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Abstract—Fault injection on microarchitectural structures 
modeled in performance simulators is an effective method for 
the assessment of microprocessors reliability in early design 
stages. Compared to lower level fault injection approaches it is 
orders of magnitude faster and allows execution of large 
portions of workloads to study the effect of faults to the final 
program output. Moreover, for many important hardware 
components it delivers accurate reliability estimates compared 
to analytical methods which are fast but are known to 
significantly over-estimate a structure’s vulnerability to faults. 

This paper investigates the effectiveness of 
microarchitectural fault injection for x86 and ARM 
microprocessors in a differential way: by developing and 
comparing two fault injection frameworks on top of the most 
popular performance simulators, MARSS and Gem5. The 
injectors, called MaFIN and GeFIN (for MARSS-based and 
Gem5-based Fault Injector, respectively), are designed for 
accurate reliability studies and deliver several contributions 
among which: (a) reliability studies for a wide set of fault 
models on major hardware structures (for different sizes and 
organizations), (b) study on the reliability sensitivity of 
microarchitecture structures for the same ISA (x86) 
implemented on two different simulators, (c) study on the 
reliability of workloads and microarchitectures for the two 
most popular ISAs (ARM vs. x86). 

For the workloads of our experimental study we analyze 
the common trends observed in the CPU reliability assessments 
produced by the two injectors. Also, we explain the sources of 
difference when diverging reliability reports are provided by 
the tools. Both the common trends and the differences are 
attributed to fundamental implementations of the simulators 
and are supported by benchmarks runtime statistics. The 
insights of our analysis can guide the selection of the most 
appropriate tool for hardware reliability studies (and thus 
decision-making for protection mechanisms) on certain 
microarchitectures for the popular x86 and ARM ISAs.  

Keywords-reliability evaluation, fault injection, micro-
architectural simulators, microprocessors 

I.  INTRODUCTION 
The reliable operation of modern and forthcoming 

computing systems can be affected by transient faults (soft 
errors), intermittent faults, and permanent (hard) faults [2] 
[9] [17]. Hardware faults can be caused by external factors 
such as radiation or are due to latent manufacturing defects, 
device degradation, or certain modes of operation such as 
very low voltage operation [2] [7] [9] [30]. Several metrics 
have been proposed for the assessment of reliability; for 
example the Architectural Vulnerability Factor (AVF) [28] 
quantifies the probability of a transient fault in a hardware 

component to produce a program-visible error accounting for 
both the hardware and the software masking effects. 
Similarly, vulnerability factors for intermittent faults [31] 
(IVF) and permanent faults [6] (H-AVF) have been defined.   

Early assessment of the expected reliability of a 
computing system (or equivalently its resiliency to hardware 
faults) is an important task which steers design decisions 
related to the required mechanisms for the detection and 
diagnosis of hardware faults and the recovery of the system 
from their effects. Such fault tolerance mechanisms always 
impose area, power and performance overheads. 
Straightforward guard-banding of the system with inaccurate 
knowledge of the effect of hardware faults can easily make 
the costs of protection against hardware faults excessive. For 
example, typical memory error detection and correction 
techniques can have a cost (in terms of added memory 
capacity) which ranges from 1% to 125% depending on the 
detection and correction capabilities of each technique [24]. 
Clearly, the selection of the most appropriate protection 
techniques depends on the required reliability levels and 
studies of its inherent resiliency to hardware faults.  

Tolerance mechanisms against any fault model must be 
decided as early as possible to avoid costly re-design cycles 
for late integration of such mechanisms. However, early 
decisions on the protection mechanisms are hard to make 
because during the early stages of a system design important 
parameters are unknown: hardware components sizes and 
architectures, workload. It is widely recognized that 
microarchitecture simulators, apart from their importance for 
performance studies, offer an opportunity for an effective 
combination of early and accurate reliability estimations: 
� They are available in early design phases and important 

parameters of the major hardware structures can be 
easily configured. 

� They are significantly faster than simulators at more 
detailed levels of abstraction (RTL, gate-level) and thus 
allow studies on large intervals of software execution. 

� They accurately model important array-based 
microarchitecture components: storage arrays which 
occupy the majority of a chip’s area and thus largely 
determine vulnerability to faults. For instance, on-chip 
caches, register files, buffers, queues. 

A set of approaches that utilize performance simulators 
for reliability evaluation is based on probabilistic models and 
ACE-based (Architectural Correct Execution) analysis to 
determine the AVF of hardware structures [5] [13] [28] [29] 
[43] [51]. Other approaches also use performance 
measurements [10] [44] for online AVF estimation, while 
others try to separate the masking effects that hardware and 
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software can have on hardware faults [38] [40] [41]. All 
these approaches are very fast (a single or few runs of a 
benchmark are needed to feed the models) but require 
significant modifications of the simulator as they are based 
on tracking data flow through the microarchitecture. Despite 
their speed, the recognized drawback of these approaches is 
that they over-estimate the vulnerability of microprocessor 
structures [14] [23] [45]; for example, [14] reports a 7x AVF 
over-estimation and [45] reports that even a refined ACE-
based analysis (which requires even more elaborate 
modifications of the microprocessor simulator model) leads 
to up to 3x over-estimation. This can lead to decisions for 
expensive but not justifiable protection mechanisms.  

On the other hand, fault injection frameworks that utilize 
microarchitectural simulators much closer resemble the 
actual hardware and software behavior in the presence of 
faults [12] [14] [32] [48]. Fault injection approaches require 
much simpler modifications of the simulators but require 
larger simulation time for the fault injection experiments. 
However, when statistically significant numbers of fault 
injections are performed [20], fault injection delivers very 
accurate reports on the faulty behavior of hardware 
components.  

