

CLERECO INSTITUTIONAL REPOSITORY

[Article] A fault injection methodology and infrastructure for fast single event

upsets emulation on Xilinx SRAM-based FPGAs

Original Citation:
Di Carlo, S.; Prinetto, P.; Rolfo, D.; Trotta, P., "A fault injection methodology and
infrastructure for fast single event upsets emulation on Xilinx SRAM-based
FPGAs," Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), 2014 IEEE International Symposium on , vol., no., pp.159,164, 1-3 Oct.
2014

doi: 10.1109/DFT.2014.6962073

This version is available at:
http://www.clereco.eu/images/publications/DFT.2014.6962073.pdf
Since: October 2014:

Publisher: IEEE

Published version: DOI: http://dx.doi.org/10.1109/DFT.2014.6962073

Terms of use: This article is made available under terms and conditions
applicable to Open Access Policy Article ("Public - All rights reserved"), as
described at http://www.clereco.eu/publications/item/70

Publisher copyright claim:

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

(Article begins on next page)

A Fault Injection Methodology and Infrastructure
for Fast Single Event Upsets Emulation on Xilinx

SRAM-based FPGAs
Stefano Di Carlo, Paolo Prinetto, Daniele Rolfo, Pascal Trotta

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Email: {FirstName.LastName}@polito.it

Abstract—Modern SRAM-based Field Programmable Gate Ar-
rays (FPGAs) are increasingly employed in safety- and mission-
critical applications. However, the aggressive technology scaling
is highlighting the increasing sensitivity of such devices to Single
Event Upsets (SEUs) caused by external radiation events. As-
sessing the reliability of FPGA-based systems in the early design
stages is of upmost importance, allowing design exploration of
different protection alternatives.

This paper presents a Dynamic Partial Reconfiguration-based
fault injection methodology implemented by an integrated in-
frastructure for SEUs emulation in the configuration memory of
Xilinx SRAM-based FPGAs. The proposed methodology exploits
the Xilinx Essential Bits technology to extremely speed-up fault
injection, ensuring correct operations of the fault injection
infrastructure during the whole injection process.

Index Terms—Fault Injection, FPGA, SEUs, SRAM-based
FPGA, Essential Bits technology.

I. INTRODUCTION

Nowadays, the reduced performance, speed and power gaps
between Field Programmable Gate Arrays (FPGAs) and Ap-
plication Specific Integrated Circuits (ASICs) is suggesting IC
designers to choose FPGAs not only for ASIC prototyping,
but also for final products, leading to lower time-to-market
and limited non-recurrent engineering costs [1], [2].

However, due to their structure, SRAM-based FPGAs are
highly susceptible to Single Event Upsets (SEUs), i.e., un-
intentional bit-flips in memory elements that can be caused
by external radiations phenomena, such as collisions with
alpha particles, protons, or heavy ions striking the device
[3], [4]. Radiation induced Single Event Upsets (SEUs) can
affect both the memory elements embedded in the design,
and the configuration memory that stores the related FPGA
configuration. In the former case, SEUs may alter the content
of the FPGA internal memory resources employed in the
design (e.g., flip-flops, distributed RAMs, or Block-RAMs),
modifying processed data and/or the application control flow,
thus leading to problem similar to the ones occurring in ASICs.
In such cases fault injection techniques similar to the ones
used when dealing with ASICs can be employed to assess
the reliability of the design (e.g., scan-chains [5]). Instead,

the latter case is much more critical, since a bit-flip in an
FPGA configuration memory cell may permanently alter the
functionality of the implemented circuit. In particular, it can
cause changes in the configuration of Look-Up Tables (LUTs),
Configurable Logic Blocks (CLBs), internal hard macros
(e.g., Digital Signal Processors or Block-RAMs), or routing
matrices, leading to completely different circuits from the
initially configured ones [6]. Furthermore, the configuration
memory is very large compared to all the other elements in the
device. Therefore, the probability that SEUs affect the FPGA
configuration memory is high, making it a major concern when
designing high reliable FPGA-based systems. Nevertheless, it
has been demonstrated that, in most cases, SEUs affecting the
configuration memory do not influence the design functionality
[7]–[9]. Consequently, fault injection techniques are needed to
deeply analyze the effect that SEUs in the configuration mem-
ory have on the actual implemented design. Fault injection can
help designers to discover the weaknesses of the circuit and to
take the proper countermeasures by selectively and efficiently
applying the most suitable fault detection and/or fault tolerance
techniques to harden the design.

