of the ISA instruction cannot be addressed to 
change/retrieve its value. 

Operand Forced Switch An operand is used in place of another, at execution time. 

Instruction Replacement An instruction is used in place of another (either a valid or 
an invalid one). Transition tables can be provided to guide 
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Software Fault Model Description 
the substitution based on statistical evidences in most 
common ISA. 

Faulty Instruction The instruction produces a wrong result. 

Control Flow Error The flow of control is not respected (control-flow faults). 

External Peripheral Communica-
tion Error 

An input value (from a peripheral) is corrupted or not arriv-
ing 

Signaling Error An internal signaling (exception, interrupt, etc.) is wrongly 
raised or suppressed. 

Execution timing Error An error in the timing management (e.g. PLL) interferes with 
the correct execution timing. 

Synchronization Error An error in the scheduling processes causes an incoherent 
synchronization of processes/tasks. 

All models reported in Table 1 are very generic and not tight to a specific ISA, so they can 
be applied to several classes of hardware components. To avoid loosing contact with the un-
derlying hardware layer it is however important to correlate each fault model with candidate 
hardware fault locations. Table 2 shows a first attempt to perform this mapping that will be 
constantly improved and refined during the project to support models and algorithms devel-
oped within WP5. 

 

Table 2 - Software Fault Model correlation with Hardware Fault Location 

Software Fault 
Model 

Location 

Microprocessor Accelerators Memories Peripherals Interconnect 

Wrong Data in 
Operand 

• Register file 
• Program 

counter 
• Buffer 
• Fetch buffer 
• Reorder buff-

er 
• Load buffer 
• Store Buffer 
• Instruction 

scheduler 
• Issue queue  
• ALU 
• FPU 
• Pipeline 

latches 

• Register 
file 

• Instruction 
buffer 

• Score-
board 

• Processing 
Units 

 

• Main 
Memory 

• Cache 
Memories 

• TLB 

• DMA 
controller 

• Infiniband 
• Ethernet 
• Gemini in-

terconnect 
• Myrinet 
• Fat Tree 
• Bi-

Directional 
Link 

• Wishbone 
• AMBA 
• Pair of 

Northbridge 
and South-
brige 

Not-accessible 
Operand  

• Register File 
• Fetch buffer 
• Store Buffer  
• Issue queue 
• Reorder buff-

er 

• Register 
file 

• Instruction 
buffer 

• Operand 
collector 

• Main 
Memory 

• Cache 
Memories 

 

• DMA 
controller 
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Software Fault 
Model 

Location 

Microprocessor Accelerators Memories Peripherals Interconnect 
• Pipeline 

latches 
 

• Score-
board 

 

Source Oper-
and Forced 
Switch 

• Register File 
• Instruction 

decoder 
• Fetch buffer 
• Load buffer 
• Store Buffer  
• Instruction 

decoder 
• Issue Queue 
• Reorder buff-

er 
• Pipeline 

latches 

• Register 
file 

• Instruction 
buffer 

• Operand 
collector 

 

• Main 
Memory 

• Cache 
Memories 
 

• DMA 
controller 

 

Instruction Re-
placement 

• Program 
Counter 

• Buffer 
• Microcode 

storage 
• Fetch buffer 
• Load buffer 
• Store Buffer  
• ICache 
• Instruction 

decoder 
• Issue Queue 
• Reorder buff-

er 
• Pipeline 

latches 

• Instruction 
buffer 

 

• Main 
Memory 

• Cache 
Memories 

• TLB 

• DMA 
controller 

 

Control Flow 
Error 

• Program 
counter 

• Microcode 
storage 

• Fetch buffer 
• Reorder Buff-

er 
• Load buffer 
• Instruction 

Decoder 
• Instruction 

scheduler 
• Issue queue 
• Pipeline 

latches 

• Instruction 
buffer 

• Handlers 
of branch 
diver-
gence 

 