In this paper, we investigate the limits of 
microarchitecture level fault injection for x86 and ARM 
ISAs conducting a differential analysis on two 
comprehensive fault injector tools supporting the same fault 
models and running the same workloads. Such a differential 
analysis can bring insights about the sensitivity of the 
vulnerability of hardware structures and workloads to the 
underlying microarchitecture as well as the ISA of the 
microprocessor. It can also identify common trends and 
diverging reliability reports in the two tools which can lead 
to informed design decisions for error protection.  

Our differential fault injection framework can serve 
many different studies in this context. We inject hardware 
faults on actual microarchitecture structures (all storage 
arrays: caches, register files, buffers, queues – not only on 
architecturally visible points) to better assist design decisions 
for error protection of individual components.  

Our microarchitecture-level fault injection tools, called 
MaFIN and GeFIN (for MARSS-based and Gem5-based 
Fault Injector, respectively), are built on the two most 
popular microarchitectural simulators (MARSS [33] and 
Gem5 [3]) and the two popular ISAs (x86 and ARM). Both 
injectors have been developed modularly using exactly the 
same principles and employ the check-pointing features of 
the simulators to ensure that faults affect only the execution 
of the benchmark being studied as well as to speed up the 
injection campaigns.  

Both MaFIN and GeFIN consist of three modules: a fault 
masks generator, an injection campaign controller and a 
parser of the logged information. The tools allow studies on 
the full range of fault models: transient, intermittent and 
permanent, as well as studies with multiple faults injected in: 
(i) different bits of the same entry of a hardware structure, 
(ii) different entries of a structure, (iii) different hardware 
structures simultaneously, (iv) all combinations of the above. 

Table I summarizes the state in microarchitectural fault 
injectors and puts the new contributions of this paper in this 
context. The two new microarchitectural fault injectors built 
for the needs of our differential study cover several 
important missing aspects of the research area. 

We keep a balance in the content of the paper between: 
(a) the essential description of the microarchitecture-level 
fault injector tools (realization of the injection, modifications 
of the simulators, their features, the supported fault models, 
etc.) and (b) the presentation, analysis and explanation of the 
experimental results to identify the sources of common 
trends and diverging reliability reports between the tools. 
Sections II and III focus on the former while Section IV 
focuses on the latter. Section V discusses related work and 
Section VI concludes the paper. 

TABLE I.  STATE-OF-THE-ART AND CONTRIBUTIONS OF THIS PAPER 
IN FAULT INJECTION TECHNIQUES ON MICROARCHITECTURAL SIMULATORS 

Aspect State-of-the-art This work 
Injection framework that 

targets all major 
microarchitecture 

structures 

None1 
Both MaFIN and 
GeFIN: all major 

structures 

Comparison between 
ISAs (x86 vs. ARM)  None GeFIN  

(x86 vs. ARM ISA) 
Comparison between 

Out-of-Order 
microarchitectures 

None MaFIN and GeFIN 

Comparison between 
simulators for same ISA None MaFIN and GeFIN  

(for x86 ISA) 

Full system fault 
injection 

[32]: Gem5;  
[48]: M5;  

[21] [22]: GEMS 

Both MaFIN and 
GeFIN are full system 

injectors 
New microarchitectural 

structures added None MaFIN 

Transient, intermittent, 
permanent fault models 

[48] (not all 
hardware structures) 

MaFIN and GeFIN: 
all fault models 

 

II. MICROARCHITECTURAL FAULT INJECTION  
The objective of this work is the study and the analysis of 

workloads reliability in the presence of hardware faults on 
top of two different (thus diverse), configurable, 
microarchitecture-level full-system fault injectors for x86 
and ARM ISAs. By setting their configurations and running 
benchmarks of interest several reliability studies for 
hardware components can be performed. This comparative 
study can reveal important insights about microarchitectural 
fault injection, among which: 
� What are the characteristics of a microarchitectural 

simulator that make it more suitable as a substrate for 
fault injection studies?  

� How much sensitive is the vulnerability of hardware 
structures to the ISA as well as the microarchitecture 
(simulator model or hardware structures configurations) 
for a given workload?  

                                                           
1 [14]: integer register file and ROB only; [48]: no injections supported in 
any cache level. 
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Major decisions towards the objective of this paper are 
the selection of the microarchitectural simulators and 
configurations. We discuss these decisions. 

A. Simulators Selection 
We have considered a number of publicly available full 

system simulators. A recent study [16] on the sources of 
modeling errors in full system simulators summarizes the 
publicly available tools and their advantages: Flexus [47], 
Gem5 [3], GEMS [27], MARSS [33], OVPsim [18], PTLsim 
[49], Simics [25]. Among these full-system simulators 
MARSS [33] and Gem5 [3] are: cycle-accurate (thus can 
allow per cycle granularity of fault injections at any modeled 
hardware component), publicly available, and regularly 
maintained today by their developers. By themselves, these 
properties can justify selecting MARSS and Gem5 for our 
reliability studies. Moreover, the two simulators best serve 
our purposes because: 

They are widely adopted by the computer 
architecture community. Both simulators are recent and 
very popular. Their increased popularity is mainly due to 
their accurate support of important ISAs, their detailed and 
configurable model of the memory system [42] and check-
pointing support. 

Their combination supports differential reliability 
studies. The combination of MARSS and Gem5 supports the 
purposes of our work – reliability studies on different ISAs 
and reliability studies on the same ISA on different 
simulators. In particular: 
� Both MARSS and Gem5 support the x86 ISA and thus 

facilitate comparison of microarchitectural fault 
injections in the hardware components of an x86 
microprocessor.  

� Gem5 supports several ISAs; ARM and x86 are among 
the best supported and thus a comparative study of them 
can be performed. 

� Both MARSS and Gem5 have a fully configurable 
model (pipeline depths and widths, structures sizes and 
organizations, etc.) 

� MARSS models both a high-performance OoO pipeline 
and a simple in-order (Atom-like) pipeline; a reliability 
assessment study between these two models can be 
implemented (this paper focuses on the OoO model to 
compare with the corresponding one of Gem5). 