To accurately assess the reliability of FPGA-based systems,
designers must rely on very expensive neutrons or heavy
ions beam radiation tests on actual circuit prototypes [10].
Preliminary, even less accurate, fault injection experiments in
the early design stages can potentially reduce the number of
design iterations, speeding up the entire design process of
complex Systems on a Programmable Chip (SoPC).

In literature, several solutions tackling this problem have
been proposed and developed, spanning from simulation-
based methods [6] to hardware approaches [11]–[15].The latter
approaches guarantee the maximum fault injection speed when
the circuit under test and the fault injection infrastructure are
implemented in the same FPGA. To achieve high fault injec-
tion rates they usually exploit the Dynamic Partial Reconfigu-
ration (DPR) feature of modern SRAM-based FPGA devices
(i.e., the ability to dynamically change selected portions of a
circuit, while the rest of the design is left unchanged and fully
functional [16]).

Basically, for each fault injection run, the infrastructure978-1-4799-6155-9/14/$31.00 c⃝2014 IEEE

159978-1-4799-6155-9/14/$31.00 c⃝2014 IEEE

reads a frame of the configuration memory, composed of
several 32-bit words. Then it modifies the frame according
to the chosen fault model, and reconfigure the configuration
memory with the faulty frame exploiting the Internal Config-
uration Access Port (ICAP) [16] of the FPGA. The internal
fault injection infrastructure also provides the input vectors
and reads the outputs of the system under test to verify their
correctness. Finally, the faulty frame is restored and another
bit in the same or in another frame is flipped [12], [13].

Nonetheless, to properly operate, these approaches require
an in-depth knowledge of the structure and the frames address-
ing order of the considered FPGA. In fact, the designer must
know the addresses of the configuration frames associated with
the FPGA resources implementing the system under test. This
information is not explicitly provided by vendors and depends
on the specific FPGA model. Moreover, in some unpredictable
conditions, since a bit-flip in a frame can affect also the
information in the other frames, the fault-free configuration
cannot be restored after fault injection [13]. In this case, a
reconfiguration of the entire device is therefore needed to avoid
fault accumulation effects [17]. Furthermore, extra care must
be taken since faults injected using the integrated approaches
can affect the operations of the fault injection infrastructure
itself. This unintended effect can lead to the stall of the fault
injection process, or to unknown erroneous faults classification
results [17].

This paper presents a Dynamic Partial Reconfiguration-
based fault injection methodology and infrastructure for SEUs
emulation in the configuration memory of Xilinx SRAM-
based FPGAs. The fault injection infrastructure and the system
under test are integrated in the same device. The proposed
methodology exploits the Xilinx Essential Bits technology [18]
to:

1) extremely speed-up the fault injection process, as
demonstrated by experiments carried out on designs of
different complexity;

2) ensure the correct behavior of the fault injection infras-
tructure itself, avoiding undesired faults accumulation
effects during the whole fault injection process, as it
occurs on other single-FPGA fault injection platforms
[12], [13], [17].

The rest of the paper is organized as follows: Sections II
introduces the proposed methodology, while III discusses the
fault injection infrastructure. Section IV reports experimental
results and, eventually, Section V summarizes the contribu-
tions and presents some future works.

II. PROPOSED METHODOLOGY

According to the FARM model [19], when designing a fault
injection environment, one must take into account the adopted
Fault Models, the Activation patterns used to stimulate the
system under test, the Readouts values collected during the
experiment, and the extracted Measures.

As aforementioned, the fault model adopted by the pro-
posed infrastructure is the Single Event Upset (SEU) in the
configuration memory of the FPGA device.

During each fault injection run, the choice of which config-
uration bit must be flipped is randomly made on-line, choosing
from a set of possible locations (fault list), generated off-line.

The set of possible locations in which the SEUs will be
injected is generated in two steps (Fig. 1).

(a) Step 1: CUT and blank partial bitstreams generation

(b) Step 2: essential faults location generation

Fig. 1: Fault locations generation flow

To ensure the correct operations of the fault injection infras-
tructure during the whole fault injection process, the basic idea
of the proposed approach is to implement the Circuit Under
Test in a reconfigurable partition of the FPGA, and to extract,
from the bitstream, only the locations of the bit associated
to the CUT resources. A reconfigurable partition is a portion
of the FPGA that can be reconfigured at run-time. The size
and the position of the reconfigurable partition in the FPGA
must be chosen at design-time [16]. Differently from the CUT,
the fault injection infrastructure is instead implemented in a
non-reconfigurable, or static, portion of the device.