• Main 
Memory 

• Cache 
Memories 

• PIC 
 

External Periph-
• Buffer 
• Microcode 

 
• Main 

Memory 
• DMA 

controller 
• Infiniband 
• Ethernet 
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Software Fault 
Model 

Location 

Microprocessor Accelerators Memories Peripherals Interconnect 
eral Communi-
cation Error 

storage 
• Pipeline 

latches 

• Cache 
Memories 

• TLB 
• Lo-

cal/Privat
e 
Memory 

• PIC 
• UART 
• PCI Ex-

press 
• USB 
• Bluetooth 

• Gemini in-
terconnect 

• Myrinet 
• Fat Tree 
• Bi-

Directional 
Link 

• Wishbone 
• AMBA 
• Pair of 

Northbridge 
and South-
brige 

Signaling Error 
• Microcode 

storage 
• Reorder buff-

er 
• Instruction 

decoder 
• Instruction 

scheduler 
• Pipeline 

latches 
 

• Operand 
collector 

• Main 
Memory 

• Cache 
Memories 

• TLB 

• DMA 
controller 

• UART 
• PCI Ex-

press 
• USB 
• Bluetooth 

• Infiniband 
• Ethernet 
• Gemini in-

terconnect 
• Myrinet 
• Fat Tree 
• Bi-

Directional 
Link 

• Wishbone 
• AMBA 
• Pair of 

Northbridge 
and South-
brige 

Execution tim-
ing Error 

• Program 
counter 

• Branch pre-
dictors 

• Branch target 
buffers 

• Return Ad-
dress Stack 

• Fetch buffer 
• Reorder buff-

er 
• Instruction 

decoder 
• Instruction 

scheduler 
• Issue queue 
• Pipeline 

latches 

• Operand 
collector 

• Scheduler 
of blocks 
or work 
groups 

 

• Main 
Memory 

• DMA 
controller 

• PIC 
• UART 
• PCI Ex-

press 
• USB 
• Bluetooth 

 

Synchronization 
Error 

• Instruction 
scheduler 

• Pipeline 

• Score-
board 

• Operand 

• TLB • DMA 
controller 

• PIC 
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Software Fault 
Model 

Location 

Microprocessor Accelerators Memories Peripherals Interconnect 
latches 

 

collector 
• Scheduler 

of blocks 
or work 
groups 

• Vector 
Processing 
Unit 

• UART 
• PCI Ex-

press 
• USB 
• Bluetooth 
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3. Impact of software on system reliability 

While the definition of methods to analyze the impact of software on system reliability are 
out of scope of this deliverable and will be properly described in deliverables D4.2.1, D4.2.2 
“Software Characterization Methods” that will be released later in the project (M12), a prelimi-
nary analysis and discussion is required to proper setup the background for the core activity of 
WP4. 

Similarly to the hardware layer, the software layer has several error masking/amplifying ca-
pabilities. Figure 3 summarizes the main error masking effects at software level [7].  

An error can be masked at the operating system level if: 

• It affects the architecture state components that are not used by the OS. 
• It does not raise any Fatal Trap or Hang. 
• It does not affect the process state of the current application. 

An error can be amplified at the operating system level if: 

• It affects hardware status resources (e.g., machine control registers, operating sys-
tem control registers). 

• It affects the operating system memory management module. 
• It affects the processes/threads scheduling capabilities. 
• It propagates to any other resource. 

An error can be masked by the application software if: 

• It affects the control flow without leading to an abnormal application exit or skip of 
functions. 

• It affects the program without leading to an output that differs from the expected 
one at the expected time. 

• It does not raise any Fatal Trap or Hang of the application. 
• It has no impact on the execution times and on the responsiveness of the applica-

tion. 

