

CLERECO INSTITUTIONAL REPOSITORY

[Article] A survey on simulation-based fault injection tools for complex
systems

Original Citation:
Kooli, Maha; Di Natale, Giorgio, "A survey on simulation-based fault injection
tools for complex systems," Design & Technology of Integrated Systems In
Nanoscale Era (DTIS), 2014 9th IEEE International Conference On , vol., no.,
pp.1,6, 6-8 May 2014

Availability: This version is available at:
http://www.clereco.eu/images/publications/DTIS.2014.6850649.pdf
Since: May 2014:

Publisher: IEEE

Published version: DOI: DTIS.2014.6850649

Terms of use: This article is made available under terms and conditions
applicable to Open Access Policy Article ("Public - All rights reserved") , as
described at http://www.clereco.eu/publications/item/70

Publisher copyright claim:

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

(Article begins on next page)

A Survey on Simulation-Based Fault Injection Tools
for Complex Systems

Maha Kooli, Giorgio Di Natale
Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier (LIRMM), France

maha.kooli@lirmm.fr, giorgio.dinatale@lirmm.fr

Abstract1—Dependability is a key decision factor in today’s
global business environment. A powerful method that permits
to evaluate the dependability of a system is the fault injection.
The principle of this approach is to insert faults into the system
and to monitor its responses in order to observe its behavior
in the presence of faults. Several fault injection techniques
and tools have been developed and experimentally tested. They
could be mainly grouped into three categories: hardware fault
injection, simulation-based fault injection, and emulation-based
fault injection. This paper presents a survey on the simulation-
based fault injection techniques, with a focus on complex micro-
processor based systems.

Index Terms—Dependability, Faults, Fault Tolerance, Fault
Injection

I. INTRODUCTION

Reliability and availability are a main concern while de-
signing electronic systems that are specially used in safety
critical fields such as avionics, aerospace, military, and trans-
portation. The uninterrupted performance and the progressive
miniaturization of microelectronic devices in these type of
systems make them more susceptible to be affected by external
or internal faults. For these reasons, many researches focus
on improving the dependability of the systems by inventing
efficient techniques and methodologies.

Fault tolerance is one of the methods that permits to increase
the dependability of a system. The goal of fault tolerant
computing is to develop computing systems that perform
correctly, respecting their functions, in the presence of faults.
Several techniques and methods, software or hardware, are
developed to tolerate faults on the systems.

Fault injection is a method for the assessment of fault
tolerant systems. Different fault injection methods have been
proposed in literature. They can be classified into:

• Hardware fault injection, where the actual hardware sys-
tem is affected by external physical sources;

• Simulation-based fault injection, where the target system
and the faults are modeled and simulated with a fault
simulator;

• Emulation-based fault injection, where the target system
is emulated (usually with FPGAs) and faults are injected
in the emulator.

Nowadays systems are generally based on complex archi-
tectures with multiple micro-processors, memories, external

1This work has been supported by the joint FP7 Collaboration Project
CLERECO (Grant No. 611404).

devices and several layers of software (operating system,
device drives, user applications) running on it. For these
systems, fault injection is becoming a challenging task. This
paper presents a survey on simulation-based fault injection
techniques and tools that target these complex systems.

The rest of the paper is organized as follows. Section 2
presents the elements permitting to define the dependability of
a system. Section 3 gives an overview of fault tolerance and
some of its techniques. Section 4 introduces the fault injection
method. Section 5 describes a set of efficient tools used to
assess the dependability of micro-processor-based systems.
Finally, section 6 draws some conclusions.

II. DEPENDABILITY

Dependability is first introduced as a global concept that
subsumes the usual attributes of reliability, availability, safety,
integrity, and maintainability [1]. It represents the ability to
avoid service failures that can happen to a system frequently
and severely than acceptable. In other words, dependability
is the ability to deliver products that can be trusted. It could
also be defined as a measure of the system availability, reli-
ability, and maintainability. Dependability can be determined
and measured through three elements: attributes, threats, and
means [2].

