

CLERECO INSTITUTIONAL REPOSITORY

[Article] Versatile architecture-level fault injection framework for
reliability evaluation: A first report

Original Citation:
Foutris, N.; Kaliorakis, M.; Tselonis, S.; Gizopoulos, D., "Versatile architecture-
level fault injection framework for reliability evaluation: A first report," On-Line
Testing Symposium (IOLTS), 2014 IEEE 20th International , vol., no., pp.140,145,
7-9 July 2014

This version is available at:
http://www.clereco.eu/images/publications/IOLTS.2014.6873686.pdf
Since: May 2014:

Publisher: IEEE

Published version: DOI: 10.1109/IOLTS.2014.6873686

Terms of use: This article is made available under terms and conditions
applicable to Open Access Policy Article ("Public - All rights reserved") , as
described at http://www.clereco.eu/publications/item/70

Publisher copyright claim:

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works

(Article begins on next page)

Versatile Architecture-Level Fault Injection
Framework for Reliability Evaluation: A First Report

Nikos Foutris Manolis Kaliorakis Sotiris Tselonis Dimitris Gizopoulos
Computer Architecture Laboratory, University of Athens, Greece

{nfoutris, manoliskal, tseloniss, dgizop}@di.uoa.gr

Abstract²Forthcoming technologies hold the promise of a
significant increase in integration density, performance and
functionality. However, a dramatic change LQ� PLFURSURFHVVRU¶V�
reliability is also expected. Developing mechanisms for early and
accurate reliability estimation will save significant design effort,
UHVRXUFHV�DQG�FRQVHTXHQWO\�ZLOO�SRVLWLYHO\�LPSDFW�SURGXFW¶V�WLPH-
to-market (TTM). In this paper, we propose a versatile
architecture-level fault injection framework, built on top of a
state-of-the-art x86 microprocessor simulator, for thorough and
fast characterization of a wide range of hardware components
with respect to various fault models.

Keywords—reliability evaluation, architectural fault injection

I. INTRODUCTION
Semiconductor technology evolution has continuously
provided more transistors for roughly constant power and cost
per chip. Computer architects have exploited this growing
transistor budget to develop sophisticated techniques that boost
performance. However, technology scaling trends lead to
increasingly unreliable microprocessor products [36]. Thus,
measuring microprocessor reliability and providing means to
guarantee correct operation is a critical challenge for the
forthcoming technologies.

Accurate identification of the vulnerabilities of a
microprocessor product, early in design time, assists designers
to carefully plan for reliability enhancements with low cost and
high power efficiency. On the contrary, inaccurate reliability
estimation often results on over-designed microprocessors and
negatively impacts time-to-market (TTM) and product costs.
To put this in perspective, Table 1 shows the additional amount
of logic required to protect SRAM arrays, such as cache
memories, from single and multi-bit hardware faults; different
protection techniques impose significantly different overheads.
Thus, computer architects require tools for fast and accurate
assessment of a coPSRQHQW¶V�reliability, so that they can make
high level architectural trade-offs early in the design process
without resorting to worst-case and guard-banding approaches.

Techniques Detect (Protect) Area Overhead
Parity 1/64 bits (none) 1.6%

SEC-DED 2/64 bits (1/64 bits) 12.5%
DEC-TED 3/64 bits (2/64 bits) 23.4%

Table 1: Area overhead of SRAM detection and correction
techniques (X/Y means that a technique can detect and

protect X bits for every Y bits) [21].

Modeling and estimating the reliability of microprocessor
components can be achieved either through analytical methods
or through fault injection experiments. Table 2 presents a
qualitative comparison between four wide-spread techniques
for early reliability estimation. The comparison is done, in
terms of simulation time (i.e. the time needed to characterize a

microprocessor component), fault model accuracy (i.e. how
representative is the fault model) and reliability estimation
accuracy (i.e. the error margin of the final estimation). Fault
injection experiments are either based on an RT-level or an
architecture-level simulator. While RTL fault injections more
accurately capture lower level fault model, the excessively long
simulation time of these schemes prevents detailed evaluation
of components with statistically safe numbers of injection runs.
On the contrary, architecture-level fault injections are very fast
and allow the execution of complex workloads for long
simulation intervals. Fault injection is an experimental
reliability evaluation approach that provides sufficient accuracy
and is applicable early in the design time where RTL netlist is
not available. A recent study [6] compares the results of fault
injection in the flip-flop level (on FPGAs) and the architecture-
level, showing significant difference between the two.