An error can be amplified by the application software if: 

• It affects the control flow leading to wrong paths. 
• It affects application resources in their initialization phase. 
• It raises wrong Fatal Traps. 
• It propagates to any other resource. 
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Figure 3: Masking effects on System Vulnerability Stack 

Analyzing this masking capability requires to set a common ground, in terms of execution 
platform, to cope with the huge diversity of available software platforms and computer archi-
tectures.  

Common software engineering techniques resort to high-level programming languages 
(e.g., C/C++ or Java) or data-flow (graphical) programming languages (e.g., MathWork Sim-
ulink) to describe software routines independently from the target execution platform3.  

High-level programming languages are then mapped to the ISA of the final system. The 
mapping can be done statically (at compile time) or dynamically (at run-time). In both cases 
the high-level program is translated into a sequence of low-level instructions that can be exe-
cuted by the selected hardware thus creating a very specific link between the software layer 
and the hardware layer of a system (Figure 1). 

This is in contrast with the CLERECO main idea, which aims at performing reliability evalua-
tion in the early stage of the system design when the selection of the hardware is still an open 
choice. This in turns requires investigating methods and tools to model the software inde-
pendently from the target hardware architecture, and to link later on the results of the software 
analysis to the specific reliability metrics collected for the selected hardware architecture. At 
this early stage the target ISA is still unknown and therefore cannot be exploited either to de-
fine fault models according to the taxonomy presented in Table 1 or to perform simulations to 
analyze how faults propagate through the software modules. 

                                                        

 

 

 
3 Embedded systems applications, which highly depend on the system platform and/or peripheral drivers in common operat-

ing systems, may represent an exception to this practice. 
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In this scenario, one of the natural solutions to tackle this problem is to resort to virtualization 
techniques enabling to abstract the ISA used to describe the software from the target hard-
ware architecture. This solution introduces an additional abstraction layer between the hard-
ware ISA and the software layer that further decouple the hardware and the software layers 
[16].  

The concept of software virtualization is gaining increasing importance since it ensures effi-
cient and flexible performance, and enables cost saving from sharing the same physical 
hardware. Therefore, several projects proposing virtualization infrastructures are available. The 
next subsections report the effort performed in CLERECO to identify a candidate virtualization 
framework that can serve as a starting point to implement the infrastructure required to ana-
lyze parameters that are relevant to evaluate the software resilience to hardware faults. 

3.1. Abstract Instruction Set Architecture 

Virtualization technologies can separate hardware and software management and provide 
useful features, including performance isolation [46]. Moreover, virtualization technologies can 
also provide portable environments for the modern computing systems [47]. In fact, a virtual 
machine (VM) is a logical machine having almost the same architecture of a real host ma-
chine, running an operating system in it. Virtual machines allow users to create, copy, save 
(checkpoint), read and modify, share, migrate and roll back the execution state of a machine 
with simple file manipulation tools. This flexibility provides significant value for users and adminis-
trators. Traditionally, virtual machines have focused on fairly sharing the processor resources 
among domains, [47].  

In the WP4, one of the main aims is to investigate the software reaction to hardware faults, 
without knowing the target hardware architecture. In this context, a virtualized environment 
perfectly matches our needs 

Following [16], available technologies for the implementation of VMs can be classified in 
two main categories: 

• System Virtual Machines (VMs) provide a complete environment that supports the 
execution of a complete operating system. System VMs issue a platform to run pro-
grams in which the real hardware is not available for use, and to run multiple OS en-
vironments concurrently on the same computer with a strong isolation. The virtual 
machine relies on an ISA that is different from the one of the physical machine. In this 
situation the whole software is virtualized, therefore the VM has to emulate both the 
application and the OS code. 

• Process Virtual Machines are virtual platforms that execute a single process. The VM 
is created when the process is started and deleted when it terminates. Its goal is to 
provide an independent programming environment platform, which abstracts the 
details of the underlying hardware or operating system, and enables a program to 
execute in the same way on any platform. Process VMs using different guest and 
host ISAs are implemented using an interpreter, which fetches, decodes and emu-
lates the execution of individual guest instructions. Since this process is relatively slow, 
dynamic binary translation can provide better performance by converting guest in-
structions to host instructions in blocks rather than instruction by instruction, and sav-
ing them in a cache for later reuse. 

