
System-level Reliability Evaluation through

Cache-aware Software-based Fault Injection

Firas Kaddachi1, Maha Kooli1, Giorgio Di Natale1, Alberto Bosio1, Mojtaba Ebrahimi2, Mehdi Tahoori2

1Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM), France

name.surname@lirmm.fr
2Karlsruhe Institute of Technology, Karlsruhe, Germany

name.surname@kit.edu

Abstract—Developing new methods to evaluate the software
reliability in an early design stage of the system can save the
design costs and efforts, and will positively impact the product
time-to-market. In this paper, we propose a novel fault injection
technique to evaluate the reliability of a computing system
running a software at early design stage where the hardware
architecture is not completely defined yet.

The proposed approach efficiently operates on the original
source code of the software in order to inject transient faults in
the data or the instructions. To be accurate and to achieve a better
characterization of the system, we simulate faults occurring in
the system memory units such as the data cache and the RAM
by developing a system emulator. To validate our approach, we
compare the simulation results to those obtained with an FPGA-
based fault injector. The similarity of the results proves the
accuracy of our approach to evaluate system reliability with a
gain in the execution time and without requiring a fully defined
hardware system.

Index Terms—Reliability, Soft Errors, Fault Injection, Soft-
ware, Cache, RAM, Memory

I. INTRODUCTION

Reliability is a major concern for the critical avionic,

aerospace, military, and transportation systems. The manufac-

turing defects, the environmental perturbations and the aging-

related phenomena present different fault sources that can lead

to failure. Fig. 1 shows how the generated faults can propagate

from the hardware components to the software layer. During

this propagation, the faults are masked at the technological or

at the architectural level [1] [2] , or they reach the software

layer of the system and can corrupt the final outputs.

The fault injection is a well-known method, that consists

of a deliberate corruption of the system under evaluation

to observe its behavior in the presence of faults. While

the hardware-based fault-injection techniques directly inject

faults in internal processor components, the software-based

fault injection techniques model faults at more abstract level.

The former techniques perform fault-injection campaigns in

more realistic conditions, and hence provide more accurate

results. The latter techniques are nevertheless less dependent

to the hardware and provide cheaper solutions. However these

software-based techniques do not focus on simulating realistic

faults occurring in the system memory units such as RAM,

data/instruction caches or register files.

This paper proposes a new software-based fault injection

technique bridging the gap between software and hardware

fault injection: being fast and flexible in early design phase like

software-based fault injection, but as accurate as hardware-

based fault injection. To reach these objectives, we consider

the cache organization which has a significant influence on

the results of the fault injection. As we are working on the

software level where the concept of RAM and caches is not

defined, we build a system memory emulator to model these

memory units. In order to be accurate and in the same time as

independent as possible from the target hardware architecture,

these emulators require minimum information on hardware

configurations. The considered fault models are the effect of

hardware soft errors (i.e. single event upset) on the software

application of the target system. We do not consider errors in

code resulting from the implementation or the design of the

software.

RAM

Caches

Software

Hardware Faults

Hardware
Masking

Software
Masking

System Failure

Hardware Layer

Software Layer

Fig. 1: System Layers and Fault Propagation

The main advantages of this approach are:

• Developing a fast, low-cost and accurate platform to

evaluate the overall system reliability in early design

stage, when the hardware is not fully designed yet.

• Targeting faults occurring in the system memory units,

such as the RAM and the cache hierarchy.

• Offering a better observability to software components

and a better controllability of the injection mechanism

in terms of the fault location in space and time. This

can enhance the development of reliability improvement

methods.

The rest of the paper is organized as follows. Section II

summarizes related works. Section III introduces the proposed

approach. Section IV presents the experimental results, and a

comparison with a hardware-dependent fault injector. Finally,

section V concludes the paper.

II. RELATED WORKS

To evaluate the system reliability, different techniques exist

in the literature. The analytical techniques can quickly estimate

the failure probability, however, they are highly inaccurate

[3] [4]. The fault injection techniques provide different levels

of accuracy. In this section, we present the later techniques,

and we discuss their shortcomings compared to the proposed

approach.

A. Hardware-based Fault-Injection Techniques

The hardware-based fault injection techniques [5] perform

fault injections in more realistic conditions. Thus they offer

more accurate results. These techniques can use a manufac-

tured processor prototype [6], a simulation of the processor

architecture [7] , or an implementation of the processor on an

FPGA board [5].

The main difference to the proposed approach is the pres-

ence of the hardware under test which makes the reliability

evaluation more expensive in terms of hardware cost and exe-

cution time. In addition, while the hardware-based techniques

are dependent to the target hardware architecture, our approach

can be easily applied for different hardware architectures.