An important difference between MARSS and Gem5 is 
that they require different development efforts to support 
fault injection at the microarchitecture level. Gem5 already 
includes all key microarchitecture components which model 
hardware arrays on which faults of any duration and severity 
can be injected. MARSS, on the other hand, does not contain 
important arrays needed for fault injection: data/instruction 
arrays of caches at all levels. This dual effort delivers a 
framework for comparative studies on important hardware 
components such as caches on MARSS. Details about the 
modifications of the original versions of the simulators are 
described along with the integration of the fault injection 
features in Section III. 

B. Simulators Configurations 
The three different configurations of MARSS and Gem5 

on which we performed our experimental study and analysis 
(Section IV) are summarized in Table II. MARSS simulates 
x86 ISA while the x86 and ARM ISAs of Gem5 have been 
used2. 

Both MaFIN and GeFIN injectors can be easily modified 
for other values of the parameters shown in Table II. Our 
main focus in setting the parameters was to keep the sizes 
and organizations of the hardware structures the same (or as 
close as possible) in the two simulators. Section III describes 
the modifications of the simulators and the additional 
components we added on them. For any parameters not 
shown below the default values of the simulators were used. 

TABLE II.  SIMULATORS CONFIGURATIONS 

Parameter 
Simulator/ISA 

MARSS/x86 Gem5/x86 Gem5/ARM 
Pipeline OoO OoO OoO 
Physical 
register file 

256 int; 256 FP; 16 
store; 24 branch 256 int; 128 FP 256 int; 128 FP 

Issue Queue 
entries 32 32 32 

Load/Store 
Queue 
entries 

32 (unified) 16 (load)/ 
16 (store) 

16 (load)/ 
16 (store) 

ROB 
entries 64 40 40 

Functional 
units 

2 int ALUs; 2 FP 
ALUs; 4 AGUs 

6 int ALUs; 2 
complex int 
ALUs; 4 FP 
ALUs, 2 FP 

mul/div, 4 SIMD 

2 int ALUs; 1 
complex int 

ALUs; 2 FP & 
SIMD 

L1 
Instruction 
Cache 

32KB, 64B line, 
128 sets, 4-

way,write back 

32KB, 64B line, 
128 sets, 4-way, 

write back 

32KB, 64B line, 
128 sets, 4-

way,write back 

L1 Data 
Cache 

32KB, 64B line, 
128 sets, 4-ways, 

write back 

32KB, 64B line, 
128 sets, 4-ways, 

write back 

32KB, 64B line, 
128 sets, 4-ways, 

write back 

L2 Cache 
1MB, 64B line, 

1024 sets, 16-way, 
write back 

1 MB, 64B line, 
1024 sets, 16-

way, write back 

1 MB, 64B line, 
1024 sets, 16-

way, write back 
Branch 
Predictor 

Tournament 
predictor 

Tournament 
predictor 

Tournament 
predictor 

Branch 
Target 
Buffer 

direct branches 
BTB (4-way, 1K 
entries), indirect 

branches BTB (4-
way, 512 entries) 

conditional and 
unconditional 
branches BTB 

(direct-mapped, 
2K entries) 

conditional and 
unconditional 
branches BTB 

(direct-mapped, 
2K entries) 

RAS 16 entries 16 entries 16 entries 
 

III. MAFIN AND GEFIN FEATURES AND IMPLEMENTATION 
In this section we discuss in detail the fault injection 

functionalities of MaFIN and GeFIN tools as well as their 
implementation and main modules. 

A. Fault Injectors Features 
The designs of MaFIN and GeFIN injectors rely on the 

same principles and our intention was to extend the original 
                                                           

2  All ISAs that support full system simulation on Gem5 can be also 
employed in future versions of the tool. 
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versions of the MARSS and Gem5 simulators in order to 
support the same injection capabilities and features. The 
following description applies to both MaFIN and GeFIN 
injectors. 

 
Fault models 
 

Both MaFIN and GeFIN model exactly the same fault 
types on microarchitectural array components: transient, 
intermittent and permanent faults as well as their 
combinations. These three types of fault models allow a wide 
analysis of the effect of different factors that affect 
reliability: fabrication defects, environmental conditions, 
early-life failures, device degradation and voltage scaling. 
Table III describes the three basic single bit fault models.  

TABLE III.  FAULT MODELS
 

Fault model Description 

transient  
a storage element’s bit value is flipped in a clock cycle of 

the program execution; the bit position and the clock 
cycle can be set arbitrarily (randomly or directed)3 

intermittent 

a storage element’s bit value is set to ‘0’ or to ‘1’ starting 
at a clock cycle and for an arbitrary number of clock 

cycles; the bit position, the start time and the duration of 
the fault can be set arbitrarily (randomly or directed) 

permanent 
a storage element’s bit value is permanently set to ‘0’ or 
to ‘1’; the bit position can be set arbitrarily (randomly or 

directed) 

Moreover, both MaFIN and GeFIN support fault 
injection experiments for multiple faults in many different 
combinations to match both the temporal and the spatial 
behavior of faults in hardware structures. Such combinations 
can include injection of (a) multiple faults of any type and 
any duration in a single structure, (b) multiple faults on 
different structures. 

Obviously, the type, the multiplicity and the locations of 
the faults used in a certain injection campaign depend on the 
study that a user of MaFIN and GeFIN wishes to perform. In 
this differential study we used only the single bit flip model, 
but the tools also support permanent, intermittent and 
multibit fault studies. 

 
Fault effect classification 
 

MaFIN and GeFIN injectors classify the outcomes of 
each fault injection simulation based on the impact of the 
fault on the simulated system. The fault classification is fully 
configurable and a user of the injector can modify the classes 
of the fault effects by changing the parser of the injection 
logging information (see the next subsection for the 
operation of the parser and examples of classification 
options). In this paper, we present the fault effects 
classification using the following six classes. These represent 

                                                           
3 We don’t consider transient faults in combinational logic in this work 
because microarchitecture simulators don’t model such logic accurately; 
however, their effects would propagate to storage elements and thus can be 
also implicitly studied with our tools. 

typical classes (and corresponding terminology) used in the 
reliability literature.  