A. Attributes

The attributes represent a way to evaluate the dependability.
They are represented by the following elements:

• Availability: It represents the probability that the system
is available to operate correctly at a given instant of time.
A highly available system is a system that will most likely
be working at a given instant in time.

• Reliability: It represents the probability that a component
in the system performs continuously in a predictable way
without failure, i.e. for a prescribed time and under exact
environmental conditions. A highly reliable system is a
system that will most likely continue to work without
interruption during a relatively long period of time.
Reliability is defined over an interval of time rather than
an instant in time, which is the case for availability.

• Safety: It represents the probability that the system either
operates correctly or interrupts its functions in a way
that nothing catastrophic happens to the users and the
environment.

2014 9th International Conference on Design & Technology of Integrated Systems in Nanoscale Era
(DTIS)

 978-1-4799-4972-4/14/$31.00 ©2014 IEEE

!

• Maintainability: It represents a measure of how easily
the system can be fixed in case of failure. A highly
maintainable system is a system that shows a high degree
of availability when failures can be detected and repaired
automatically.

• Confidentiality: It represents the absence of unauthorized
disclosure of information.

• Integrity: represents the absence of improper system and
data modifications.

• Security: It is a composite of confidentiality, integrity, and
availability attributes [2].

Regarding these definitions, most of the attributes are more
subjective and could not be measured. Only availability and
reliability are quantifiable by direct measurements. For ex-
ample, reliability can be measured as the failure over time,
while safety is a subjective evaluation that needs judgmental
information in order to have a level of confidence. That is
the reason why techniques and methods developed to eval-
uate dependability are in reality to measure availability and
reliability.

B. Threats

The threats represent the things that can touch to the
dependability of the system. They are undesired and unex-
pected consequences resulting from non-dependability. They
represent the following elements:

• Fault: It is a physical defect or imperfection that happens
in the hardware, software or human component of the
system. A fault can be the cause of specification mistakes,
implementation mistakes, external disturbances, physical
hardware component defects or misuses. A fault can be
permanent, intermittent or transient depending on the
length of time it persists.

• Error: It is a deviation of an external state of the system
from the right service state. It could also be defined as
a contradiction between the experimental or observed
behavior, and the theoretically or expected behavior of
a component in the system.
Errors can be observed during a test session or using
special mechanisms such as System Error Detection
Mechanism (e.g., hardware exceptions handling, software
checks, etc).

• Failure: It is the result of the deviation of the delivered
service from the correct service. A failure is also defined
as an instance in the time when the resulting behavior of
the system does not correspond to the required specifica-
tion.
Considering the benefits provided by the system in ab-
sence of failures and the consequences of failures, failures
can be classified into minor failures and catastrophic
failures. Minor failures happen when the harmful results
and the benefits provided by the right service delivery
have similar cost. However catastrophic failures occur
when the harmful results are extremely higher than the
benefits provided by the right service delivery.

The relationship between faults, errors, and failures is
represented by ”the chain of threats” [2]. In fact, an error is
the result of the activation of a fault, and a failure occurs when
the error propagates to the service interface and becomes the
reason of incorrect service. The failure of a component may
be the cause of a permanent or transient fault in the system
containing this component.

C. Means
The means are the techniques and methods that are able

to increase the dependability of the system. They include the
following techniques:

• Fault Prevention: It deals with avoiding the fault to
occur on the system. It could be achieved by integrating
development methodologies and good implementation
techniques, such as design rules, modularization, use of
strongly-typed programming languages, etc.

• Fault Tolerance: It means to prevent failures when faults
are present in the system. The system remain working in
an expected manner, according to its specifications in the
presence of faults. More details are given in section III.

• Fault Removal: It means to decrease the severity and the
number of faults in the system. It could be done either
during the development phase or during the use of the
system.

• Fault Forecasting: It is conducted by performing an
evaluation of the system behavior with respect to fault
occurrence or activation. Evaluation has two aspects:
qualitative evaluation and quantitative evaluation.

The next section focuses on fault tolerance because it is the
most powerful and famous technique permitting to increase
the dependability of the system.