Finally, our approach offers a better observability of the

software components, and thus of the fault location in terms

of space (i.e. which variable or instruction is affected by the

fault). This allows a better understanding of the fault effects

at software level and enhances the development of reliability

improvement techniques.

B. Software-based Fault-Injection Techniques

The software-based techniques [8] [9] provide cheaper

solutions to evaluate the reliability. These techniques model

fault injections at different abstract levels: Java-source-code

level [10], operating-system level [9] [8], byte-code level [11]

or low level virtual machine [12].

In terms of accuracy, the software-based fault-injection tech-

niques are considered in the literature less accurate because

they do not perform fault injections in realistic conditions.

In addition, they do not target the simulation of faults in

the system memory units such as the RAM or the caches.

Compared to that, our approach targets an accurate simulation

of the faults occurring in the RAM and the data cache.

Furthermore, the proposed approach offers a better visibility

of the system memory units, which allows a design-space

exploration of the target system by easily changing the type

and the size of these components to observe the impact on the

reliability.

#include <faultInjector.h>

void main(){
int i;

}

Program Source Code N
executions

N Outputs

Fault
Classification

Fig. 2: Overview of the Proposed Approach.

III. PROPOSED APPROACH

The proposed fault injection technique allows to inject bit

flips in both data and instructions of the target application,

in order to simulate realistic faults occurring in the system

memory units. It operates on the original source code of

the software to simulate single fault injections and does not

require a hardware platform. Fig. 2 presents an overview of the

approach. The program is executed N times (N is the number

of the fault injections). Each program execution simulates a

single fault and generates the faulty outputs that are compared

with the golden outputs in order to classify the faults. This

process can be easily extended to multiple faults.

@ Function Size

¶m someFunc x B

&a someFunc 4 B

&b someFunc 1 B

void someFunc (params) {
addVariable(params);

int a;
char b;
addVariable(&a);
addVariable(&b);
a = (int)b + 1;

removeVariable(params);
removeVariable(&a);
removeVariable(&b);

}
addFunction(&someFunc);

Original Source CodeData Collection

@ Function Size

&someFunc someFunc x B

Instruction Collection

Fig. 3: Data and Instruction Collector.

A. Fault Injection Mechanism

The fault injection mechanism consists of two threads

running in parallel.

1) Data/Instruction Collector: During the program execu-

tion, we dynamically collect all the data and the instructions.

Fig. 3 shows how we embed additional function calls in

the original source code of the program. The proposed tool

collects only active software components during program exe-

cution. When they are no longer active, they are removed from

the dynamic active collection. For fault injection in data, we

collect the program variables. These variables represent data

stored in the different system memory units, such as RAM,

data cache or register files. For fault injection in instructions,

we collect the function codes of the program. The function

codes represent instructions that are stored in the RAM or the

instruction cache.

2) Fault Injector: An additional thread is running in par-

allel with the main thread of the program. It performs a single

bit flip per program execution. First, it selects a random time

when the fault will be injected. Then it waits until this time

is reached to select a random bit to be the target of the fault

injection.

B. Fault Classification

The proposed technique presents the advantage of reducing

the fault classification to a simple comparison task of the

golden and the faulty outputs at software level. Based on this

comparison, we consider the following outcomes:

• Masked: The faulty program properly terminates its ex-

ecution and delivers correct outputs. The injected fault

does not propagate to the program outputs.

• Fail Silent Violation (FSV): The faulty program properly

terminates its execution, but provides incorrect outputs.

• Crash: The faulty program does not properly terminate. It

either suddenly stops working or never stops (e.g. infinite

loop).

C. System Memory Emulator

In modern microprocessors, the concept of data cache is

introduced to store data for future utilization by the processor.

Therefore, the data can occupy different memory units during

program execution. The data residence has an influence on

the propagation of injected faults to final program outputs. In

order to model this aspect, and thus provide more realistic

fault injection and more accurate fault classification, we build

RAM and data-cache emulators during program execution

[13]. The user has to provide some hardware configurations

to the proposed tool, in order to model the target processor.

Those emulators are easily implemented inside the original

source code of the program.

1) Data Cache Emulator: The data cache emulator collects

the most recently used variables during the program execution.

It is implemented as a priority queue that follows each

read/write operation performed on all variables, in order to

model the realistic faults occurring in the data cache. The user

has to provide the following data-cache configurations:

• Size: The proposed tool classifies the faults occurring in

some unused memory area in the data cache as masked,

because they do not have any influence on program

execution, which permits to save simulation time.

