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Objectives

• Analyze trends in raw failure rates of current and future technologies for:

– Memories (SRAM, DRAM, NVRAM)

– Logic Gates (AND, OR, NOT, …)

• Provide a sensitivity analysis to operating conditions:

– Temperature

– Voltage

– Location

• Provide a framework for fast characterization
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Description - Technologies and Components
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Circuits Technology (CMOS) Technology Nodes

SRAM Cells 6T/8T/10T
Bulk Planar 

(ASU PTM Models)
16nm (Bulk Planar)

Flip Flop - D
Bulk FinFET 

(ASU PTM Models)
22nm (Bulk Planar)

Latch
SOI Planar 

(UTSOI Model)
14nm (Bulk FinFET)

Logic Gates 
(AND, OR, NOT…)

SOI FinFET 
(Ongoing Work)

20nm (Bulk FinFET)

III-V HEMT 
(Ongoing Work)

22nm (SOI Planar)
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Work Flow - Setup

Configuration Parameters
(Pulse, Temperature, Voltage, 

Input/Stored Value, Sensitive Node)

SPICE Circuit

Compact Model
(Current and Predictive Technologies)

SPICE Simulator
Critical Charge 

(Qcrit)

SER Model

Post-Process
Soft Error Rate 

(SER)

Python Script Per Component
Note: Qcrit and SER are provided for multiple configurations
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Critical Charge (Qcrit)

5

Methodology

• Qcrit is the minimum charge needed to cause a bit flip

• Qcrit is computed with HSPICE by injecting a current pulse in the sensitive nodes

• A double exponential pulse is used since HSPICE supports it:

𝐼(𝑡) = (𝑄/(𝜏𝑓 – 𝜏𝑟) [𝑒𝑥𝑝(−𝑡/ 𝜏𝑓) − 𝑒𝑥𝑝(−𝑡/𝜏𝑟)]

• Factors that impact Qcrit:

– Supply Voltage

– Temperature
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Soft Error Rate (SER) Model
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Methodology

• Once Qcrit is computed it needs to be mapped into a SER expressed in FIT

• The model of Hazucha and Svensson is used:

𝐶𝑖𝑟𝑐𝑢𝑖𝑡 𝑆𝐸𝑅 = 𝐾 · 𝐹𝑙𝑢𝑥 · 𝐴𝑟𝑒𝑎 · 𝑒
−
𝑄𝑐𝑟𝑖𝑡
𝑄𝑠

Where:

K: Constant (Technology independent parameter)

Flux: Neutron Flux

Area: Sensitive Area to neutron strikes

Qs: Charge Collection Efficiency (Technology dependent parameter)

Qcrit: Critical Charge

• Qcrit and Area can be easily computed but K and Qs are derived empirically

• K is technology independent so the value provided by Hazucha can be used

• Qs scales linearly with the Length Gate (Lg) so we scaled it from experimental data
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Results
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• We have already obtained SER results for:

– 6T SRAM Cell

– 8T SRAM Cell

– Latch

– Various logic gates such as the NAND2

• Results include the following comparisons:

– Technologies

– Voltages

– Temperatures

– Locations
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Results: Technology Comparison
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Results: SER per Area
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Results: Temperature Trend
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Results: Voltage Trend
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Results: Location Comparison
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Conclusions

• Bulk planar is becoming more vulnerable to soft errors:

– Lower nodes increases the total SER since more components are introduced

• New technologies and materials can improve the reliability of the device:

– Bulk FinFET reduces SERs up to 100x

– SOI Planar reduces SERs up to 20x

• Environmental parameters and location also have a huge impact on SERs:

– SERs can vary from 1,2x to 70x due temperature and voltage, with a stronger effect in voltage

– SERs can increase up to 650x due the altitude
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Fundamentals of Radiation Induced Faults (RIF)

• Produced due to Neutrons from the Atmosphere

• When a particle hits a transistor of an electronic device it

produces a certain amount of electrical charge

• If the charge is high enough an off transistor may be activated

producing different results:

– Storage element: Stored value flipped losing the stored data

– Logic gates: Glitch in the output value producing wrong results

• Neutron particle produces soft errors that are difficult to detect

and have a high impact on the reliability of the device

RIF
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Current Pulses

Methodology

• Pulses in general have a rapid rise followed by a slow decay

• Figure 1 shows different types of pulses used to compute Qcrit

• Figure 2 shows the pulse width dependence of Qcrit

• Rise and fall times affect Qcrit to the point where each pulse model results in its own Qcrit
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Qcrit Computation

• A double exponential pulse is used since HSPICE only has this type:

𝑰(𝒕) = (𝑸/(𝝉𝒇 – 𝝉𝒓) [𝒆𝒙𝒑(−𝒕/ 𝝉𝒇) − 𝒆𝒙𝒑(−𝒕/𝝉𝒓)]

• Multiple Rise time constants used in the literature (2ps, 16ps, 33ps and 90ps) tested

• Multiple Voltages (0,7-1,2V) and Temperatures (25, 50, 75 and 100 Co) tested

• Pulse width (PW) defined from the start until the pulse decreases an 80% of its maximum

which represents the spike of the pulse

• Then Qcrit is computed as the integral of the pulse in that range

Methodology
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Charge Collected (Qcoll/Qs)

• If Charge Collected (Qcoll) by a particle  is greater than Qcrit a soft error is produced

• Charge Collection Efficiency (Qs) is the mean of Qcoll in a range of energy particles 

• Qs is a parameter dependent of the technology that is usually computed experimentally

• Qs scales approximately linearly with the Length Gate (Lg)

• Qs has been scaled down from experimental data and a technology factor has been applied

Methodology
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Neutron Flux

• Reference neutron flux commonly used is from New York City at sea level

• Neutron flux depends on the location and is mainly affected by two parameters: 

– Altitude: Increases exponentially with the altitude 

– Vertical Cutoff: Parameter of the magnetic field of the earth

• Neutron Flux can be computed dependent of the location with Gordon’s model:

𝐹 = 𝐹𝑟𝑒𝑓 𝑥 𝐹𝑎𝑙𝑡 𝑑 𝑥 𝐹𝐵𝑆𝑌𝐷(𝑅𝑐, 𝑑, 𝐼)

Where:

𝑭𝒓𝒆𝒇: Flux at a reference location (i.e.: Flux of New York City at sea level)

𝑭𝒂𝒍𝒕: Function describing the dependence on altitude

𝑭𝑩𝑺𝒀𝑫: Function describing the dependence on geomagnetic location and solar activity
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Methodology Summary

• Each script simulates an element with a variety of parameters and technology models

• Inner loop iterates the current injected until a flip or glitch is detected

• Simulations are done with HSPICE

• Charge from a pulse that causes a malfunction is stored and defined as Qcrit

• Each raw SER depends on a combination of environmental parameters

Methodology

Configuration 
Parameters

SPICE 
Circuit

Compact 
Model

HSPICE Qcrit

SER 
Model

Post-Process raw SER



RAFES Workshop, Cluj-Napoca (Romania) 28/05/2015

Relative Neutron Flux Comparison
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Results
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