During the first phase (Fig. 1a), the HDL description of both
the fault injection infrastructure and the CUT are merged and
implemented to obtain the Initial bitstream configuration file,
used to configure at startup the entire FPGA.

In order to implement the CUT in a reconfigurable partition,
before the actual implementation, some placement constraints
must be provided (i.e., the designer allocates a defined area
of the FPGA to the CUT). In this case the CUT is called
Reconfigurable Module. After that, the implementation process
generates also the CUT partial bitstream file, that contains the
information needed to configure the Reconfigurable Module.

The same process is repeated to implement an empty,
or blank, reconfigurable module instead of the CUT, in the

160 2014 International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

same previously defined reconfigurable area. The Blank partial
bitstream file associated with this module contains only the
information regarding the input/output interfaces of the CUT
(called partition pins), and the routing associated to the static
part of the design that passes through the reconfigurable parti-
tion. As stated in [16], only routing, and not logic, associated
with the static part of the design can use hardware resources
contained in a reconfigurable partition.

Consequently, since this static routing information cannot be
prevented to pass through reconfigurable partitions, an SEU
injected in the configuration bits associated to this area can
cause errors or failures also in the fault injection infrastructure
itself (i.e., the static part of the design) [16]. This can make the
fault injection infrastructure unusable, or behaving incorrectly.

To ensure that faults are not injected in a configuration
memory cell associated with the fault injection infrastructure,
a further step is needed (Fig. 1b).

Starting from the partial bitstreams associated to the CUT
and to the blank reconfigurable modules, the Xilinx Essential
Bits technology is used to restrict the set of potential fault
injection locations [18]. This technology offers a functionality,
embedded in the Xilinx BitGen tool, that allows to identify
and to extract, from the bitstream files, the configuration bits
that are essential to the design functionality (i.e., the so called
essential bits). In fact, only a small fraction of the bits are
essential to the proper operation of any specific design loaded
into the FPGA device [18]. As shown in Fig. 2a, the Essential
Bits functionality provides a mask in which if a bit is set, the
associated bit in the bitstream file is essential, and thus, if
flipped, it modifies the circuit functionality (Fig. 2b).

(a) FPGA design, associated bitstream, and es-
sential bits mask

(b) Change of functionality due to a SEU
in the configuration memory cell storing
an essential bit of the implemented design

Fig. 2: Essential bits meaning

Since the objective of a fault injection infrastructure is
to flip those bits associated with the CUT, resorting to the
essential bits mask of the blank partial bitstream it is possible
to localize the locations of the bits associated with the static
routing passing through the reconfigurable module. The mask

containing the position of the essential bits of the CUT
(Essential faults locations in Fig. 1b) is obtained by bit-wise
subtracting the masks associated to both the CUT and the
Blank partial bitstreams. It is worth to remember here that,
as aforementioned, some bits in the Blank bitstream carry
information about the I/O interfaces of the CUT. By applying
this method, these bits will be not flipped during the fault
injection process, thus their contribution represents an error
on the final computed fault injection metrics. However, as
will be demonstrated in Section IV, this contribution is very
small, thus can be assumed negligible if the fault injection
experiments are made in the early design stages, where highly
accurate results are not required.

This means that the fault injection infrastructure will always
inject a SEU in a position associated with a bit that has
no impact on the infrastructure itself, thus ensuring correct
operations during the whole injection process.

The second main advantage of using the Essential Bits
technology for fault injection is that the injection time is
dramatically reduced, with respect to inject faults in every
possible configuration memory location associated to the CUT
partition. In fact, in general, the essential bits of a module
implemented in a partition are lower than 20% of the total
configuration bits of that partition [18]. Thus, it is useless to
inject SEUs in the remaining 80% of the bits composing the
bitstream, since it is known a-priori that those faults will not
cause any observable functional error. Obviously, these not
injected faults are counted as if they have been injected to
compute the final output statistics results.

III. PROPOSED INFRASTRUCTURE

The architecture of the proposed fault injection infrastruc-
ture is depicted in Fig. 3.