• Write-Hit Policy: For a write-through data cache, the

variable rejoins the head of the most recently used

variables. For a write-back data cache, we additionally

mark the variable as dirty.

• Write-Miss Policy: For a no-write-allocate data cache,

the variable is not added to the data cache. For a write-

allocate data cache, the variable joins the head of the

most recently used variables.

• Replacement Strategy: It can be Least Recently Used

(LRU), Least Recently Replaced (LRR) or random. De-

pending of the replacement strategy, we remove the

variables from the data cache, in order to make more

free space.

read c

a

b

a

b

c
read d

b

c

d

LRU
replacementread-miss

write e

b

c

d

no-write
allocation

read b

c

d

b

read-hit
head

tail

Fig. 4: Example of Data-Cache Emulator

Fig. 4 presents an example of a simplified data-cache

emulator with user-specified data-cache configurations. The

variable c joins the head of the most recently used variables,

because it is read and is not present in the data cache. The

variable d represents a read-miss just like the variable c. In

addition, the data-cache emulator removes the variable a to

make more free space, because it is the least recently used

variable. The write operation performed on the variable e has

no influence on the data cache organization, because we have a

no-write-allocation policy for write misses. The read operation

performed on the variable b makes it rejoin the head of the

most recently used variables.

2) RAM Emulator: The RAM emulator is implemented as

a collection of all function codes and all active variables during

program execution. The proposed tool targets only the active

memory area in the RAM, which allows to save simulation

time. The user has to provide the total RAM size in order to

determine the unused memory area. The faults occurring in

this area are considered as masked because they do not have

any influence on program execution.

3) Fault Injection in Data Cache: Fig. 5 illustrates the

algorithm we use to simulate faults occurring in the data cache.

After selecting a random injection instant and a random byte in

the data cache to be the target of fault injection, the algorithm

checks if the selected byte resides in some unused memory

space in the data cache. In this case, the fault is considered

as masked. If the selected byte resides in occupied memory

area in the data cache, the algorithm selects a random bit

and performs the fault injection. Furthermore, we take into

consideration that the variable may leave the data cache and

the original variable content is then reloaded from the RAM

in later utilization of this variable. The algorithm passes over

the fault injection in this variable. In case a write operation is

performed on the faulty variable after the injection instant and

before leaving the data cache, then the corrupted content of

this variable is written back to the RAM, either immediately

for a write-through data cache or after leaving the data cache

for a write-back data cache. Thus we do not have to undo the

fault injection.

Fig. 5: Algorithm of Fault Injection in Data Cache

4) Fault Injection in RAM: Fig. 6 illustrates the flow of

simulating the fault injection in the RAM. First, the algo­

rithm checks if the randomly selected byte resides in some

unused memory area in the RAM. Then, it classifies the fault

as masked. Otherwise, it verifies whether the corresponding

variable resides in the data cache at the injection instant, by

considering the data cache emulator. The fault injected in a

variable residing in the data cache at this instant does not

immediately propagate to the final output of the program.

Therefore, we do not immediately perform the selected fault

injection but we wait until the variable leaves the data cache.

In case a write operation is performed on the selected variable

before leaving the data cache, the new variable content is

written back to the RAM, either immediately for a write­

through data cache or after leaving the data cache for a write­

back data cache. Then our algorithm aborts the fault injection

and considers a fault injected in such a case as masked. We

perform fault injection when the variable (i) does not reside

in the data cache at the injection instant, or (ii) resides in the

data cache at the injection instant, but leaves the data cache,

without being affected by a write operation after the selected

injection instant and before leaving the data cache.

IV. EXPERIMEN TS AND RESUL TS

The proposed approach is used to conduct experiments

on different benchmarks. The results are compared with an

accurate FPGA-based fault injection technique applied on the

LEON3 processor [14].

A. Target Benchmarks

In order to evaluate our approach, we set up a list of

benchmarks on which we run simulations. The target bench­

marks have different execution times and memory utilization,

and cover both data-intensive and control-intensive algorithms.

We use a matrix-multiplication program with a 50x50 integer

Fig. 6: Algorithm of Fault Injection in RAM

array. We also select a set of workloads from the open-source

MiBench benchmark suite [15] (bit count, quick sort, string

search, fft, erc 32). All the test-benches are written in C­

programming language.

B. FPGA-based Fault Injector

To validate our approach, we run the same benchmarks

using a hardware-based fault injector. Such tools are con­

sidered in the literature as accurate techniques to evaluate

system reliability. We use SCFIT, which is an FPGA-based

fault injector proposed in [5]. It allows to inject faults in

flip flops and memory units. We apply this technique on the

LEON3 processor [14].