The main drawback of most available System and Process VMs is that they are still bounded 
to specific ISAs implemented by real hardware architectures. In CLERECO we need to over-
come this limitation by working with an ISA that is independent from the final hardware used in 
the system. As depicted in Figure 4, we therefore plan to identify a virtualization environment 
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able to develop software using a Virtual Instruction Set Architecture (VISA), creating an addi-
tional layer between the software stack and the actual hardware architecture. The VISA must 
be later translatable into a real ISA in order to better analyze the software behavior on the tar-
get system when the hardware architecture is finally defined. 

Both the Operating System and the Application Software will be described in CLERECO ac-
cording to this VISA. Following [42], adding this additional level of abstraction still enables us to 
investigate the error propagation properties of the software and to efficiently correlate them 
with errors arising in the actual hardware.  

 

Figure 4: CLERECO System Stack exploited in terms of the Software execution stack 

There are several frameworks in the literature to use virtualization with virtual instruction sets 
to perform complex analysis of software applications on different architectures 
[19][25][26][27][28]. The software under analysis is compiled into a sequence of abstract in-
structions. Software compiled using this abstract instruction set can then be directly executed 
on a specific host microprocessor’s architecture (via further translation/synthesis, [25][26]) or on 
virtual machines (without requiring further translations).  

WP4 is investigating different alternatives of available virtualization environment implement-
ing VISAs to exploit for the analysis of software resilience. Three realistic options have been con-
sidered so far: 

• Java. Java applications are typically compiled to byte-code (class file) that can run 
on any Java virtual machine (JVM) regardless the underlying microprocessor archi-
tecture. The Java byte-code is a form of ISA virtualization. Based on Java, Jaca is a 
fault injection tool that is able to inject faults in object-oriented systems and can be 
adapted to any Java application without need of its source code. To perform injec-
tion it is enough to know just few information about the application like the classes, 
methods, and attributes names [44].  

• .NET / Mono. The .NET framework follows the same philosophy of Java. It consists of a 
virtual machine able to run Common Languages Infrastructure (CLI) code. The CLI is 
an object-oriented VISA that is the lowest level of the framework, [49]. Mono is the 
open version of the .NET VM, [50]. To the best of our knowledge, no fault injection 
environment is actually available. 
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• LLVM. LLVM is a Process Virtual Machine that implements a virtualized instruction set 
architecture. A wide community of developers (including Intel [29], NVIDIA[30], and 
others) uses and develops tools having LLVM at their core. Among them, several 
fault injection tools are currently developed [23],[24],[45]. They are research tools re-
leased under the open source code licenses. 

Among the considered environments a very promising solution for CLERECO is LLVM.  Java, 
while being widely used in web-based applications, has the disadvantage of not being really 
suitable for both HPC and embedded applications, where the final application will be de-
signed specifically for the target hardware in order to fully exploit all capabilities (speed, pow-
er) of the system. Moreover, the JVM is restricted to the Java programming language thus limit-
ing the spectrum of software that can be analyzed. 

While LLVM is not the final decision for the implementation of the CLERECO software analysis 
framework, and further investigations will be performed, in the next subsections we will report 
additional information regarding the LLVM infrastructure in order to highlight interesting fea-
tures and missing functionalities of this environment.  