Masked: fault injection runs in which the fault does not 
affect the execution of the application (which is executed to 
its end). The result of an injection with a masked fault is 
identical to that of a fault-free simulation (both the output of 
the application and any exceptions generated during 
execution). 

Silent Data Corruption (SDC): fault injection runs for 
which the final output of the program that is written to an 
output file is corrupted (differs from the output of the fault-
free execution) and no other indication of the fault has been 
recorded (an abnormal event such as an exception, etc.).  

Detected Unrecoverable Error (DUE): includes cases 
in which the simulated process completes successfully, but 
with indications of errors. The baseline microprocessor 
models do not include any error detection or protection 
mechanisms and therefore, the only indication of an error is 
the raising of ISA exceptions. Typically, reliability reports in 
the literature divide DUEs in two sub-categories: false DUE 
(the output is correct despite the error indication) and true 
DUE (output is corrupted). In our experimental results 
section we don’t show these two different DUE sub-classes 
but of course the parser of both fault injectors can be 
configured to calculate them separately. 

Timeout: includes all of the cases that lead to either a 
Deadlock or a Livelock. A Deadlock describes the condition 
in which the program flow has been trapped (due to the 
injected fault) and can’t commit any further instructions. A 
Livelock, on the other hand, describes a situation where the 
program flow has been redirected and continues the 
execution of instructions on random code areas (again due to 
the fault). In order to monitor these cases, a configurable 
execution timeout limit is used. In our experimental results, 
the limit is three times the fault-free execution time of each 
benchmark. 

Crash: includes any case that results in an unrecoverable 
situation and stops the simulated program. Crashes involve 
all three levels of the simulation, including a process crash, 
where the simulated program was abnormally terminated, a 
system crash, where the simulated full-system was unable to 
recover (typical cases of kernel panic) as well as a simulator 
crash, where the simulator process itself was abnormally 
terminated. 

Assert: includes all cases where the simulator reached, 
due to injected fault, a (high level) condition which was 
unable to handle and an assertion was raised stopping the 
simulation. 

In our experimental results (Section IV) we use the term 
vulnerability to refer any abnormal behavior due to a fault, 
i.e. the sum of the non-masked classes. 

B. Fault Injectors Implementation 
The major objectives of the two injectors were: 

1) Accuracy of delivered reliability reports. Towards this 
objective we run applications/benchmarks to completion 
unless a fault is guaranteed masked. This execution to 
the end ensures the final program effect of faults is 
captured. 
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2) Speed of the fault injections campaigns (applies to 
transient faults). Apart from the straightforward 
employment of several workstations to run experiments 
on, we optimize the injectors so that an injection run is 
stopped immediately in cases where: (i) a fault is 
injected in an invalid/unused entry of a structure, (ii) a 
faulty entry is over-written before ever read. For all 
benchmarks and all components these optimizations 
lead to 30%-70% speedup of each individual run and 
thus very large savings of the injection campaign time.  

3) High configurability of the injectors. See all details 
about the features of the injectors in the following 
paragraphs. 

Both the MaFIN and GeFIN injectors are built on three 
main modules which form the backbone of any fault 
injection campaign run on them. Fig. 1 visualizes the flow of 
operation of the two injectors.  

In the first step, the Fault Mask Generator module 
produces the fault masks that are used during the injection 
campaign. This is a one-step process for each combination of 
hardware structure and benchmark. The Fault Mask 
Generator can produce (by user defined parameters) a 
random set of fault masks for any type of fault (transient, 
intermittent, permanent) for the entire simulation time of the 
benchmark. 

A fault mask contains information about: (i) the 
processor core where the fault is going to be injected (can be 
used in a multicore architecture), (ii) the microarchitecture 
structure on which the fault will be injected, (iii) the exact bit 
position of the injection, (iv) the exact simulation cycle or 
exact instruction on which injection happens (for transient or 
intermittent), (v) the type of fault, and finally (vi) the 
population of faults (single or multiple). All the generated 
fault masks are stored in a “masks repository” from which 
the Injection Campaign Controller picks fault masks to 
apply. 

 
Figure 1.  MaFIN and GeFIN injection frameworks 

Provided the “mask repository”, the actual fault injection 
campaign can begin. The Injection Campaign Controller 
reads the masks from the repository and sends injection 
requests to the Injector Dispatcher which is the module that 
directly communicates with the MARSS or Gem5 simulator, 
respectively. The interface between the Injection Campaign 
Controller and the individual Injection Dispatcher contains 
the transfer of user defined parameters concerning the 
injection to the microarchitectural simulators and the transfer 
of the results of the fault injection experiments from the 
microarchitectural simulator back to the Injection Campaign 
Controller. The last task of the Injection Campaign 
Controller is to store the results of the injection in a “logs 
repository” which contains all log files for further processing 
by the Parser. 

The third and last step of the fault injection campaign is 
the processing of the injection results and the generation of 
the fault effects classification. The processing of the fault 
injection results is performed by the use of a Parser. The 
Parser is an easily reconfigurable script that classifies the 
faults into the six final categories described in previous sub-
section: Masked, SDC, DUE, Timeout, Crash, and Assert. 
The classification results can be easily modified through 
small changes of the Parser code according to the user’s 
needs as the input of Parser for an alternative classification is 
not changed and is already stored into the log files repository 
(no new fault injection campaign is required). For example, a 
more course-grain classification can be used just separating 
“Masked” from “Non-Masked” behavior. On the other hand, 
a more fine-grain classification may break down the DUE 
category in false-DUE and true-DUE (a usual separation in 
the reliability literature). Moreover, the user could move the 
results from the Simulator Crash subcategory to the Assert 
category to group together faulty behaviors attributed to 
simulator malfunctions due to the injected faults. 