Fig. 3: Proposed fault injection infrastructure architecture

The infrastructure takes in input the bitstream configuration
file of the Circuit Under Test (CUT), the Input Vectors needed
to exercise the CUT, and the Golden Outputs of the fault-free
CUT run. According to the SEU fault model, a single bit-flip
is introduced in the configuration memory for each execution
run. At the end of the fault injection process, the infrastructure
provides in output the results in terms of percentages of faults
that caused an observable functional error in the CUT.

The next subsections details the operation of each module
composing the infrastructure.

2014 International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) 161

A. Fault Generator
The Essential faults location mask, extracted as detailed

in the previous section, is used at run-time by the Fault
Generator to choose a possible fault injection location. Using
a Linear-Feedback-Shift-Register (LFSR), a pseudo-random
injection time and location (among the possible given by
the Essential faults location mask) are generated. When the
execution time reaches the selected injection time, the Fault
Generator reads the fault-free CUT partial bitstream (Fig. 3)
and flips a bit according to the selected position. Afterwards,
the execution can be resumed. At the end of the execution,
the CUT reconfigurable module is restored with the fault-free
partial bitstream. This last reconfiguration overwrites all the
configuration frames associated with the CUT, avoiding any
fault accumulation effect.

It is worth noting that the proposed fault generation method
can be easily adapted to emulate also Multiple Bit Upsets
(MBUs). This fault model is expected to become a more
realistic model, with respect to SEUs, for modern and future
technology nodes.

B. System Input Controller
Referring to the FARM model [19], the Activation patterns,

or Input Vectors, are provided to the CUT through the System
Input Controller. The Input Vectors can be stored either
internally to the FPGA device or in an external memory,
depending on their size and on the CUT nature (e.g., processor,
datapath, control unit). They can be generated off-line through
simulations or other techniques. Thus, the System Input Con-
troller consists of a control unit, acting as a memory controller,
that reads the vectors from an internal or external memory, and
feeds the inputs of the CUT. When the CUT needs pseudo-
random input vectors, the System Input Controller simply
consists of a Linear-Feedback Shift-Register (LFSR) [20].

C. System Clock Controller
The System Clock Controller is mainly composed of one

or more FPGA Digital Clock Managers (DCMs), able to
synthesize and manage the clocks needed by the CUT.

It works in conjunction with the System Input Controller to
synchronize the CUT clock to the Input Vectors, and to stop it
during the reconfiguration process. In particular, at a random
time, during the execution of a run, the CUT clock is stopped
and the configuration memory is reconfigured using the faulty
CUT partial bitstream, generated as explained in Subsection
III-A. Afterwards, the CUT clock is re-activated, resuming the
execution of the actual run until the fault is detected, or until
the end of the run, if the injected fault does not generate an
observable error.

D. System Output Collector and Fault Classifier
Referring to the FARM model [19], the Readouts and the

Measures are performed through the System Output Collector
and Fault Classifier modules.

The System Output Collector monitors the outputs of the
CUT after each fault injection. Depending on the number

of outputs and number of responses to observe, the designer
can choose the output comparison technique that best fit the
considered CUT and test case (e.g, outputs compression and
signatures comparison, clock-by-clock comparison [20], etc).

If a difference is encountered during the outputs comparison
process, the fault in the configuration memory of the FPGA
device is targeted as critical. In the opposite case, the fault is
considered non-critical since, even if at the end of the run it
can be still present in the configuration memory, it does not
generate erroneous results or system failures. If the CUT is
equipped with a fault detection mechanism, the error detection
signal can be used by the Fault Classifier to classify the faults
detected by the CUT detection mechanisms, labeling them
as hardware detected. This functionality can be very useful
when, in the early design stages, the designer is interested in
evaluating different fault detection techniques.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results gathered by
implementing the proposed fault injection infrastructure on
a Xilinx ML605 evaluation board, equipped with a Virtex-6
VLX240T FPGA.

Three case studies have been considered:
• LEON3-based SoC, including a LEON3 processor [21]

and several peripherals. The processor runs several appli-
cations extracted from the MiBench benchmark suite [22].
The applications have been selected in order to stimulate
different units of the processor;

• two-dimensional convolution datapath, as the one re-
ported in [23], composed of 49 8x8 multipliers and a
balanced adder tree including 48 adders. This architecture
is often employed when dealing with two-dimensional
images filtering;

• triplicated two-dimensional convolution datapath, with a
majority voter that sets an Error detected signal when it
recognizes a mismatch between the three module outputs.