The SCFIT platform manages the fault-injection process and

the communication between the host computer and the FPGA

board. After implementing the target processor on the FPGA

board, the host computer sends the program to be executed.

A fault is injected in the target processor component during

the execution of the program. When the faulty execution

completes, snapshots of the RAM are sent back to the host

computer. We compare the faulty RAM to the golden RAM

in order to classify the fault.

C. Results and Comparison

For the simulations, we set up the following configurations

for the LEON3 processor, and we provide them as inputs to

our tool:

- RAM size: 256KB

- Data cache size: 4KB I 8KB

- Data cache policy: write-through for the write miss,

no-write allocate for the write hit and LRU for the

replacement strategy

In order to obtain statistically significant results with an

error margin of 1 % and a confidence level of 95%, we simulate

10K fault injections for each program as proposed in [16].

1) Simulations on the Data Cache: We simulate the effect

of faults occurring in the data cache. Fig. 7 presents the

masking probabilities of the faults injected with the proposed

approach compared with those obtained using the FPGA-based

fault injector. Fig. 8 provides a comparison of the execution

time between the experiments run with the proposed approach

and the FPGA-based fault injector.

Fig. 7: Masking probabilities of Proposed Tool and FPGA­

based Fault Injector for Faults Occurring in Data Cache.

Fig. 8: Execution Time (in hours) of Proposed Tool and FPGA­

based Fault Injector for Faults occurring in Data Cache

2) Simulations on the RAM: We also simulate the effect of

faults occurring in the RAM. For these experiments, the fault

injections in the instructions of the RAM are not considered.

For the employed benchmarks, the size of the instructions is

too small compared to the size of the data. Fig. 9 presents the

masking probabilities of the faults injected with the proposed

approach compared with those obtained using the FPGA-based

fault injector. Fig. 10 provides a comparison of the execution

time between the experiments run with the proposed approach

and the FPGA-based fault injector.

The results of the proposed approach are very close to those

of the FPGA-based fault injector. They show a significant

accuracy gain by modeling the system memory units. On

average, the integration of the system memory emulators

reduces the absolute difference from more than 10% to 2.3%

Fig. 9: Masking probabilities of Proposed Tool and FPGA­

based Fault Injector for Faults Occurring in RAM.

Fig. 10: Execution Time (in hours) of Proposed Tool and

FPGA-based Fault Injector for Faults occurring in RAM.

for the RAM, and 1.4% for the data cache. This proves that

our approach allows to accurately evaluate the effect of faults

occurring in different memory components of the system, such

as the data cache and the RAM.

Furthermore, Fig. 8 and Fig. 10 show that the proposed

approach offers a significant gain in the execution time. On

average, the speed-up is respectively 6x and 5x for the faults

occurring in data cache and RAM, compared to the FPGA­

based fault injection technique. It is important to mention that

the used FPGA-based fault injection technique is 3 to 4 orders

of magnitude faster than a simulation-based fault injection at

hardware.

3) Design Space Exploration: In order to show that the

proposed approach can be easily applied on different hardware

architecture, we change, in an additional set of experiments,

the size of the data cache. Fig. 11 presents the results of the

fault injection using the proposed tool for both 4KB and 8KB

data cache.

The proposed tool allows to easily change the hardware

configurations in order to observe their impact on the overall

system reliability. The making probabilities for 8KB data

cache increase on average compared to 4KB data cache.

In fact, when the data cache size increases, there is more

Fig. 11: Masking probabilities of Proposed Tool for 4KB and

8KB Data Cache.

probability to inject faults in variables that do not have any

influence on further program execution. However this also

depends on the workload, which is the case for the Qsort

program. This workload sorts the elements of a given array

and re-reads these elements in each iteration. Thus all variables

residing in the data cache have influence on final program

outputs.

D. Discussion

The proposed fault injection technique allows to evaluate

the effect of transient faults affecting the data cache and the

RAM. It can also target the permanent faults. As a future work,

we propose to target more system components by simulating

faults occurring in the registers, and the instruction cache.

Furthermore, in this paper we only consider one-level data

cache. Our approach is generic enough to be applied on

multiple-level data cache.

To enhance the performance of the tool, we propose to

optimize the fault injection process. We can automate the

collection of the program data and instructions. Furthermore,

we can improve the implementation of the integrated functions

in order to reduce the computational overhead.