3.1.1. The LLVM Project 

LLVM (formerly Low Level Virtual Machine) [17] is a compiler infrastructure designed for 
compile-time, link-time, run-time optimization of programs written in arbitrary programming 
languages (see Figure 5). Originally implemented for C and C++, nowadays, the languages 
with compilers that use LLVM include D, Fortran, Julia, Objective-C, Python, Ruby, Rust, Scala, 
C# and so on. It also supports, as back ends, a huge set of ISAs: ARM, MicroBlaze, MIPS, NVidia 
PTX (called "NVPTX' in LLVM documentation), PowerPC, SPARC, x86/x86-64, and so on. Moreo-
ver, modern programming paradigms and architectures, such as GPU accelerators and Intel 
Phi architectures, are supported both in terms of front-end (i.e., CUDA C/C++ API) and 
backend, [10],[11]. 

 

Figure 5: LLVM Abstraction Example 

Together with the full tool chain required for software design (e.g., compiler, optimizer, etc.), 
LLVM provides a set of additional tools explicitly devoted to perform investigation of different 
software properties. The LLVM tool kit includes: 

• The LLVM Core: it includes a code optimizer and the generator. 
• CLang:  it is a native C/C++/Objective-C compiler. 
• Dragonegg: a tool for the integration with GCC parsers. 
• LLDB: a native debugger. 
• Libc++: a native C++ Standard Library implementation. 
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• Compiler-rt: one of the most useful tools for the project. It is a low-level target specif-
ic code generator, which includes a set of promising facilities: 

o Sanitizers’ runtimes: runtime libraries to run the code with sanitizer instrumen-
tation. This includes a Data Flow Sanitizer to perform a dynamic flow analysis 
and an Address Sanitizer to help in the memory error detection. 

o Profile: a library to collect profiling information about the software. 
• OpenMP: a native OpenMP implementation, particularly helpful for implementing 

parallel version of single-threaded algorithms. 
• vmkit: a native JAVA and .NET virtual machine. 
• Klee: is a symbolic virtual machine that uses a theorem prover to evaluate the dy-

namic paths of software. It has been successfully used for software testing purposes 
[21]. 

LLVM is also supported by a large community of developers, which contributes with extra 
components. The open source license, the continuous updates, the high availability of tools, 
and the large community of users make LLVM a good starting point for the CLERECO software 
analysis infrastructure.  

Eventually, as it will be described in the next subsection, the LLVM project comes with a well-
known implementation of simulation environments, which also include fault injection/simulation 
engines. 

3.1.2. The LLVM Simulation Environment 

This subsection aims at summarizing the LLVM state-of-the-art tools to build a simulation envi-
ronment able to collect data about software resilience at high level. 

3.1.3. LLFI 

LLFI [23],[45] is an LLVM based fault injection tool that enables to inject faults into the LLVM 
intermediate level of the application source code. Using LLFI, faults can be injected at specific 
program points and data types. The effect can be easily tracked back to the source code. LLFI 
is typically used to map fault characteristics back to source code, and to understand program 
characteristics or source level for various kinds of fault outcomes. The reason why LLFI injects 
faults at this level is that the LLVM intermediate code is at a higher level than the assembly 
code, and is able to encode more information than the source code. In fact, at the assembly 
level, it is not easy to track back the fault behavior to the source level. This problem could be 
solved with a fault injection at the source code level. However, this solution does not allow 
modeling hardware faults because many hardware faults, that affect some control flow in-
structions and registers are masked at the lower layers of the system and cannot be simulated 
at the application layer. 

The goal behind LLFI is to identify source level heuristics that enable to identify optimal loca-
tions for high coverage detectors of faults causing Egregious Data Corruptions (EDCs). EDCs 
are application outcomes that deviate significantly from the error-free outcome [6]. Non-EDCs 
are application outcomes with small deviations in output. EDCs and non-EDCs define the Silent 
Data Corruptions (SDCs), which are the outcomes that result from any deviation from the fault 
free outcome. A threshold between EDC and non-EDC can be defined; if set to zero, even sin-
gle bit errors are considered SDCs. 