Some modules of the fault injection infrastructure (in par-
ticular the System Input and Output Controllers) must be
modified depending on the nature of the actual circuit under
test (e.g., CPU or datapath) and on the adopted test procedure.
In particular, for the LEON3-based SoC case study, the pro-
cessor runs at 80 MHz, reading the application and the data
from an external memory through the System Input Controller.
The System Output Controller, at the end of the execution,
reads from the external memory the results produced by the
processor, and compares them with the golden ones stored in
an internal Block-RAM. The comparison results are sent to the
Fault Classifier which computes the fault injection metrics.

Instead, in the second test case (i.e., 2D convolution data-
path), the System Input Controller consists of an LFSR that
pseudo-randomly generates 98 8-bit inputs for the 49 multi-
pliers. The inputs generation process is repeated for 307,200
clock cycles in order to emulate the processing of an image
composed of 640x480 pixels. The System Output Controller
compresses the output values using a Multiple-Input Shift-
Register (MISR), and compares the output signature with the

162 2014 International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

golden one stored internally [20]. In the last considered test
case, the Error detected signal of the TMR Voter is connected
to the Fault Classifier to notify if a fault is detected by the
TMR mechanism.

The System Clock Controller and the Fault Generator are
the same among the three case studies. The System Clock
Controller is composed of a single Digital Clock Manager
(DCM), necessary to synthesize the clock for the CUT. The
Fault Generator consists of: a memory controller, that reads
from the external memory a look-up table storing the posi-
tions of each essential bit in the bitstream, two LFSRs, that
pseudo-randomly select the injection time and the essential bit
position to flip, and a Dynamic Partial Reconfiguration (DPR)
controller which writes the CUT bitstreams in the configura-
tion memory through the Internal Configuration Access Port
(ICAP) of the FPGA device. The ICAP is driven by the Fault
Generator using the maximum possible clock frequency (i.e.,
100 MHz), providing a reconfiguration bandwidth of 3.2 Gbps
[16].

Table I summarizes the hardware FPGA resources needed
to implement the fault injection infrastructure in the three
considered test cases (SIC, SOC and FC represent the System
Input Controller, the System Output Controller and the Fault
Classifier, respectively. As can be seen from Table I, the
resources consumption of the fault injection infrastructure
in the three test cases is very limited (around 3.6% of the
overall FPGA resources), even if the target device represents
a medium-sized FPGA.

Table II shows the partial bitstream sizes (BS) associated
with the CUTs, the percentage of essential bits %EB, the time
needed to run the application (Trun), and the total injection
time (Tinj), performing a number of runs equal to the number
of extracted essential bits.

In general, the total injection time can be estimated as:

Tinj = #EB · (Trun + TDPR) (1)

TDPR is the sum of two contributions: the first is the time
needed to configure, with the faulty bitstream, the reconfig-
urable partition in which the CUT is implemented, while the
second represents the time needed to restore it, with the golden
bitstream, at the end of each run. Since the faulty and the

TABLE I: Fault injection infrastructure hardware resources
consumption for the three considered test cases

Module LUTs FFs BRAMs DCMs
Fault Generator 499 359 - -

SIC (LEON) 2,292 1,430 - -
SIC (2D Conv.) 3,332 784 - -

SIC (TMR) 3,332 784 - -
Sys. Clock Contr. - - - 1

SOC (LEON) 1,251 315 4 -
SOC (2D Conv.) 166 24 - -

SOC (TMR) 166 24 - -
FC (LEON) 403 92 - -

FC (2D Conv.) 403 92 - -
FC (TMR) 436 118 - -

Main Control Unit 1,094 67 - 1
Total (LEON) 5,539 (3.68%) 2,263 (0.75%) 4 (0.96%) 2 (16.7%)

Total (2D Conv.) 5,494 (3.65%) 1,326 (0.44%) - 2 (16.7%)
Total (TMR) 5,527 (3.67%) 1,352 (0.45%) - 2 (16.7%)

golden CUT bitstreams have the same size, TDPR can be
computed as:

TDPR = 2 · BS

fICAP
(2)

where BS is the bitstream size, and fICAP represents the
ICAP operating frequency (i.e., 100 MHz in our experiments).