C. Extensions to MARSS and Gem5 
�icroarchitectural simulators are developed for 

performance measurements of the simulated model and their 
main objective is to save simulation time without modeling 
details that are not necessary for performance assessments. 
As a result, performance simulators may lack certain 
functionality necessary to perform accurate fault injection 
experiments. For example, the functional and the control 
logic components are not implemented in a way that 
resembles actual hardware structures. Therefore, injectors 
like MaFIN and GeFIN focus on reliability studies in 
hardware structures which are modeled as arrays in a 
performance simulator and thus the effect of faults on them 
can be accurately measured. The injection of transient, 
intermittent or permanent fault on a modeled storage bit of a 
microarchitectural simulator is largely equivalent to injecting 
it on the actual hardware. 

Unfortunately, some simulators do not model data arrays 
of caches (and other structures such as queues, buffers); 
MARSS is such a simulator. It models the control 
information of cache memories (tags and control bits) but 
only keeps the actual data and instructions at the main 
memory model of the simulation. Without the 
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implementation of the actual arrays for the data and the 
instructions on caches, fault injection is not feasible. Our 
work addresses this issue by implementing the data array 
extension on MARSS to be able to compare the x86 
reliability studies on both injectors (Gem5 already includes 
the caches data arrays). This modification of MARSS 
introduced an approximate ~40% throughput degradation 
which depends on the memory intensiveness of a program. 

The development of MaFIN and GeFIN went through the 
following major tasks: 
� Identification of existing structures; integration of the 

fault injector on these structures. 
� Modification of structures that lack of accuracy to 

perform a fault injection study (missing bit arrays); 
integration of the fault injector on these structures. 

� Enhancement of the x86 model of MARSS with new 
components (performance related) to fully resemble a 
modern design; integration of the fault injector on these 
new structures. 

Table IV summarizes all enhancements made on MARSS 
and Gem5 for accurate measurements of the reliability of the 
hardware structures of x86 and ARM-based architectures. 

TABLE IV.  MAFIN AND GEFIN ENHANCEMENTS 

Components 
Simulator/ISA 

MaFIN-x86 GeFIN-x86 and GeFIN-ARM 

Existing  

Load/Store Queue 
Issue Queue 
Integer Register File 
FP Register File 
Caches – Tag 
Data TLB – Valid, Tag 
Instr. TLB – Valid, Tag 
Branch Target Buffer –  
Uncond. indirect branches 

Load/Store Queue 
Issue Queue 
Integer Register File 
FP Register File 
Caches – Tag 
Caches – Data 
Data TLB – Valid, Tag 
Instr. TLB – Valid, Tag 
Branch Target Buffer- 
Uncond./Cond. direct branches 

Modified  

L1D cache – Data arrays 
L1I cache – Instruction arrays 
L2 cache – Data arrays 
L1I cache – Valid bit 
L1D cache – Valid bit 
L2 cache – Valid bit 
Branch Target Buffer – 
Uncond./Cond. direct branches 

Accurate reliability modeling of 
associative caches structure 
(replacement algorithm) 

New Prefetcher in L1D cache 
Prefetcher in L1I cache 

 

 

The two fault injectors can perform injections on all the 
components of Table IV. Both MaFIN and GeFIN already 
cover very important hardware structures consisting of large 
arrays of storage bits, which are also the most vulnerable 
components of modern processors. All these array structures 
are customizable rendering MaFIN and GeFIN very useful 
for several different reliability estimation studies. 

 

IV. EXPERIMENTAL RESULTS 
Although the number of studies that can be performed on 

MaFIN and GeFIN is very large4 and can be the subject of 
future research, we present a comprehensive set of 
experimental results in this paper to identify and analyze 
consistent reliability trends between microarchitectures and 
workloads and also to explain reported divergences between 
the two tools.  

In this section we detail the context of the experimental 
analysis, present the results and analyze/explain them. We 
first discuss the fault sampling method we used and the 
benchmarks employed in the study. We then provide the 
faulty behavior characterization results (using the classes 
described in Section III) and analyze them in detail to 
highlight common trends as well as to explain and root cause 
significant differences. 

A. Fault Sampling 
Any fault sampling approach can be applied in the 

injectors. In our experimental results we used statistical fault 
sampling as described in [20]. Given: (a) the number of bits 
of an array-based hardware structure, (b) the number of 
execution cycles of a benchmark, and (c) the required 
confidence and error margin of the sampling the formula of 
[20] delivers the number of required fault injection runs. 

The major parameters in the fault sampling described in 
[20] are the confidence and the error margin. For a 99% 
confidence and a 3% error margin, for all the hardware 
structures and all benchmarks of our study the number of 
required fault injections is 1843. We round this number up 
by injecting 2000 faults in each structure/benchmark 
combination (this number of injections correspond to 2.88% 
error margin). The accuracy of any statistical fault injection 
campaign can be traded off with the time required to perform 
the campaign; this is the case also in our injectors. For 
example, if the error margin of the sampling is increased 
from 3% to 5% then the number of required injections per 
hardware structure is only 663 instead of 1843 which leads to 
significantly smaller (by approximately 3 times) campaign 
execution time.   

B. Benchmarks 
We utilize MaFIN and GeFIN frameworks to classify the 

behavior of 10 benchmarks in the presence of transient 
faults. All benchmarks are simulated to their completion 
(unless “safe” early-stop is decided at run time – see 
previous section) to guarantee full accuracy of the reported 
classification. 