LLFI supports fault injection errors that model the effect of transient hardware faults occur-
ring in the processor (e.g., errors caused by cosmic ray or alpha particle strikes affecting flip 
flops and logic elements). It considers faults in the functional unit (the ALU and the address 
computation for loads and store). However, the tool does not consider faults in the memory 
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components, in the control logic of the processor, and in the instructions, which is a huge limi-
tation of the approach.  

3.1.4. KULFI 

KULFI [24] (Kontrollable Utah LLVM Fault Injector), developed by Gauss Research Group at 
School of Computing, University of Utah, Salt Lake City, USA, is an LLVM based fault injection 
tool, which enables to inject random single bit errors at instruction level. It allows injecting faults 
into both data and address registers. It simulates faults occurring within CPU state elements, 
providing a finer control over fault injection. For example, it enables the user to define options 
related to the fault injection mechanism, such as the probability of the fault occurrence, the 
byte position in which the fault could be injected, the suitable choice whether the fault should 
be injected into the pointer register or the data register. 

KULFI considers the injection of both dynamic and static faults. Dynamic faults represent 
transient faults and they are injected to a fault site randomly selected during program execu-
tion. Static faults represent permanent faults and are injected to a fault site selected randomly 
before the program execution. 

3.2. Software Development Scenarios 

In addition to the classical C/C++ development scenario, we identified two de-facto 
standards for development environments exploited in real software contexts. The two environ-
ments have been identified to support the LLVM introduction as Virtual ISA. They are deeply 
investigated since we plan to resort to them for the demonstrator implementation expected in 
WP 6. 

3.2.1. Simulink 

The first scenario we are going to describe in terms of LLVM impact is a common early stage 
software development: modeling via Simulink. It is common to start developing the software by 
designing its flow via Simulink modules. The main advantage is the creation of an interactive 
model, which can be already used for simulations and test cases.  

LLVM does not natively supports to compile and execute Simulink models. Nevertheless, 
MathWorks provides a set of add-ons to the Simulink development environment (e.g., the Sim-
ulink Coder [13] and the Embedded Coder [12]), able to generate C and C++ code from Sim-
ulink diagrams and Stateflow charts that can be then compiled for the execution within LLVM 
using the LLVM Clang Compiler [9] as reported in Figure 6. 
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Figure 6: Simulink integration with LLVM 

In details, the Simulink Coder tool allows the user: 

• ANSI/ISO C and C++ code for discrete, continuous, or hybrid Simulink and State-
flow models generation; 

• Incremental code generation; 
• Integer, floating-point, and fixed-point data type support; 
• Code Generation for single-rate, multi-rate and asynchronous models; 
• Single-tasking, multitasking, and bare-board compatibility; 
• External mode simulation for code tuning and monitoring. 

It therefore provides a very general way to transform Simulink models into programs that 
can be executed and analyzed in LLVM. 

Another feasible alternative is to exploit the MathWorks Embedded Coder, an add-on de-
signed for the generation of C code for embedded systems. The tool can be set-up in order to 
optimize the code for specific target architectures (e.g., ARM, AMD, Freescale, Intel, TI), thus 
extending the native capabilities of Simulink Coder. For more information please refer to [13]. 
Differently from the Simulink Coder, this translation performs a preliminary assumption on the 
target microprocessor architecture. It cannot therefore be used in the very early stages of the 
design process, but only in the later stages when the target hardware platform has been iden-
tified. Moreover, this tool can be exploited to generate different versions of the software that 
can be compared in the study of the overall system reliability.   

It is important to notice that there are several limitations on the Simulink blocks accepted as 
part of the input model. In fact, the coder is not able to generate the corresponding C code 
for all available Simulink blocks. Industrial partners may investigate their usage of Simulink mod-
els to fit the issue. For more information on the limitations refer to [14]. 