Analytical methods, such as ACE (Architectural Correct
Execution) analysis and probabilistic models, utilize a high-
level performance model, which is available early in the design
cycle, coupled with low level information about processor¶V
reliability to provide early reliability estimation. However,
analytical approaches provide a conservative lower bound
regarding the reliability of a microprocessor [19] [42].

 RTL
injection
[42] [23]

Arch.
injection

[9] [41] [30]

ACE
analysis
[26] [27]

Probabilistic
models

[20] [38] [39]
Simulation

Time High Medium Low None

Fault Model
Accuracy High Medium None None

Estimation
Accuracy High High Medium Medium

Table 2: Early reliability estimation methods: A qualitative
comparison.

In this paper, we propose a comprehensive architecture-
level fault injection framework for early reliability estimation
of x86 microprocessors. The proposed framework:
x Is built on top of an x86 microprocessor model, simulated

with MARSSx86 full-system simulator.
x Provides realistic reliability estimation for storage

elements, since the microprocessor model is enhanced
with the data arrays of cache hierarchy (not realized in the
original model).

x Models transient, intermittent, and permanent faults as
well as multi-bit faults of these models.

x Exploits the full system capabilities of a cycle-accurate
simulator (MARSSx86), in conjunction with a functional
machine emulator (QEMU environment), to completely
execute a workload and to model fault propagation till the

140978-1-4799-5324-0/14/$31.00 c⃝2014 IEEE

higher level of a system stack, such as the operating
system- and the application-level.

II. ARCHITECTURE-LEVEL FRAMEWORK
In this section, the proposed architecture-level fault injection
framework for early reliability estimation is presented.

A. Simulator
Our infrastructure runs on top of MARSSx86 architectural

simulator [31] which is probably the most comprehensive
publicly available x86 simulation framework today. The x86
functional model of MARSSx86 is more accurate than other
publicly available simulators and its memory system better
models real systems [37].

MARSSx86 is widely used for performance measurements
[4] [24] [37]. MARSSx86 utilizes PTLsim [44] to simulate the
internal details of an x86 microprocessor model. PTLsim has
been used for reliability measurements [8] [9] [11], as well as
silicon validation [10]. MARSSx86 is a full system, cycle-
accurate simulator capable of simulating a multicore processor
with a detailed implementation of the front-end and the back-
end pipeline stages of a modern x86-64 architecture. In
addition, MARSSx86 simulates the cache hierarchy, which we
extend with the data arrays (to allow realistic fault injections at
all different cache levels L1, L2, L3), and implements several
cache coherency protocols. To provide full system capabilities
MARSSx86 is coupled with QEMU emulator. We selected
MARSSx86 as the kernel of our framework due to the
following reasons: (a) it accurately simulates an x86-64
microprocessor model; and (b) its full system simulation
operation provides us with the capability to trace the
propagation of a low-level hardware fault, till its manifestation
on the operating system- or on application-level output.

B. Fault Models
Transient, intermittent and permanent faults are the main

fault types exploited for reliability evaluation.
Transient faults (or soft error) [2] [3] [6] [12] [18] [19]

[20] [26] [27] [30] [32] [33] [34] [35] [38]: Neutron radiation
from cosmic rays, alpha particles from packaging materials,
environmental and design variations can flip temporally the
contents of a storage element, such as memory cells and flip-
flops, causing an error. Moreover, while moving deeper into
nanometer scale integration levels and near threshold voltage
operation, the sensitivity of storage elements to such
phenomena will increase enormously.

In our fault injection framework, transient faults are
modeled by flipping the value of a randomly selected bit in a
randomly selected clock cycle during simulation.

Intermittent faults [7] [41]: Wear-out behavior, process
variation, voltage and temperature fluctuations can cause burst
of frequent faults, called intermittent faults. Intermittent faults
occur at irregular intervals, on the same location and last for a
short period of time.

In our fault injection framework, intermittent faults are
modeled by setting the state of storage elements to 1 or 0, in a
randomly selected cycle, for a random period.

Permanent faults [1] [9] [11] [15] [23]: Electro-migration,
gate oxides, time dependent dielectric breakdown, thermal
cycling and negative bias temperature instability are some
representative sources of permanent faults during system

operation. In general, permanent faults tend to occur early in
the processor¶V lifetime due to manufacturing defects that
escape manufacturing testing or late in its lifetime due to wear-
out effects.