The 10 benchmarks we use are from the MiBench suite 
[15] (djpeg, search, smooth, edge, corner, sha, fft, qsort, 
cjpeg, caes). MiBench benchmarks suite consists of 
programs from different application domains, and are very 
similar in their instruction mixes and instruction throughput 
with SPEC benchmarks [15]. Their shorter execution times 
compared to SPEC (standard benchmarks for performance 

                                                           
4  Studies per hardware structure; per benchmark; per simulator; for 
different sizes and organizations of the hardware structures; for different 
input data sets of the benchmarks, etc. 
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studies) make them very suitable for fault injection and 
reliability studies and for this reason they have been 
extensively used in such a context [14], [50], [52], [53]. 
Although we report results in this paper for the MiBench 
benchmarks, both MaFIN and GeFIN can be used in fault 
injection campaigns using SPEC2006 benchmarks (or any 
other benchmark). Both simulators support check-pointing 
and thus targeted runs on SimPoint samples [39] of the 
SPEC2006 benchmarks can be executed. 

C. Reliability Characterization Results Analysis  
In this subsection, we report the results of an extensive 

characterization study on hardware components on MaFIN 
and GeFIN. In particular, the results show reliability 
characterization of the following hardware structures (faults 
can be injected in all structures listed in Table IV; we 
selected to report on the following ones because of their 
importance in the CPU and their large sizes compared to 
other components): 
� Integer physical register file (Fig. 2) 
� L1D cache (Fig. 3) 
� L1I cache (Fig. 4)  
� L2 cache (Fig. 5) 
� Load/Store Queue (Fig. 6) 

For each component the sizes and configurations are the 
ones shown on Table II. As discussed previously, we inject 
2000 transient faults randomly in each structure and for each 
benchmark. In total 300,000 fault injections have been 
performed (5 components x 10 benchmarks x 3 tools x 2000 
injections = 300,000 injections).  

Roughly, the complete fault injection campaigns reported 
in the paper took approximately 1 month: 2000 injections 
performed in 5 different hardware structures, for 10 different 
benchmarks, in 3 different setups – MaFIN-x86, GeFIN-x86 
and GeFIN-ARM; we employed 10 different workstations 
providing about 100 threads that ran injections in parallel.  

Each graph shows for a particular component the faulty 
behavior classification (using the classes in Section III) for 
each of the 10 benchmarks and on the average. For each 
benchmark the graphs show three stacked bars (each bar 
corresponds to a fault injection campaign): one for the 
execution on the MaFIN-x86 injector (M-x86 bar), one on 
the GeFIN-x86 configuration (G-x86) and one on the 
GeFIN-ARM configuration (G-ARM). For the average case, 
the same three bars are shown at the rightmost end of each 
diagram.  

The average vulnerability5 reports at the rightmost bars 
of each diagram reveal the following: 
� The largest average case vulnerability differences are 

observed between the two x86-based configurations 
(MaFIN-x86 and GeFIN-x86): 7.20 percentile points in 
the L1D cache, 3.61 percentile points in the L1I cache, 
and 1.36 percentile points in the L2 cache. 

                                                           
5 As mentioned earlier we use the term vulnerability to refer to the sum of 
all non-masked behaviors. AVF can be also used in our context: the 
probability that a transient fault in a structure’s bit leads to any erroneous 
behavior (i.e. not masked). 

� On the contrary, the vulnerability differences between 
the two ISAs (x86 and ARM) on GeFIN are much 
smaller in all components. In the L1D and L2 cache the 
differences between GeFIN-x86 and GeFIN-ARM 
configurations are only 0.55 and 0.13 percentile points 
respectively, while in the L1I cache the average 
difference is 2.03 percentile points (x86 being more 
vulnerable than ARM). 
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Figure 2.  Faulty behavior classification for the integer physical register  
file. 
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Figure 3.  Faulty behavior classification for L1D cache (data arrays). 
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Figure 4.  Faulty behavior classification for L1I cache (instruction arrays). 
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Figure 5.  Faulty behavior classification for L2 cache (data arrays). 
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Figure 6.  Faulty behavior classification for Load/Store Queue (data field). 

We analyze in more detail the results of the classification 
shown in the diagrams both on a per-component basis to 
identify consistent trends and on a per-benchmark basis to 
interpret diverging behaviors. We discuss potential 
(microarchitecture or ISA related) reasons that explain the 
differences between the two tools providing execution 
statistics for the benchmarks of our study. 

Integer Register File and LSQ 

The Integer Register File (Fig. 2) and the LSQ (Fig. 6) 
are the least vulnerable components in all cases (benchmark, 
ISA and microarchitecture configuration). The vulnerability 
(sum of all non-masked classes) of the Register File and the 
LSQ for each individual benchmark and on the average 
across all benchmarks is almost always less than 3% for all 
three configurations. This is a consistent behavior that is also 
compatible to previous literature reports. The two 
components hold data of relatively short lifetime which 
explains the small vulnerability to transient faults. 
� Remark 1 – There is a consistent small difference of 

~1 percentile point between the MaFIN and GeFIN 
report for the LSQ vulnerability (LSQ in MaFIN is 
always slightly more vulnerable than the GeFIN’s 
LSQ). The reason for this slight difference is that 
MARSS implements a unified queue for loads and 

stores while Gem5 implements different queues and 
only the store queue holds data. Therefore, our 
injections on GeFIN’s LSQ affect only stores while in 
MaFIN both queues are affected by faults.  

� Remark 2 – Both the Integer Register File and the 
LSQ have mixed faulty behaviors in the non-masked 
classes. Faults in both components in most cases can 
lead to any of the five non-masked faulty behaviors 
(SDC, DUE, Timeout, Crash, and Assert). The exact 
numbers in each class of course depend on the 
benchmark. 

First-Level Caches (L1D, L1I) 

The first-level cache memories (L1D cache in Fig. 3 and 
L1I cache in Fig. 4) are the most vulnerable components in 
all cases (benchmark, ISA and microarchitecture 
configuration).  

