Power-Aware Voltage Tuning for STT-MRAM Reliability

Memories Today

<table>
<thead>
<tr>
<th></th>
<th>SRAM</th>
<th>DRAM</th>
<th>Flash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Size</td>
<td>120F²</td>
<td>4-6F²</td>
<td>4-5 F²</td>
</tr>
<tr>
<td>Read Access Time</td>
<td><1ns</td>
<td>20ns</td>
<td>25,000ns</td>
</tr>
<tr>
<td>Write1 Access Time</td>
<td><1ns</td>
<td>0ns</td>
<td>200,000ns</td>
</tr>
<tr>
<td>Write0 Access Time</td>
<td><1ns</td>
<td>20ns</td>
<td>200,000ns</td>
</tr>
<tr>
<td>Endurance</td>
<td>>10³</td>
<td>10¹⁵</td>
<td>10⁴</td>
</tr>
<tr>
<td>Non-volatility</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Outline

• Introduction to STT-MRAM cell
• STT-MRAM cell operation principle
• STT-MRAM parametric reliability analysis
 – Failure mechanisms
 – Control voltage influence on memory cell operation
• STT-MRAM cell reliability estimation
• Conclusions
Outline

• Introduction to STT-MRAM cell
• STT-MRAM cell operation principle
• STT-MRAM parametric reliability analysis
 – Failure mechanisms
 – Control voltage influence on memory cell operation
• STT-MRAM cell reliability estimation
• Conclusions
The orientation of the free layer:
- determines the *resistance* of the material
- can be changed by injecting *current*.

MTJ – Magnetic Tunnel Junction

- **Parallel State (P) ‘0’**
 - Low electrical resistance
- **Anti-parallel State (AP) ‘1’**
 - High electrical resistance
Main resiliency issues come from variations in:

- Tunneling oxide thickness and cross-section area
- Free layer thickness
Outline

- Introduction to STT-MRAM cell
- **STT-MRAM cell operation principle**
 - Failure mechanisms
 - Control voltage influence on memory cell operation
- STT-MRAM parametric reliability analysis
- STT-MRAM cell reliability estimation
- Conclusions
1T1MTJ STT-MRAM Cell

I_{HL} – high to low transition
I_{LH} – low to high transition
Outline

• Introduction to STT-MRAM cell
• STT-MRAM cell operation principle
• STT-MRAM parametric reliability analysis
 – Failure mechanisms
 – Control voltage influence on memory cell operation
• STT-MRAM cell reliability estimation
• Conclusions
STT-MRAM Failure Mechanisms

\(R_{\text{MTJ}} \) (a.u.)

\(V_{\text{DC}} \) (a.u.)

\(R_H \)

\(R_L \)

\(V_{\text{DC}} \) (a.u.)
STT-MRAM Failure Mechanisms

The diagram illustrates the failure mechanisms in STT-MRAM using a graph with axes R_H, R_L, R_{HMAX-W}, and R_{LMAX-W}. The area labeled "OK" represents the acceptable range, while the areas labeled "W0F" and "W1F" indicate regions where failure is more likely to occur. The graph also shows the relationship with V_{DC} (a.u.).
STT-MRAM Failure Mechanisms

- R_{HMIN}
- R_{LMAX}
- OK
- R_{1F}
- R_{0F}
- TMRO

Graph showing R_H versus R_L with failure regions and boundaries.
STT-MRAM Failure Mechanisms
STT-MRAM Failure Mechanisms

\[P_{RF \& WF} = 1 - \int_0^{\min(R_{LMAX-R}, R_{LMAX-W})} \int_{R_{HMIN-R}}^{R_{HMAX-W}} \int_{V_{TH-min}}^{V_{TH-max}} f(R_L, R_H, V_{TH}) dR_L dR_H dV_{TH} \]
Magnetic nanostructures suffer from thermally activated magnetization reversal.

Néel-Brown: at finite temperature, there is a finite probability for the magnetization to flip and reverse its direction.

Néel-Brown model:

\[P(t) = \exp(t/\tau) \]
\[\tau = \tau_0 \exp(\Delta E / k_B T) \]
STT-MRAM Failure Mechanisms

- STT-MRAM Cell Failure Probability in Data Retention:

\[P(t) = 1 - \exp\left[\left(-\frac{Nt}{\tau_0}\right) \cdot \exp\left(-\frac{\Delta E}{k_B T}\right)\right] \]
STT-MRAM Failure Mechanisms

• STT-MRAM Cell Failure Probability in Read Operation

\[P(t) = 1 - \exp\left[(-Nt/\tau_0) \cdot \exp(-\Delta E(1 - (I_{\text{read}}/I_{0C})/k_B T)) \right] \]
Aging: STT-MRAM Cell Failure due to Tunneling Oxide Breakdown