 

3.2.2. SCADE Suite 

The second development scenario considered here is a development based on a formal 
description in the SCADE Suite. The SCADE Suite is an integrated design environment and de-
velopment for critical embedded software applications. The tools enable graphic design, veri-
fication through simulation and formal methods, and certified code generation. Products re-
quirements management, configuration management and automatic documentation gener-
ation are also included, reducing the time of certification applications. The tool suite is dedi-
cated to the development of critical embedded applications using formal description, in in-
dustries Aerospace, Defense, Rail Transport, Energy and Industry. 
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Similarly to the Simulink scenario, LLVM is not integrated natively within the SCADE Suite, but 
it can be used for the compilation of the code generated by the tool suite (see Figure 7). 

 

 

Figure 7: SCADE Suite integration with LLVM 

The SCADE Suite KCG code generator is certified/qualified according to following interna-
tional safety standards: 

• DO-178B qualified up to Level A and DO-178C Ready for Civilian and Military Aero-
nautics. 

• IEC 61508 certified at SIL 3 by TÜV for Industry. 
• EN 50128 certified at SIL 3/4 by TÜV for Rail Transportation. 
• IEC 60880 compliant for Nuclear Energy. 
• ISO 26262 for Automotive. 

The SCADE Suite generates ANSI C code that can be directly compiled with LLVM frame-
work. LLVM can thus fit in different development scenarios used in different application do-
mains. 
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4. Software Faulty Behavior Classes 

Once the hardware faults that can affect the software layer have been properly modeled, 
and a platform to analyze how these faults propagate during the execution has been identi-
fied, the investigation of the impact of these faults on the software still requires analyzing how 
they affect the final software result. Basically, two main classes of errors can be observed at the 
output interface of the software layer [18]: 

1. Incorrect output: the hardware error propagation only affects the output of the ap-
plication. 

2. Application failure: an error produces a software failure that forces the application 
to interrupt its execution prematurely by crashing or keeping it in an unresponsive 
state (e.g., hangs). In this case, no output might be produced. 

In both situations, the key concept is that, whenever the error is located in software, there 
exists an error masking chain that links it to the underlying reliability layer. Nevertheless, this very 
simple classification requires to be elaborated in order to identify a more fine-grained set of 
behaviors, named here software faulty behaviors (SBFs), the software may produce when af-
fected by the faults defined in Section 2. 

In a complex system, the SBF combines both the behavior of the operating system activity 
and the application software activity. Some publications try to define possible classes of SBFs to 
be used for the analysis of Software Resilience.  

By the analysis of the literature [15][20][22][40][34][41], three main classes of SBFs can be de-
fined: 

1. Timing: they are related to the ability of the software to respect the target time con-
straints. Since the time is always related to a metric, a set of metrics (e.g., IPC, clock 
cycles, etc.) will be proposed and discussed, in order to deal with the accuracy of 
the timing in proper ways. 

2. Unresponsiveness: once the software is affected by a fault, it may become unre-
sponsive, thus (most of the time) preventing the production of its outputs. Full unre-
sponsiveness arises when the whole software stack crashes (both the application 
and the OS). Partial unresponsiveness is instead generated whenever the operating 
systems remains active, while the application software stops working. Whenever the 
unresponsiveness can be detected only by analyzing some time-related characteris-
tic of the system execution, a set of proper metrics and related parameters have to 
be defined to cope with that. 

3. Data Integrity: this class comprises errors in application data. Two cases may arise:  
(1) the result produced by the application is correct (Benign) and no faulty behavior 
is observed; (2) the output contains errors (Data Corruption, DC). DCs may be further 
split into two sub cases. Applications that provide an output that meaningfully differs 
from the expected one lead to Egregious Data Corruption (EDC), while applications 
that generate small changes (where the meaning of small is discretional) produce 
so called Non-Egregious Data Corruption (Non-EDC). This latter case is mainly a mat-
ter of how the System Requirements describe the ability of the application to toler-
ate errors in the final output. 

 

Table 3 summarizes a preliminary set of possible SBFs identified in CLERECO. These outcomes 
can be mapped into the three general classes introduced previously in this section.  
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Table 3: CLERECO Software Outcomes 

SBF Class SBF SBF Subclass  Description 

Timing In-Time The software execution timing is 
well respected. 