III. FAULT TOLERANCE

Fault tolerance is a method to increase the dependability of
the systems. It permits to avoid services failure in the presence
of faults. Fault tolerant systems are defined as systems that are
able to behave as expected and in a predictable way according
to their specifications in the presence of faults. A fault tolerant
system should be able to tolerate one or more types of faults.

Redundancy is a common strategy that can be used to
tolerate faults that occur to a system. Redundancy is the use of
additional hardware or functions that are not strictly necessary
to functioning, but that are used in case of failure in other
components. There are three types of redundancy:

• Space Redundancy: It contains the functional redundancy
and the structural redundancy. Functional Redundancy,
generally referred as a software method, is accomplished
via additional functions. Structural Redundancy, gener-
ally referred as a hardware method, is accomplished via
extra equipments added to the system in order to tolerate
the loss or malfunctioning of some components.
Space redundancy uses the technique of voting to increase
the dependability [3]. For example, in Triple Modular
Redundancy (TMR) (Fig. 1), three replica of the original
module M are fed by the same input. If an error occurs

!

!

in one module among the three and no errors in the
others, the correct result is obtained by the majority
of the outputs. However, if two or more errors occur
in two modules, three different responses are obtained
and the voter cannot deliver a valid result. In this case,
two solutions can be adopted: either the redundancy is
increased in order to decrease the probability of such
case, or the modules are re-executed, which is a more
complex method that includes the space redundancy and
the time redundancy.

Fig. 1. Space Redundancy.

• Information redundancy: It corrects the cost of dupli-
cation or triplication of modules proposed by the space
redundancy. As shown in Fig. 2, the information redun-
dancy is based on coding the data so that the errors can be
detected. Extra bits could be attached to the information
to allow recovery from garbled bit.

Fig. 2. Information Redundancy.

• Time redundancy: Conversely to the previous techniques,
it does not replicate the original module. As shown in
Fig. 3, it is based on re-executing the original function
multiple times at different task moments and comparing
the results of each one. It allows detecting transient
or intermittent faults, but not permanent faults since
they will always produce the same wrong output. The
approaches of time redundancy are either with retry,
where the failed instruction is repeated, or with rollback,
where the execution is re-started from the beginning or
from a checkpoint where a correct state has been saved.

Fault tolerance techniques can be implemented either in
hardware or in software. The next 2 subsections present the
main differences.

Fig. 3. Time Redundancy.

A. Hardware Fault Tolerance
Hardware fault tolerance techniques represent the tech-

niques that change the hardware in order to tolerate faults.
Although the hardware fault tolerant techniques are effective
to improve the dependability of the system, they are usually
costly because they affect the silicium area, the power con-
sumption, and possibly the performance.

The most used techniques in hardware fault tolerance in-
volve partitioning the computer system into modules that act
as fault-containment regions. Each module is protected by
redundancy so that, if it fails, others can assume its functions.
In order to detect errors and implement recovery, special
mechanisms and approaches are used, such as fault masking
and dynamic recovery [1]. Fault masking is a structural
redundancy technique that masks faults completely within a
set of redundant modules. Dynamic recovery is used when
only one computation copy is running at a time and it involves
automated self-repair. It makes use of special mechanisms to
detect faults. Dynamic recovery is generally more hardware-
efficient than fault masking that uses voted systems.

B. Software Fault Tolerance
For micro-processor-based systems, Software Implemented

Hardware Fault Tolerance (SIHFT) is the technique that per-
mits to improve the dependability of the system at a lower cost
without any modification in the target hardware [4]. SIHFT
detects or tolerates faults in the hardware using software
methods and without referring to any special hardware for
error detection or fault tolerance. Several SIHFT techniques
have been proposed in order to deal with different types of
hardware errors such as Algorithm Based Fault Tolerance
(ABFT) [5], Assertions, and Variable Duplication [6].

Software dependability issues can be faced on three different
layers [6]:

1) Operating System Layer: In order to achieve a high
level of dependability, the operating system can be modified.
However, this method is very expensive because modifying
the operating system requires high skills.