It is worth mentioning that in all the considered test cases,
the percentage of essential bits associated with the static
part of the design (i.e., the fault injection infrastructure and
the I/O interface of the CUT) in the CUT bitstream is less
than the 0.7%. As explained in Sec. III, these bits are not
included in the fault injection process. This contribution can
be treated as an error on the final computed metrics, since the
fault injection infrastructure will not be present in the final
circuit implementation. However, this error can be considered
negligible if this kind of evaluation is made in the early design
phases, where a very accurate measure is not required.

Table III shows the Fault Classifier results in terms of
percentages of faults that caused an observable error (Critical),
and those that have not caused any error (Non-Critical). The
number of Equivalent Injected Faults (EIF) and the percent-
ages are computed taking into account also the number of non-
essential bits. Each non-essential bit composing the bitstream
can be flipped without any effect on the circuit functionality,
thus a fault in those bits can be considered as Non-Critical.

As can be seen from Table III, in the third test case (i.e.,
LEON3 running IFFT [22]) the percentage of faults that cause
an error is higher than the percentage in the first two test
cases, since the application uses the floating point unit, which
represents about 40% of the CUT area. In the last test case
the number of Critical faults is greatly reduced with respect
to the fourth test case, since all the faults detected by the
TMR mechanism that do not lead to a Voter output error are
considered Non-critical.

The proposed methodology and infrastructure has been
compared, in terms of fault injection execution time, with
the integrated methods presented in [17], [12], and [13]. The
fault injection platforms presented in [12], [13], [17] require a
fixed TDPR of about 10µs, since they reconfigure a single

TABLE II: CUTs Bitstream size, percentage of Essential Bits,
application execution time, and total injection time

CUT BS[KB] %EB Trun[ms] Tinj [s]
L3 Susan 755.6 16.2 37.91 41,415

L3 CRC32 755.6 16.2 20.94 24,552
L3 IFFT 755.6 16.2 395.65 395,514
2D conv. 170,9 13.6 6.14 4,573

2D conv TMR 478,4 13.6 6.14 4,573

TABLE III: Fault Injection classification results

CUT EIF % Critical % Non-Critical
L3 Susan 6.18 M 9.8 90.2

L3 CRC32 6.18 M 7.3 92.7
L3 IFFT 6.18 M 13.6 82.4
2D conv. 1.39 M 12.4 87.6

2D conv TMR 1.39 M 1.3 98.7

2014 International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT) 163

Fig. 4: Fault injection time vs number of equivalent injected
SEUs trends comparison, in the case of the LEON3 running
CRC32

frame of the configuration memory, instead of the overall
CUT reconfigurable partition. Nonetheless, they incur in the
problems described in Section I.

Fig. 4 compares, in terms of total fault injection time (Tinj),
the method presented in this paper, with the ones proposed
in [12], [13], [17], varying the number of equivalent injected
faults (EIF). The reference case is the LEON3 processor
running the CRC32 application [22].

As shown in Fig. 4, the proposed fault injection infrastruc-
ture extremely speed-up the fault injection process, especially
when the number of SEUs to be injected is high. Moreover, it
ensures the correct operations during the whole fault injection
process, guaranteeing always reliable fault injection results,
contrary to the platforms presented in [12], [13], [17].

V. CONCLUSION

This paper presented a DPR-based fault injection method-
ology and infrastructure for SEUs emulation in the configura-
tion memory of Xilinx SRAM-based FPGAs. The proposed
methodology exploits the Xilinx Essential Bits technology
to speed-up fault injection, ensuring the correctness of the
infrastructure operations during the whole injection process.
Experimental results highlight the fault injection time speed-
up of almost 10x for very high number of injected faults,
and the capability of the proposed infrastructure in evaluating
SEUs effects on FPGA designs of different complexity.

Since the proposed fault injection architecture can easily
support the Multiple Bits Upset (MBU) fault model, future
works will focus on the investigation of fault accumulation
effects on FPGA-based designs.

ACKNOWLEDGMENT

This research has been partially supported by the 7th Frame-
work Program of the European Union through the CLERECO
Project, under Grant Agreement 611404.

REFERENCES

[1] SEMICO research corporation, How an FPGA Approach to Complex
System Design Can Improve Profitability: Real Case Studies, 2012.

[2] H. P. Afshar, Closing the Gap between FPGA and ASIC: Balancing
Flexibility and Efficiency. PhD thesis, École Polytechnique Fédérale de
Lausanne, 2012.