The L1D cache vulnerability varies significantly among 
benchmarks and between ISAs and microarchitectures. Its 
vulnerability can be as low as 2.5% (search benchmark in 
the MaFIN-x86 setup) and as high 47.3% (cjpeg benchmark 
in the GeFIN-x86 setup). On average across benchmarks the 
L1D cache vulnerability is less than 15% in MaFIN-x86 
while in both ISAs of GeFIN (GeFIN-x86 and GeFIN-ARM) 
it is more than 22%. The general trend in most (but not all) 
individual benchmarks) is that MaFIN reports a less 
vulnerable L1D cache than GeFIN. 
� Remark 3 – The significant ~7 percentile point 

difference between MaFIN and GeFIN vulnerability 
reports on the L1D cache can be attributed to two main 
differences between the two microarchitectural 
simulators:  
The MARSS CPU model uses more aggressive 
approaches than Gem5 (and other simulators) for loads 
issue. Load instructions are issued as soon as possible 
and before aliasing with earlier stores is determined. 
For this reason, the number of executed loads in 
MaFIN is significantly larger than in GeFIN although 
(for each benchmark) the number of committed loads is 
very close to each other. This significant difference 
leads to extra masking of the faults in L1D on MaFIN 
and along with the previous point consistently explains 
the L1D cache vulnerability differences between the 
two tools. For example, in fft, cjpeg, caes (the 
benchmarks with largest difference in L1D between 
MaFIN-x86 and GeFIN-x86) MaFIN issues 2.6x, 4.7x, 
2.0x more loads than GeFIN; this confirms the general 
trend. 
MARSS employs the QEMU hypervisor for system 
functions as well as for unimplemented instructions. 
When QEMU is invoked, the cache of the 
microarchitecture is not accessed (memory accesses go 
to the main memory) – for this reason faults in the L1D 
cache are masked and do not affect the operation when 
QEMU runs (this is not the case in the L1I cache; see 
below). Gem5 on the other hand handles the complete 
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system operation internally and does not employ a 
hypervisor so this type of masking does not happen.  

 However, in qsort and smooth the expected higher 
masking in MaFIN is not observed. For qsort GeFIN-
x86 has smaller L1D read hit rate than in MaFIN-x86 
(by 0.64x), while GeFIN-x86 has higher L1D write hit 
rate than MaFIN-x86 (1.91x in qsort and 1.57x in 
smooth); this means that in MaFIN-x86 for these 
benchmarks faults in L1D are less likely to be over-
written and thus MaFIN-x86 is more vulnerable than 
GeFIN-x86.  

� Remark 4 – The prevailing faulty behavior in the L1D 
cache is the SDC class (intuitively expected) which 
leads to corrupted benchmark final output. In all 
benchmarks and the average case the SDC class is from 
3x to 5x larger than the sum of all four other non-
masked classes. 

� Remark 5 – The most remarkable differences between 
the different ISAs (GeFIN-x86 and GeFIN-ARM) for 
the L1D cache are observed in fft, qsort and cjpeg. The 
ARM model has 2x more store instructions than that of 
x86 in the fft benchmark, while in cjpeg the L1D write 
misses of the ARM model are 6x more than x86 model, 
which naturally leads to more vulnerability for the x86 
model for these two benchmarks. The GeFIN-x86 
model in qsort follows a completely different memory 
access pattern which reports significantly more L1D 
replacements (4x) than GeFIN-ARM. This indicates 
that the ARM model is more vulnerable for qsort than 
the x86 model. 

The L1I cache vulnerability, on the other hand, is less 
variable across benchmarks than the L1D cache but still it 
can be as low as 5.3% (smooth benchmark in the MaFIN-x86 
setup) and as high 34.5% (caes benchmark in the MaFIN-
x86 setup). On average across benchmarks, L1I cache 
vulnerability is around 19% in MaFIN-x86 while in both 
ISAs of GeFIN (GeFIN-x86 and GeFIN-ARM) it is more 
than 14%. Here, the general trend in most (but not all) 
individual benchmarks is that MaFIN reports a more 
vulnerable L1I cache than GeFIN (the opposite trend to L1D 
reports).  
� Remark 6 – Unlike L1D, the QEMU hypervisor does 

not affect the behavior of L1I cache. QEMU may be 
invoked during decode stage only, which is after 
fetching (and accessing of L1I). This means that any 
faults residing in the L1I cache can be propagated 
without disturbance by the hypervisor. 

On the other hand, MARSS and Gem5 have differences 
in the implementation of their front-end that can lead to 
different prediction accuracy. Both simulators 
implement a Tournament predictor, consisting of a 
local and a global predictor. A meta-predictor takes the 
final decision based on the accuracy of the local and 
global ones. The most noticeable difference between 
MARSS and Gem5 is that the final prediction is bound 
to the branch address in the case of MARSS and to the 
global branch history in the case of Gem5. Branch 

address is not taken into account at all on the decision 
of Gem5 global predictor as well. This prediction 
scheme difference leads to different memory access 
patterns and L1I cache state; this can explain the small 
differences in the masked category between MaFIN-
x86 and GeFIN-x86. Unfortunately, there is no 
consistent trend for all benchmarks. For instance, in the 
edge, corner and sha benchmarks MaFIN-x86 has by 
0.83x, 0.82x, 0.68x less mispredictions than GeFIN-
x86 which implies that GeFIN-x86 brings more L1I 
blocks from lower levels, increasing the probability to 
overwrite faults. 

� Remark 7 – The fft, qsort, caes are the benchmarks 
with difference more than 5 percentile points between 
GeFIN-x86 and GeFIN-ARM. For these benchmarks 
the replacements of L1I blocks in ARM model are 
4.2x, 2.0x, and 7.2x more than in the x86; this can 
explain a more vulnerable x86 behavior than the ARM 
model. 