Regarding the operating systems in the most used devices
like computers, there are no recent techniques that deal with
the operating system layer because it is extremely complicated
and there are other techniques that are easier to implement and
that could lead to the same results. Only small and custom
operating systems for embedded systems (used for instance in

!

!

safety-critical applications) implement dedicated techniques to
tolerate hardware faults.

2) Middleware Layer: The middleware layer permits to
build an intermediate software layer that could intercept and
modify all the communications between the operating system
and the user application. This approach is very efficient when
the user application is not modifiable and there is no possibility
to access the source code of the application.

Interposition agents [4] are an example of non-application
software programs that can transparently record and possibly
alter the communication between the operating system code
and the user code. The change of the environment, that is due
to the modification of the system calls by the interposition
agents, is not recognized neither by the software application
nor by the operating system.

3) Application Software Layer: In this layer, the techniques
proposed act directly on the software application to improve
the dependability at this level. They represent a good solution
when the application source code is available and can be
modified. Some techniques that deal with the application
software layer are presented in following.

Reliable code compiler (RECCO) for dependable applica-
tions [4][6][7][8] is a SIHFT technique proposed for checking
memory errors. RECCO is based on a C/C++ source-to-
source compiler able to increase the reliability level of a
given application. This technique can be applied to any C/C++
source code. It is based on two strategies: re-order the code
to decrease the probability of having fault on variables, and
duplicate or triplicate the variables to detect or correct faults
existing in the program data.

Control-Flow Checking via Regular Expressions [4][9]
(CFCRE) is a SIHFT technique proposed for checking control
flow errors. The check has inserted at source-code level using
a signature methodology based on regular expressions. The
signature checking is performed without dedicated watchdog
processor but by resorting to Inter-Process Communication
(IPC) facilities offered by most of the modern operating
systems.

Algorithm Based Fault Tolerance (ABFT) [5] is a low-cost
and highly efficient software-based resilience solution. ABFT
is able to detect and correct transient and permanent errors
in critical application data by exploiting, either redundant
information inherent in numerical algorithms, or invariant
relationships between data structures. The approach followed
by ABFT is first, to encode the data using checksum schemes,
then to redesign the algorithm to operate with the decoded
data, and finally to distribute the computation steps in the
algorithm among computation units.

IV. FAULT INJECTION OVERVIEW

Fault injection is a powerful and useful technique to evaluate
the dependability of the systems under faults [10]. It is defined
as a validation technique of the dependability of fault tolerance
systems based on the realization of controlled experiments in
order to evaluate the behavior of the computing systems in the
presence of faults. This technique can speed up the occurrence

and the propagation of faults in the system in order to observe
their effects on the performance of the system [11]. When
setting up the fault injection environment, it is important to
define the fault injection policy, such as fault location, injection
time, fault duration, and the input data for the system.

A. Hardware Fault Injection
Hardware Fault Injection uses external physical sources to

introduce faults into the system’s hardware [12]. This means
that the fault is injected in the real target system. There are
two main groups of physical fault injection: injection with
contact and without contact [11]. In the former, the faults are
injected externally in pin level. However, in the latter faults are
injected internally with heavy ion radiation or electromagnetic
interference, which could be closer to a realistic fault model.

The advantage of hardware fault injection techniques is the
ability to access some locations that are not easy to access
by other techniques [11]. They are also suitable for systems
requiring high time-resolution for hardware triggering and
monitoring.

The disadvantages of such techniques is that the injection
approach needs a special hardware and requires accessibility to
the hardware of the target system, which may be sometimes
not easy or very expensive to accomplish. Moreover, these
techniques can present a high risk to damage the system
under study. The results of the fault injection techniques in
hardware are difficult to observe and to collect, which reduces
the effectiveness of the method.