V. CONCLUSION

In this paper, we propose a fast, low-cost and accurate

software-based approach to evaluate the reliability of critical

systems in early design stage. The proposed tool efficiently

operates on the source code of the workloads running on the

target system. It allows to inject faults in both program vari­

ables and function codes that respectively represent data and

instructions stored in the system memory units. To be accurate,

we build a RAM emulator and a data-cache emulator, which

require minimum information on hardware configurations.

To validate our approach, we compare our results to an

FPGA-based fault injector. The results show that we reach our

objectives. In terms of execution time, our approach offers

a significant gain compared to the existing fault-injection

techniques. In addition our approach does not require the

presence of a fully defined hardware. The system emulators

allow an efficient design-space exploration of the target system

by changing the type and the size of the system memory units

to observe the impact on the reliability. Finally, in terms of

accuracy, the proposed tool provides an accurate evaluation of

the system reliability that is very close to a hardware-based

evaluation.

ACKNOW LEDGMEN T

This work has been supported by the joint FP7 Collabora­

tion Project CLERECO (Grant No. 611404).

REFERENCES

[1] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, ''Multicore Soft
Error Rate Stabilization Using Adaptive Dual Modular Redundancy,"
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE' 10, 2010, pp. 27-32.

[2] S. S. Mukherjee, C. Weaver, J. Erner, S. K. Reinhardt, and T. Austin,
"A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor," in Proceedings of the
36th Annual International Symposium on Microarchitecture, San Diego,
C A, USA, December 3-5, 2003, ser. MICRO 36, pp. 29--42.

[3] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach, " Transient
fault models and AVF estimation revisited," in Proceedings of the
2010 IEEFlIFIP International Conference on Dependable Systems and
Networks, DSN 2010, Chicago, IL, USA, June 28 - July 1 2010, 2010,
pp. 477--486.

[4] M. Ebrahimi, L. Chen, H. Asadi, and M. B. Tahoori, "CLASS: combined
logic and architectural soft error sensitivity analysis," in 18th Asia
and South Pacific Design Automation Conference, ASP-DAC 2013,
Yokohama, Japan, January 22-25, 2013, 2013, pp. 601--607.

[5] M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, "A
fast, flexible, and easy-to-develop fpga-based fault injection technique,"
Microelectronics Reliability, vol. 54, no. 5, pp. 1000--1008, 2014.

[6] M. Nicolaidis, Soft errors in modem electronic systems. Springer
Science & Business Media, 2010, vol. 41.

[7] J. J. H. Pontes, N. Calazans, and P. Vivet, "An accurate single event
effect digital design flow for reliable system level design." in DAT E,
W. Rosenstiel and L. Thiele, Eds. IEEE, 2012, pp. 224--229.

[8] J. Carreira, H. Madeira, and J. G. Silva, "Xception: A technique for the
experimental evaluation of dependability in modern computers," IEEE
Trans. Softw. Eng., vol. 24, no. 2, pp. 125-136, Feb. 1998.

[9] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, "Ferrari: A flexible
software-based fault and error injection system," IEEE Trans. Comput.,
vol. 44, no. 2, pp. 248-260, Feb. 1995.

[10] R. de Oliveira Moraes and E. Martins, "Jaca - a software fault injection
tool," Dependable Systems and Networks, 2003. Proceedings. 2003
International Conference on, p. 667, June 2003.

[11] B. P. Sanches, T. Basso, and R. Moraes, "J-swfit: A java software
fault injection tool," in Dependable Computing (lADC), 2011 5th Latin­
American Symposium on. IEEE, 2011, pp. 106--115.

[12] M. Kooli, P. Benoit, G. Di Natale, L. Torres, and V. Sieh, ''Fault injection
tools based on virtual machines," in 9th International Symposium on
Reconfigurable and Communication-Centric Systems-on-Chip, ReCoSoC
2014, Montpellier, France, May 26-28, 2014, 2014, pp. 1--6.

[13] M. Kooli, F. Kaddachi, G. D. Natale, and A. Bosio, "Cache- and register­
aware system reliability evaluation based on data lifetime analysis," in
Proceedings of the 34th IEEE VLSI Test Symposium, VTS 2016, Las
Vegas, USA, April 25-27, 2016.

[14] Leon3. [Online]. Available:
www.gaisler.comlindex.php/products/processorslleon3

[15] Mibench. [Online]. Available: wwweb.eecs.umich.edulmibench
[16] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, "Statistical

fault injection: Quantified error and confidence," in Proceedings of the
Conference on Design, Automation and Test in Europe, ser. DATE '09,
2009, pp. 502-506.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

