

DESIGN, AUTOMATION & TEST IN EUROPE

14 – 18 March, 2016 · ICC · Dresden · Germany The European Event for Electronic System Design & Test

A Detailed Methodology to Compute Soft Error Rates in Advanced Technologies

<u>Marc Riera</u>, Ramon Canal, Jaume Abella*, Antonio Gonzalez Universitat Politècnica de Catalunya (UPC), *Barcelona Supercomputing Center (BSC)

Introduction

- Soft errors can be produced due to different types of sources:
 - Alpha Particles from packaging
 - Neutrons from the Atmosphere
- If the charge produced by a particle strike is high enough, an off transistor may be activated producing different results:
 - Storage element: Stored value flipped losing the stored data
 - Logic gates: Glitch in the output value producing wrong results
- Alpha particles are already well known and can be threaten in different ways by changing the packaging of the chip
- Neutron strikes produce soft errors that are difficult to detect and have a high impact on the reliability of the device

Radiation Induced Fails

Caused by alpha particles (packaging) and neutrons (cosmic rays)

Output Glitches (Bit flips) Loss of stored data (switching state)

Objectives

- Analyze trends in raw failure rates of current and future technologies for:
 - Memories (SRAM, DRAM, Latch)
 - Logic Gates (AND, OR, NOT, ...)
- Provide a sensitivity analysis to operating conditions:
 - Temperature
 - Voltage
 - Location

Outline

- Introduction
- Objectives
- Technologies and Components
- Methodology
- Results
- Conclusions

Description - Technologies and Components

Technology (CMOS)	Technology Nodes		Circuits
Bulk Planar (ASU PTM Models)	22nm and 16nm	X	SRAM Cells 6T/8T/10T
Bulk FinFET (ASU PTM Models)	20nm and 14nm		Flip Flop - D
SOI Planar (UTSOI Model)	22nm		Latch
			Logic Gates (AND, OR, NOT)

Work Flow - Setup

Critical Charge (Qcrit)

- Qcrit is the minimum charge needed to cause a bit flip
- Qcrit is computed with HSPICE by injecting a current pulse in the sensitive nodes
- A double exponential pulse is used since HSPICE supports it:

$$I(t) = (Q/(\tau f - \tau r) [exp(-t/\tau f) - exp(-t/\tau r)]$$

- Factors that impact Qcrit:
 - Supply Voltage: 0.7-1.2V tested
 - Temperature: 25, 50, 75 and 100 C° tested

Soft Error Rate (SER) Model

- Once Qcrit is computed it needs to be mapped into a SER expressed in FIT
- The model of Hazucha and Svensson is used:

 $Circuit SER = K \cdot Flux \cdot Area \cdot e^{-\frac{Qcrit}{Qs}}$

Where:

K: Constant (Technology independent parameter) Flux: Reference Neutron Flux from NYC Area: Sensitive Area to neutron strikes Qs: Charge Collection Efficiency (Technology dependent parameter) Qcrit: Critical Charge

- Qcrit and Area can be easily computed but K and Qs are derived empirically
- K is technology independent so the value provided by Hazucha can be used
- Qs scales linearly with the Length Gate (Lg)

Results

- We have obtained SER results for:
 - 6T SRAM Cell
 - 8T SRAM Cell
 - Latch
 - Various logic gates such as the NAND2
- Results include the following comparisons:
 - Technologies
 - Voltages
 - Temperatures
 - Locations

Results: Technology Comparison

Results: SER per Area

Results: Temperature Trend

Results: Voltage Trend

Results: Location Comparison

Conclusions

- We have managed to model SER FIT for new technologies with a methodology that allows performing a comprehensive comparison
- Our method also allows studying a number of critical parameters
- Our results show that:
 - Bulk planar is becoming more vulnerable to soft errors
 - Bulk FinFET reduces SERs up to 100x
 - SOI Planar reduces SERs up to 20x
 - SERs can vary from 1.2x to 70x due temperature and voltage, with a stronger effect in voltage
 - SERs can increase up to 650x due the altitude

DESIGN, AUTOMATION & TEST IN EUROPE

14 – 18 March, 2016 · ICC · Dresden · Germany The European Event for Electronic System Design & Test

A Detailed Methodology to Compute Soft Error Rates in Advanced Technologies

<u>Marc Riera</u>, Ramon Canal, Jaume Abella*, Antonio Gonzalez Universitat Politècnica de Catalunya (UPC), *Barcelona Supercomputing Center (BSC)

Current Pulses

- Pulses in general have a rapid rise followed by a slow decay
- Figure 1 shows different types of pulses used to compute Qcrit
- Figure 2 shows the pulse width dependence of Qcrit
- Rise and fall times affect Qcrit to the point where each pulse model results in its own Qcrit

Soft Error Injection Example

Charge Collected (Qcoll/Qs)

- If Charge Collected (Qcoll) by a particle is greater than Qcrit a soft error is produced
- Charge Collection Efficiency (Qs) is the mean of Qcoll in a range of energy particles
- Qs is a parameter dependent of the technology that is usually computed experimentally
- Qs has been scaled down from experimental data and a technology factor has been applied

Qcrit Computation

• A double exponential pulse is used since HSPICE only has this type:

$$I(t) = (Q/(\tau f - \tau r) [exp(-t/\tau f) - exp(-t/\tau r)]$$

- Multiple Rise time constants used in the literature (2, 16, 33 and 90ps) tested
- Multiple Voltages (0,7-1,2V) and Temperatures (25, 50, 75 and 100 C°) tested
- Pulse Width (PW) defined from the start until the pulse decreases an 80% of its maximum which represents the spike of the pulse
- Then Qcrit is computed as the integral of the pulse in that range

Neutron Flux

- Reference neutron flux commonly used is from New York City at sea level
- Neutron flux depends on the location and is mainly affected by two parameters:
 - Altitude: Increases exponentially with the altitude
 - Vertical Cutoff: Parameter of the magnetic field of the earth
- Neutron Flux can be computed dependent of the location with Gordon's model:

$$F = F_{ref} x F_{alt}(d) x F_{BSYD}(Rc, d, I)$$

Where:

 F_{ref} : Flux at a reference location (i.e.: Flux of New York City at sea level) F_{alt} : Function describing the dependence on altitude F_{BSYD} : Function describing the dependence on geomagnetic location and solar activity

Evaluation Framework Summary

```
For each Technology Do
For each Voltage Do
  For each Temperature Do
    For each Input or Stored value Do
      For each Sensitive Node Do
       Current=0;
       Flipped=0;
       While not flipped {
         Increase Current Injected;
         Generate SPICE Files;
         Simulate Element in HSPICE;
         Read Simulation Results;
         If Flip Detected {
           Flipped=1;
           Write Results in a CSV;
         Clean Simulation Files;
```

Methodology Summary

Relative Neutron Flux Comparison