B. Simulation-based Fault Injection
In Simulation-based Fault Injection, the target system as

well as the possible hardware faults are modeled and simulated
by a software program, usually called fault simulator. The
fault simulation is performed by modifying either the hardware
model or the software state of the target system. This means
that the system could behave as if there was a hardware fault
[13]. There are two categories of fault injection: runtime fault
injection and compile-time fault injection. In the former, faults
are injected during the simulation or the execution of the
model. In the latter, faults are injected at compile-time in the
target hardware model or in the software executed by the target
system.

The advantage of the simulation-based fault injection tech-
niques is that there is no risk to damage the system in use. In
addition, they are cheaper in terms of time and efforts than the
hardware techniques. They also have a higher controllability
and observability of the system behavior in presence of faults.

Nevertheless, simulation-based fault injection techniques
may lack in the accuracy of the fault model and the system
model. In addition, they have a poor time-resolution, which
may cause fidelity problems.

Software Fault Injection is a special case of simulation-
based fault injection where the target system is a large micro-
processor-based machine that may include caches, memories,
and devices, running a complex software. This technique is
able to target applications and operating systems, which is not
easy to do with the hardware fault injection.

!

!

C. Emulation-based Fault Injection
Emulation-based Fault Injection has been introduced as a

better solution for reducing the execution time compared to
simulation-based fault injection. It is often based on the use
of Field Programmable Gate Arrays (FPGAs) for speeding-
up fault simulation and exploits FPGAs for effective circuit
emulation.

V. FAULT INJECTION ENVIRONMENTS

A wider and wider range of complex systems are nowadays
used in safety-critical applications such as medical, space,
automotive, and avionics. There is a tremendous need for the
evaluation of the dependability of such complex systems. This
section focuses on different tools that allow software fault
injection in those systems.

A. FAUMachine
FAUMachine is a virtual machine that permits to install

a full operating systems (Linux, Windows, DOS, Open- and
NetBSD) and run them as if they are independent computers.
This tool was developed in the Friedrich Alexander University
of Erlangen-Nuremberg in Germany, and is available on [14].
FAUMachine is similar in many aspect to standard virtual
machines like QEMU [15] or VirtualBox [16]. The prop-
erty that distinguishes FAUMachine from the other virtual
machines is its ability to support fault injection capabilities
for experimentation. FAUMachine supports the following fault
types [17]:

• Memory Cells: such as transient bit flips, permanent
struck-at faults, and permanent coupling faults.

• Disk, CD/DVD drive: such as transient or permanent
block faults, and transient or permanent whole disk faults.

• Network: such as transient, intermittent, and permanent
send or receive faults.

FAUMachine did not permit injecting faults in the CPU
registers yet. Bit flips could be easy to implement. Stuck-
at faults is also possible but it is much more complex since
FAUMachine uses just-in-time compiling.

In FAUMachine, the injection of fault could be done online
via GUI, or defined (type, location, time, and duration of fault)
via VHDL scripts.

Compared to existing fault injection tools, FAUMachine is
able to inject faults and observe the whole operating system
or application software. Using the virtualization, this tool pro-
vides a high simulation speed for both complex hardware and
software systems [17]. FAUMachine also supports automated
tests, including the specification of faults to be injected.

B. Jaca
Jaca is a fault injection tool that is able to inject fault

in object-oriented systems and can be adapted to any Java
application without the need of its source code, but only few
information about the application like the classes, methods,
and attributes names [10]. This tool was developed in the State
University of Campinas(UNICAMP) in Brazil. It is an open
source available on [18].

Jaca has a graphical interface that permits to the user to
indicate the application’s parameters under test in order to
execute the fault injection [10].

Most of the fault injection tools are able to handle the injec-
tion of faults at low-level of the software. Jaca is different from
the other tools in the fact that it can perform both low-level
fault injection, affecting Assembly language element (CPU
registers, buses, etc), and high-level fault injection affecting
the attributes and methods of objects in a Java program [18].

C. LFI
LFI is a tool to make fault injection based testing more

efficient and accessible to developers and testers [19]. LFI
injects faults at the boundary between shared libraries and
target programs, which permits to verify if the programs are
handling the failures exposed by the libraries correctly or
not. More in detail, LFI permits to automatically identify the
errors exposed by shared libraries, find potentially buggy error
recovery code in program binaries, and produce corresponding
injection scenarios [20]. LFI is distributed through Sourceforge
on [20].