In our fault injection framework, a storage element that
suffers from a permanent fault can be set persistently to one
(stuck-at-1) or to zero (stuck-at-0) for the entire simulation
time.

Multi-bit faults [17] [32] [35] [38] [39]: Multi-bit
transient, intermittent and permanent faults can occur in
storage cells.

Multi-bit transient faults are classified into the following
main categories: (a) Spatial: Occur when a single particle strike
flips the state of multiple bits. Recent studies [13] [16] [22]
show that spatial multi-bit faults are usually compact, i.e. faults
are confined to a contiguous rectangle; and (b) Temporal:
Result from multiple single-event upset (single, independent
particle strikes) distributed over time [39].

Multi-bit permanent and intermittent faults are expected to
increase in future microprocessors, due to the extreme scaling
and the operation in reduced voltage levels for power reduction
purposes [1] [5] [28] [44]. More specifically, the single bit
failure probability (pfail) of SRAM cells is expected to fall in
the range between 10-6 and 10-4 [5] [28] [44] which given a
binomial probability distribution results in very high
probabilities of multi-bit permanent faults in SRAM arrays.

In our fault injection framework, multi-bit transient,
intermittent and permanent faults are modeled based on the
single-bit fault model with the difference that more than one bit
is affected.

C. Fault-Injection Framework
Our versatile architecture-level fault injection framework

built on top of MARSSx86 architectural simulator is outlined
at a high-level in Figure 1.

Figure 1: High-level block diagram of the architecture-level

fault injection framework.

A guiding principle that we adopted throughout the
development of our tool was to minimize the overhead induced
by the simulator due to the fault injection infrastructure.
Therefore, the proposed framework is separated into two main
parts:
x Offline Part: The overall simulation time remains

unaffected, since the procedures comprising this part are
not in the critical path of the framework (i.e. do not affect
simulation throughput). In particular, the offline part
consists of the following processes: (a) population of the

Fault
database

Benchmark
database

Fault
Generator

Controller Marssx86

Fault Handler

Stats Handler

Offline Online

stats
database

2014 IEEE 20th International On-Line Testing Symposium (IOLTS) 141

fault mask database from the fault generation tool (based
on the fault models presented on section II-B); and (b) the
simulation controller, which controls the fault injection
experiments. The fault controller configures MARSSx86
simulator based on the user-defined parameters, launches
the fault injection run, and collects the experimental
results necessary to characterize the injected fault.

x Online Part: This part constitutes the kernel of the
infrastructure. MARSSx86 simulator is extended with
two new modules. The statistics handler and the fault
handler. The former measures a variety of statistics
relevant to the fault characterization process, while the
latter controls the actual injection of a fault into the
simulator based on the input parameter set defined by the
simulation controller.

Figure 2 shows details of two key elements of the
architecture-level fault injection infrastructure, the fault mask
database and the statistics database. The fault mask
generation tool produces fault masks with the following
attributes: (1) processor_id: the targeted processor, (2)
module_id: the targeted microarchitectural array in a
processor, (3) module_dimension: the internal structure of the
microarchitectural array (i.e., ModDIM = MROWS x NCOLUMNS x
LSIZE, where MROWS and NCOLUMNS are equal to the number of
rows and columns of an array and LSIZE is the size of an entry.
For example, ModDIM = 1024 x 4 x 32, means that the
structure has 1024 rows, 4 columns per row and 32 bits per
column), (4) fault_type: permanent, intermittent or transient
fault, (5) fault_dimension: the internal structure of the fault
(i.e., FDIM = MROWS x NCOLUMNS. For instance, FDIM = 2 x 2,
means that a 4-bit fault is injected into an array, and is
deployed as a rectangle), (6) frequency: how often a fault is
activated (in our simulation environment an intermittent or a
transient fault is activated only once during the simulation
interval); and (7) duration: how many clock cycles the fault is
active (refers to intermittent faults). Therefore, the fault
handler parses the attributes of the fault mask and accordingly
adjusts the simulated microprocessor model.