� Remark 8 – Fig. 4 shows that SDCs in the L1I cache 
are much less likely to be observed than in the L1D 
cache. The prevailing non-masked behavior in L1I 
cache in the MaFIN injector is the Assert class, while in 
the GeFIN injector the Crash class prevails. This 
difference is because MARSS simulator includes a 
significantly larger number of assertion checking points 
in its code which are raised during faulty executions of 
the benchmarks and stop the simulation abnormally. On 
the other hand, assertion checking in Gem5 is compact 
and less frequent and for this reason injected faults 
eventually lead to crashes.6  

Second-Level Cache (L2) 

The L2 cache memory vulnerability (Fig. 5) is in all 
cases (benchmark, ISA and microarchitecture configuration) 
a few percentile points higher than the Register File and LSQ 
and significantly lower than both first-level caches. On 
average, it ranges between 6% and 7% for the three ISA and 
microarchitecture combinations.  

The difference in the L2 cache vulnerability between 
MaFIN and GeFIN is only about 1 percentile point which 
shows a consistent behavior between the two tools.  
� Remark 9 – Since L2 is unified the vulnerability 

reports show a balance between SDCs and other 
abnormal classes (Crashes etc.).  

� Remark 10 – Vulnerability differences larger than 5 
percentile points are observed in cjpeg and caes 
benchmarks between MaFIN-x86 and GeFIN-x86 for 
the L2 cache. In cjpeg GeFIN-x86 has 1.2x more L2 
write misses than MaFIN-x86, while in caes GeFIN-
x86 has 1.54x more write hits than MaFIN-x86 
increasing the probability that a fault is overwritten. 

                                                           
6 We discuss this point here for the L1I cache vulnerability but it is also 
observed for the L1D cache in the non-SDC classes which include 
significantly more Assertions in MaFIN than Crashes (the case in GeFIN). 

180



� Remark 11 – Concerning the ISA differences between 
GeFIN-x86 and GeFIN-ARM, djpeg is the only 
benchmark with difference larger than 5 percentile 
points. In this case, the x86 model has 0.5x less L2 read 
hits and 6.8x more L2 write misses than the ARM 
model, making this benchmark less vulnerable for the 
x86 architecture. 

V. RELATED WORK 
Previous work on microarchitecture-level fault injection 

includes papers that focus on the tools themselves as a stand-
alone method for reliability assessment. A microarchitecture-
level injection tool built on M5 simulator [4] for Alpha ISA 
only is briefly described in [48]. The injector was built on a 
simple in-order microarchitecture and reliability studies of 
complex out-of-order x86 or ARM microprocessors are not 
supported. An injection tool based on Gem5 and the Alpha 
ISA is described in [32]; the tool only injects transient faults 
in architectural registers. Very preliminary results of a 
MARSS-based (MaFIN-like) microarchitecture level 
injection are provided in [12]. Also, [11] [14] use PTLsim 
for fault injections on very few hardware structures. Unlike 
previous approaches our differential setup covers both state-
of-the-art simulators (MARSS and Gem5), both x86 and 
ARM architectures, and provides fault injections capabilities 
of any fault type in all actual hardware structures of complex 
out-of-order microarchitectures. 

Other approaches combine performance simulators with 
lower-level simulators to improve reliability assessments 
accuracy. The approach in [22] presents a combination of 
GEMS and Simics simulators with Cadence NC-Verilog 
gate-level simulator. For logic components it delivers a more 
accurate estimation at the expense of long simulation times. 
In [26] a fault injection method at the RTL and gate-level is 
described for the control blocks of an Alpha microprocessor. 

Microarchitectural simulators have been also used for 
injections only at architectural visible points (the 
architectural registers) to measure the effectiveness of error 
protection techniques. In [35] the ASIM functional simulator 
is used and faults are only injected at the registers.   

Other approaches are even lower level and work at the 
RTL, on FPGA realizations of a microarchitecture or on 
hardware emulators. The experimental study of [37] injects 
faults in a DLX processor FPGA realization and an ASIC 
realization of an Alpha processor. The framework described 
in [1] uses an FPGA-based system for the reliability 
characterization of a full system stack. In [34], an FPGA-
based reliability analysis framework is described. In [45] and 
[46] an RTL model of an Alpha processor is developed and 
used for fault injection experiments. In [19] faults are 
injected in an RTL model of picoJava-II processor. In [36] a 
hardware emulation platform is used for injections at the 
latches of a microarchitecture. An interesting recent study [8] 
quantitatively evaluates the impact of flip-flop soft errors 
using several injection approaches at different levels of 
abstraction and discussed the sources of inaccuracies when 
higher levels of abstraction are employed in fault injection 
setups. 

VI. CONCLUSIONS 
We have presented a detailed vulnerability analysis of the 

hardware structures of out-of-order x86 and ARM models 
using a differential microarchitecture-level framework which 
employs two microarchitecture-level fault injectors (MaFIN 
and GeFIN – built on MARSS and Gem5). The fully 
parameterized tools support high-throughput, comprehensive 
injection campaigns for single and multiple transient, 
intermittent and permanent faults on one or more of the 
major hardware structures of the microarchitecture. The 
injectors can be used for differential studies on the reliability 
of hardware components running any workload, and support 
early design decisions for fault protection mechanisms.  

We presented detailed characterization results for five 
important hardware structures employing ten benchmarks 
from the MiBench suite which is extensively used in 
reliability studies. We discussed the common trends in the 
reliability report and we explained diverging behaviors by 
provided insights about the internal implementations of the 
simulators.  

In the average case, the reported differences between the 
two x86 injectors (MaFIN-x86 and GeFIN-x86) are larger 
than between the two ISAs implemented in Gem5 (GeFIN-
x86 and GeFIN-ARM). The main sources of the differences 
are the different front-end structures of the simulators, the 
more aggressive memory requests approach that MARSS 
follows compared to Gem5 and also the use of the QEMU 
hypervisor in MARSS: the largest differences due to these 
reasons are observed in the cache memories. For particular 
benchmarks cases, significant differences are observed both 
between the two tools and also between the two ISAs and we 
have provided potential explanations for these differences 
based on the fundamental implementation differences of the 
simulators as well as runtime statistics of the benchmarks. 
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