Fault injection was rarely used in software development.
LFI was developed in response to this. It permits to reduce
the dependence on human labor and correct documentation,
because it automatically profiles fault behaviors of libraries
via static analysis of their binaries. The tool aims to provide
testers an easy, fast, and comprehensive method to see how
much the program is robust to face failures exposed between
shared libraries and the tested programs [19].

D. Xception
Xception is a software implemented fault injection tool for

dependability analysis. It uses the advanced debugging and
performance monitoring features that exist in processors to
inject realistic faults by software, and to monitor the activation
of the faults in order to observe in detail their impacts on
the behavior of the system [21]. Xception is a commercial
software tool developed in the University of Coimbra in
Portugal, and used in market since 1999.

Xception is a flexible and low-costly tool that could be used
in a wide range of processors and machines (parallel and real
time systems). In addition, it enables the definition of a general
and precise processor fault model with a large range of fault
triggers and oriented to the internal processor functional units
[21].

E. RIFLE
RIFLE is a hardware fault injection tool where faults are

injected in a pin-level of any module: the processor, the
memory, the bus or other devices [22]. It is developed at the
University of Coimbra in Portugal.

RIFLE is able to inject different types of faults and to
analyze the impact of these faults on the system. Following
some given criteria, RIFLE can define specific sets of faults
through combining the fault trigger capabilities with versatile
fault definition software. This feature represents an innovative
feature of RIFLE.

!

!

The pin-level fault injection tools in the complex micro-
processors generally make use of techniques such as prefetch-
ing, internal caches, pipelining, and delayed branches, which
make the analysis of the results difficult. In addition, it is
extremely difficult to observe the impact of pin-level faults
injected in complex chips such as processors. RIFLE is the
only pin-level fault injector that is able to perform analysis in
order to observe the impact of faults on the processor [22].

F. LIFTING

LIFTING is a simulator able to perform both logic and fault
simulation for stuck-at faults and single event upset (SEU)
on digital circuits described in Verilog [23]. It is based on
an event-driven logic simulation engine and performs a fault
injection fault simulation. It was developed in the research
laboratory LIRMM Montpellier in France. It has an objects
oriented architecture and it is an open source tool available on
[24].

LIFTING is different from other fault injection tools, be-
cause it provides many features for the analysis of the fault
simulation results, which is meaningful for research purposes.
In order to fault simulate complex micro-processor-based
systems, it allows describing the hardware systems (including
the memory), to define the software stored in the memory, and
to inject faults in all elements of the hardware model.

VI. CONCLUSION

This paper gave an overview on the dependability concepts
as well as the main techniques to tolerate faults in digital
systems, either in software or hardware level. We presented
a survey on fault injection techniques and environment, fo-
cusing on complex micro-processor-based systems running a
software.

The increase of interest in electronic systems dependabil-
ity was the motivation to develop modern fault injection
methodologies and techniques. Apart from their basic feature
which is increasing fault tolerance and improving the system
dependability, these techniques have many other challenges,
such as decreasing the technique cost, minimizing the time-
to-market, and guaranteeing high efficiency of the results.

REFERENCES

[1] K. Rozier, Dependability management - Part 1: Dependability man-
agement systems, International Electrotechnical Commission, IEC Std.,
2003.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,” IEEE
Trans. Dependable Secur. Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.
[Online]. Available: http://dx.doi.org/10.1109/TDSC.2004.2

[3] U. Raimund, R. Jaan, and T. V. Heinrich, Design and Test Technology for
Dependable Systems-on-Chip. United State of America by Information
Science Reference, 2011.

[4] G. Di Natale, “Software-implemented system dependability for safety
critical applications,” Ph.D. dissertation, Politecnico di Torino, 2003.