Wrong timing /  

Out of sync 

Early Given the expected execution 
time, the software finishes earlier 
than expected (due to a threshold 
parameter to be defined). This 
could also mean that it is out of 
sync, with respect to the whole sys-
tem. 

Late Given the expected execution 
time, the software ends later than 
expected (due to a threshold pa-
rameter to be defined). This could 
also mean that it is out of sync, with 
respect to the whole system. 

Unresponsiveness  Full Unresponsive Fatal Hardware 
Traps [22] 

A fatal hardware trap occurs in 
either the application or the oper-
ating system. A fatal trap is typical-
ly not thrown during a correct pro-
gram and can cause the system to 
shut down. 

Hangs [22] Hangs due to an abnormal behav-
ior. Usually detected by looking at 
the all executed branch. 

Partial Unre-
sponsive 

Abnormal Applica-
tion Exit [22] 

In a whole system, when an appli-
cation crashes, the OS is aware of 
this event, so the system is not un-
responsive. Avoiding Abnormal 
application exit could improve reli-
ability of whole system. 

High OS Activity [22] The OS is invoked via system trap 
and the execution remains in the 
OS without returning to the appli-
cation. 

Responsive The system is working as expected. 
In these cases, the error has been 
masked by either an internal mask-
ing effect in the system or by a pro-
tection mechanism added in the 
design phase. 

Data Integrity Benign  The software only produces correct 
results (by results we mean mes-



Deliverable 4.1: Software impact on system reliability: Metrics and Models Page 24 of 30 

 

 

 

Version 1.5 – 05/08/2014 

sages, direct actions to the outside 
world, etc.). If incorrect results are 
generated as a consequence of a 
fault then the software does not 
output them (remains silent). 

Silent Data Cor-
ruptions (SDCs) 

Egregious Data Cor-
ruption (EDC) 

The application outcomes deviate 
significantly from the fault free out-
come. The deviation ratio has to 
be defined, case-by-case, choos-
ing a threshold parameter and the 
metric used to measure that devia-
tion.  

Non Egregious Data 
Corruption (Non-
EDC) 

SDCs that result in any deviation in 
the output from the fault free out-
come with small deviation in out-
put that could be tolerate by the 
system. The deviation refers to the 
same defined for EDC. 

 

Every time designers need to analyze a given software application, they can define their 
own custom SBFs as combinations of the ones presented in.  Table 3 

As an example, for a given application designer may consider as an abnormal situation 
every case in which the data integrity is corrupted by a SDC, or the system is unresponsive (ei-
ther fully or partially), ignoring for example timing issues generated by errors (i.e., out of sync 
execution of the software is not considered as an error). 

This preliminary taxonomy, even if simple, should be enough to model most of real situations 
that may arise during the software execution in presence of faults.  
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5. Conclusions 

Work Package 4 (WP4) aims at analyzing the software resilience to hardware faults consid-
ering both system and application software. This report represents the first step toward this goal. 
It contributes to providing: 

• A preliminary set of models to represent hardware faults at the software level.  
• The basis to identify a software virtual architecture to analyze software modules. 
• A definition for a set of preliminary software fault behaviors to evaluate the effect of 

the faults on the software results. 

The content of this deliverable impact on the way WP4 is going to characterize the Software 
(refer to Deliverable D4.2.x) modules in the forthcoming future. WP5 will also be affected be-
cause it is going to be influenced by software fault models and SBFs when dealing to the input 
parameters for the estimation model (refer to Deliverable 5.1.x). Moreover, the SBFs help the 
definition of (new) system level metrics (refer to WP2’s Deliverable 2.4.x) and, consequently, on 
the way the WP5 system reliability estimation model will provide the output of the estimation 
(refer to Deliverable 5.2.x and 5.3). 
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