Reliability in High Performance Computing:

peanuts or hot potato?

Ramon Canal

Dept. of Computer Architecture Universitat Politècnica de Catalunya

Motivation: The Exascale System

8 proc Cray YMP

1500 proc Cray T3E

180 Kcores Cray XT5

1988	1998	2008	2018?	
1 st sustained	1 st sustained	1 st sustained	1 st sustained ExaFlops	
GFlops award	TFlops award	PFlops award	award	

Gordon Bell Performance Award

Motivation – Inside an Exascale System

Datacenter: 109 threads

Rack: 10⁴-10⁵ threads

Blue Waters case

Petaflop machine
250 errors/h (CPU+MEM)
99,997% recovered

Die: 100-1000 threads

Core/tile: 1-10 threads

DMR (lockstep at instruction level)

30% chip real state for reliability and recovery

Xeon* processor

Motivation – Scale and Failures

- Mean Time Between Failure (MBTF):
 - -for supercomputers we talk about MTBF in days/weeks
 - -If it happens, we restart the application
- ExaScale MTBF
 - We will have smaller components
 - We will have a million times more components

MTBF of minutes/seconds?!

Predicted overhead

up to 30 minutes per checkpoint

at 1 Terabyte/second

Motivation – Technology roadmap (ITRS)

- Problems of extremely small scale
 - Around 11 nm by 2018
- Heat flux and temperature variability over space and time
- Aggressive Frequency switching
- Alpha particles and cosmic rays hitting silicon, causing bit flips
- Physical wearout

Additional correctness checks would **increase power consumption by 15-20%**[Dongarra et al., The International Exascale Software Project Roadmap, 2011]

State-of-the art

- Hardware:
 - -ECC, DMR, etc.
 - -Checksums for network/IO
- OS
 - -Rollback-recovery (checkpointing)
 - -Proactive (i.e. ontesting)
 - -Replication
- Application/Language
 - Nothing in real systems
 - -Critical sections

Is it enough?... NO
Recall: MTBF of minutes

System Availability

• For 90% availability with 1M nodes, each node needs:

- —7 nines without redundancy
- -4 nines for DMR
- -3 nines for TMR

A =		MTTF	1	
	=	$\overline{MTTF + MTTR} =$	$1 + \frac{MTTR}{MTTF}$	

9s	Availability	Annual Downtime
1	90%	36 days, 12 hours
2	99%	87 hours, 36 minutes
3	99.9%	8 hours, 45.6 minutes
4	99.99%	52 minutes, 33.6 seconds
5	99.999%	5 minutes, 15.4 seconds
6	99.9999%	31.5 seconds

Not even TMR is enough 🙈

Solutions – what's next?

- "Game of Thrones" style
 - -Circuit, architecture, ISA, application, OS fight the battle on each one.
 - \neg Possibly overshooting \Rightarrow ↑overheads, \checkmark performance, ↑costs

Solutions – what's next?

- "UN" style
 - Cooperative approaches
 - -with (traditionally) uncooperative communities
 - -Need coordination efforts from the first day

Know the system impact of circuit/technology/... decisions

Cooperative approach

- Early stage system evaluation can:
 - Drive research/development efforts
 - –Reduce Time to Market (TTM)
 - —Provide a holistic analysis (MIPS,W,Pfail)
 - -Iterative process to converge to optimal solution
 - -Must define interface between levels
 - Key to enable smooth interaction
 - -Plug'n-play system evaluation possible

Conclusions

- Technology reliability is now felt at the system level
- No level alone can meet the power/performance/goals
- Need cooperation to find the optimal design point
- Early stage variability estimation can help evaluate the impact of each decision on the final system

Reliability in High Performance Computing:

peanuts or hot potato?

Ramon Canal

Dept. of Computer Architecture Universitat Politècnica de Catalunya