[5] K.-H. Huang and J. A. Abraham, “Algorithm-based fault
tolerance for matrix operations,” IEEE Trans. Comput.,
vol. 33, no. 6, pp. 518–528, Jun. 1984. [Online]. Available:
http://dx.doi.org/10.1109/TC.1984.1676475

[6] A. Benso, S. Di Carlo, G. Di Natale, L. Tagliaferri, and
P. Prinetto, “Validation of a software dependability tool via fault
injection experiments,” in Proceedings of the Seventh International
On-Line Testing Workshop, ser. IOLTW ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 3–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=876896.880975

[7] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Tagliaferri,
“Software dependability techniques validated via fault injection experi-
ments,” in Radiation and Its Effects on Components and Systems, 2001.
6th European Conference on. IEEE Computer Society, Sept 2001, pp.
269–274.

[8] A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri, “A c/c++ source-
to-source compiler for dependable applications,” in Proceedings of the
2000 International Conference on Dependable Systems and Networks
(Formerly FTCS-30 and DCCA-8), ser. DSN ’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 71–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647881.737934

[9] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, and L. Tagliaferri,
“Control-flow checking via regular expressions,” in Proceedings of
the 10th Asian Test Symposium, ser. ATS ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 299–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=872025.872649

[10] R. de Oliveira Moraes and E. Martins, “Jaca - a software fault injection
tool,” Dependable Systems and Networks, 2003. Proceedings. 2003
International Conference on, p. 667, June 2003.

[11] H. Ziade, R. Ayoubi, and R. Velazco, “A survey on fault injection
techniques,” vol. 1, no. 2, pp. 171–186, July 2004.

[12] S. Ningfang et al., “Fault injection methodology and tools,” Electronics
and Optoelectronics (ICEOE), 2011 International Conference on, pp.
V1–47 – V1–50, July 2011.

[13] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A
flexible software-based fault and error injection system,” IEEE Trans.
Comput., vol. 44, no. 2, pp. 248–260, Feb. 1995. [Online]. Available:
http://dx.doi.org/10.1109/12.364536

[14] (2003-2013) Faumachine. [Online]. Available: www.FAUmachine.org/
[15] Qemu. [Online]. Available: http://wiki.qemu.org
[16] Virtualbox. [Online]. Available: www.virtualbox.org/
[17] S. Potyra, V. Sieh, and M. D. Cin, “Evaluating fault-tolerant

system designs using faumachine,” in Proceedings of the 2007
Workshop on Engineering Fault Tolerant Systems, ser. EFTS
’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1316550.1316559

[18] G. M. L. Nelson. (2009, September) Jaca software fault injection tool.
[Online]. Available: http://www.ic.unicamp.br/ eliane/JACA.html

[19] P. D. Marinescu and G. Candea, “Lfi: A practical and general library-
level fault injector,” in Proceedings of the Intl. Conference on Depend-
able Systems and Networks (DSN), Portugal, June 2009.

[20] Lfi: Library-level fault injector. [Online]. Available:
http://sourceforge.net/apps/trac/lfi/

[21] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the
experimental evaluation of dependability in modern computers,” IEEE
Trans. Softw. Eng., vol. 24, no. 2, pp. 125–136, Feb. 1998. [Online].
Available: http://dx.doi.org/10.1109/32.666826

[22] H. Madeira, M. Z. Rela, F. Moreira, and J. G. Silva, “Rifle: A general
purpose pin-level fault injector,” in Proceedings of the First European
Dependable Computing Conference on Dependable Computing, ser.
EDCC-1. London, UK, UK: Springer-Verlag, 1994, pp. 199–216.
[Online]. Available: http://dl.acm.org/citation.cfm?id=645330.649779

[23] A. Bosio and G. Di Natale, “Lifting: A flexible open-source fault
simulator,” in Proceedings of the 2008 17th Asian Test Symposium, ser.
ATS ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
35–40. [Online]. Available: http://dx.doi.org/10.1109/ATS.2008.17

[24] Lifting. [Online]. Available: http://gforge-
lirmm.lirmm.fr/gf/project/lifting/

!

!