R_H degradation due to Tunneling Oxide stress:

\[R_H(t) = \frac{R_H(0)}{1 + F(t)\left[\frac{R_H(0)}{R_H(t_{BD})} - 1\right]} \]

with F(t) following a Weibull distribution:

\[F(t) = 1 - \exp\left(-\frac{t}{\lambda}\right)^k \]
Outline

• Introduction to STT-MRAM cell
• STT-MRAM cell operation principle
• STT-MRAM parametric reliability analysis
 – Failure mechanisms
 – Control voltage influence on memory cell operation
• STT-MRAM cell reliability estimation
• Conclusions
Control voltage effect on STT MRAM cell operation

Knobs

- V_{DD}
- V_{WL}
- V_{BL-SL}
Control voltage effect on STT MRAM cell operation

\[P(t) = 1 - \exp\left(-\frac{Nt}{\tau_0}\right) \cdot \exp\left(-\frac{\Delta E}{k_B T}\right) \]

\[P(t) = 1 - \exp\left(-\frac{Nt}{\tau_0}\right) \cdot \exp\left(-\frac{\Delta E(1 - (I_{\text{read}}/I_{\text{OC}}))}{k_B T}\right) \]
Outline

• Introduction to STT-MRAM cell
• STT-MRAM cell operation principle
• STT-MRAM parametric reliability analysis
 – Failure mechanisms
 – Control voltage influence on memory cell operation
• STT-MRAM cell reliability estimation
• Conclusions
STT-MRAM cell reliability

No knobs, Fresh Cell, 2D analysis with swipe V_{TH}
STT-MRAM cell reliability

No knobs, Aged Cell, 3D analysis

\[1 - P_{RF&WF}(t) \]

\(\# \text{ Write Pulses} \)
STT-MRAM cell reliability

V_{DD} knob, Fresh Cell, 2D analysis with swipe V_{TH}

$P_{RF&WF}(0)$

$\Delta V_{TH} = 0.05V$

$\Delta V_{TH} = 0.03V$

$\Delta V_{TH} = 0V$

$\Delta V_{TH} = -0.03V$

$\Delta V_{TH} = -0.05V$
STT-MRAM cell reliability

V_{DD} knob, Aged Cell, 3D analysis

\(P_{RF\&WF}(t) \)

\[\begin{align*}
\Delta V_{DD} / V_{DD-nom} (V) \\
-0.2 & -0.1 & 0 & 0.1 & 0.2 \\
10^{-12} & 10^{-10} & 10^{-8} & 10^{-6} & 10^{-4} & 10^{-2} & 10^0 \\
\end{align*} \]
STT-MRAM cell reliability

All knobs, Fresh Cell, 3D analysis

$P_{RF\&WF}(0)$ vs. $\Delta V/V_{\text{nom}}$ (V)

- V_{WL}
- V_{DD}
- V_{BL-SL}
- V_{BB}
STT-MRAM cell reliability

All knobs, Fresh Cell, 3D analysis

$t = 10^6$ cyc

$P_{RF\&WF}(t)$

$\Delta V/V_{nom}$ (V)

V_{WL}

V_{DD}

V_{BL-SL}

V_{BB}
STT-MRAM cell reliability

All knobs, 3D analysis

![Graph showing reliability](image)

- V_{WL}
- V_{DD}
- V_{BL-SL}
- V_{BB}

$t = 0\text{cyc}$ vs $t = 10^6\text{cyc}$
STT-MRAM cell reliability

All knobs, 3D analysis

$t = 0\text{cyc}$

$t = 10^6 \text{cyc}$

- V_{WL}
- V_{DD}
- V_{BL-SL}
- V_{BB}
Reliability Power Tradeoff

Power Consumption when varying V_{WL}

Power Consumption when varying V_{DD}

Failure Probability due to Read Disturb (RD)

$P_{RF\&WF}(t)$

$\Delta V/V_{\text{nom}} (V)$

$V_{WL}@t=0$

$V_{DD}@t=0$

$V_{WL}@t=10^{16} \text{ cyc}$

$V_{DD}@t=10^{16} \text{ cyc}$
Outline

• Introduction to STT-MRAM cell
• STT-MRAM cell operation principle
• STT-MRAM parametric reliability analysis
 – Failure mechanisms
 – Control voltage influence on memory cell operation
• STT-MRAM cell reliability estimation
• Conclusions
Conclusions

• STT-MRAM reliability evaluation methodology
• The joint effect of
 – fabrication- and aging-induced process variability
• Reliability evaluation under voltage tuning
• Power aware reliability estimation to identify optimum voltage value for STT-MRAM operation
Power-Aware Voltage Tuning for STT-MRAM Reliability