[3] E. Petersen, Single event effects in aerospace. John Wiley & Sons, 2011.
[4] R. D. Schrimpf and D. M. Fleetwood, Radiation effects and soft errors

in integrated circuits and electronic devices, vol. 12. World Scientific,
2004.

[5] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and
M. Violante, “Exploiting FPGA-based techniques for fault injection
campaigns on VLSI circuits,” in Defect and Fault Tolerance in VLSI
Systems, 2001. Proceedings. 2001 IEEE International Symposium on,
pp. 250–258, IEEE, 2001.

[6] M. Ceschia, M. Violante, M. Reorda, A. Paccagnella, P. Bernardi,
M. Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Can-
delori, “Identification and classification of single-event upsets in the
configuration memory of SRAM-based FPGAs,” Nuclear Science, IEEE
Transactions on, vol. 50, pp. 2088–2094, Dec 2003.

[7] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The
rosetta experiment: atmospheric soft error rate testing in differing tech-
nology FPGAs,” Device and Materials Reliability, IEEE Transactions
on, vol. 5, no. 3, pp. 317–328, 2005.

[8] Xilinx Corporation, Continuing Experiments of Atmospheric Neutron
Effects on Deep Submicron Integrated Circuits - White paper (WP286),
2011.

[9] Xilinx Corporation, Device Reliability Report - Fourth Quarter 2013
(UG116), 2014.

[10] L. Sterpone, D. Sabena, A. Ullah, M. Porrmann, J. Hagemeyer, and J. Il-
stad, “Dynamic neutron testing of dynamically reconfigurable processing
modules architecture,” in Adaptive Hardware and Systems (AHS), 2013
NASA/ESA Conference on, pp. 184–188, June 2013.

[11] M. Ibrahim, K. Asami, and M. Cho, “Evaluation of SRAM-based
FPGA performance by simulating SEU through fault injection,” in
Recent Advances in Space Technologies (RAST), 2013 6th International
Conference on, pp. 649–654, June 2013.

[12] L. Sterpone and M. Violante, “A new partial reconfiguration-based fault-
injection system to evaluate SEU effects in SRAM-based FPGAs,”
Nuclear Science, IEEE Transactions on, vol. 54, pp. 965–970, Aug 2007.

[13] G. Nazar and L. Carro, “Fast single-FPGA fault injection platform,” in
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT),
2012 IEEE International Symposium on, pp. 152–157, Oct 2012.

[14] U. Legat, A. Biasizzo, and F. Novak, “Automated SEU fault emulation
using partial FPGA reconfiguration,” in Design and Diagnostics of
Electronic Circuits and Systems (DDECS), 2010 IEEE 13th International
Symposium on, pp. 24–27, April 2010.

[15] J. Mogollon, H. Guzman-Miranda, J. Napoles, J. Barrientos, and
M. Aguirre, “FTUNSHADES2: A novel platform for early evaluation
of robustness against SEE,” in Radiation and Its Effects on Components
and Systems (RADECS), 2011 12th European Conference on, pp. 169–
174, IEEE, 2011.

[16] Xilinx Corporation, Partial Reconfiguration User Guide (UG702), 2013.
[17] U. Kretzschmar, A. Astarloa, J. Jimenez, M. Garay, and J. Del Ser,

“Compact and fast fault injection system for robustness measurements
on SRAM-based FPGAs,” Industrial Electronics, IEEE Transactions on,
vol. 61, pp. 2493–2503, May 2014.

[18] Xilinx Corporation, LogiCORE IP Soft Error Mitigation Controller v4.0
- Product Guide for Vivado Design Suite (PG036), 2013.

[19] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault injection for dependability validation:
a methodology and some applications,” Software Engineering, IEEE
Transactions on, vol. 16, pp. 166–182, Feb 1990.

[20] A. Benso and P. Prinetto, Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation. Springer, 2003.

[21] J. Gaisler, “A portable and fault-tolerant microprocessor based on the
SPARC v8 architecture,” in Dependable Systems and Networks, 2002.
DSN 2002. Proceedings. International Conference on, pp. 409–415,
2002.

[22] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pp. 3–14, Dec 2001.

[23] S. Carlo, G. Gambardella, M. Indaco, D. Rolfo, G. Tiotto, and
P. Prinetto, “An area-efficient 2-D convolution implementation on FPGA
for space applications,” in Design and Test Workshop (IDT), 2011 IEEE
6th International, pp. 88–92, Dec 2011.

164 2014 International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT)