Figure 2: The properties of the key elements, fault mask
database and statistics database, of the fault injection

framework.
The statistics database is updated from the statistics

handler module and is comprised of the following fields: (1)
detection_latency: the time interval elapsed between the
activation of a fault (clock cycle that the fault is excited for the
first time) and its detection (clock cycle the fault is observed

at an architecturally visible output), (2) activations: the access
frequency of a faulty entry, (3) architecture_state: consists of
the values of the program counter, and the architectural
registers; and (4) application_state: the output of the
application either on the stdout or on a hard disk file.

D. Fault Effect Characterization
The fault classification categories are shown in Figure 3.

Depending on the system level that a fault is detected, we have
the following fault classes:
x Architecture-level: A fault is detected at the architecture-

level when a mismatch in the program counter, and/or the
architectural registers is detected. The architecture-level
classes are the following:

o SDC: a silent data corruption in the architecture
state of the microprocessor model (i.e. a
mismatch with the fault-free case).

o Benign: The architecture state of the fault-
injected run equals to the fault-free execution.

x Application-level: A corruption in the application-level state
reveals that the program output has been modified (either
the stdout or a hard disk file) due to the fault. A fault
detected at the application-level can be classified into the
following categories:

o SDC: a silent data corruption in the application
output1.

o DUE (detected unrecoverable error): An
unexpected exception, assertion, deadlock or
interrupt occurred. Simulator crashes, either
during simulation or emulation phase, are also
clustered into this category. Finally, it should be
noted that, false and true DUE are also included
into this category.

o Benign: The workload executed completely
without manifesting any mismatch at its output
compared with the fault-free execution.

o Hangs: The application does not terminate within
a reasonable time interval (in our framework the
limit is set to 3x the fault-free execution time).

Figure 3: Fault characterization classes.

E. Simulation Timeline
In this sub-section we present the timeline of a single fault

injection simulation run (Figure 4). We exploit the checkpoint
capabilities of MARSSx86 simulator to avoid the initialization
phase of a workload, bound the indeterminism induced due to
the interaction with the OS and reach to a ZRUNORDG¶V�SRLQW�RI�
interest. When the workload reaches this point, we switch to
simulation mode and warm-up the structures of the

1 Architecture-level SDCs may also result in application-level SDCs.

fault properties
processor_id
module_id

module_dimension
fault_type

fault_dimension
frequency
duration

statistics collected
detection latency

activations
architecture state
application state

fault
database

stats
database

Architecture

Application

SDC

SDC DUE

masked

Benign

Hang

142 2014 IEEE 20th International On-Line Testing Symposium (IOLTS)

microprocessor model for a user-defined amount of cycles
(warm-up period is configured during the initialization phase
from the simulation controller). After committing a user-
defined number of k x86 instructions (including user and kernel
instructions), the statistics collected so far are reset, the fault
handler is called and the fault injected simulation period is
launched (similarly to the warm-up period, the simulation
period is a user-defined parameter defining the n x86
instructions that will be simulated).

At the simulation end, the architecture states (of the golden
and the fault-injected runs) are compared. In case of a
mismatch an architecture-level SDC is detected, otherwise the
fault is benign (equal architecture states). For cases where the
architecture state is faulty, the thread context (i.e., program
counter, architectural registers, and virtual memory) is
transferred to the QEMU virtualization environment and

executed until completion (this is feasible due to the high
throughput of the QEMU emulator). At ZRUNORDG¶V�
completion, we compare the golden application state (which
was generated offline) with the fault-injected state to detect
whether the faulty propagates and corrupts a user-visible
output (i.e., operating system-, or application-level). If does so,
then is classified as an application-level SDC fault. If an
exception, a deadlock, an assertion, an interrupt, or a simulator
crash occur during the workload execution, then an
application-level DUE fault is detected. If, the execution
exceeds the maximum execution interval (3x the fault-free one)
then a hang, is detected. Finally, if the application finishes
normally and the output of the faulty execution is clear, the
fault is classified as masked. The aforementioned process is
iterated for every injected fault.

Figure 4: Fault injection simulation timeline.

III. EXPERIMENTAL RESULTS
We evaluate the time implications induced from the ³online
part´ (Section II-C) of our fault injection framework. The
³RIIOLQH� SDUW´� LV� D� RQH-time process and does not affect
simulation throughput.

Table 4 reports the very small overhead induced on the
unmodified model of MARSSx86 simulator (original model)
from our fault-injection framework (enhanced model),
measured in millions of x86 instructions committed per second
(MIPS). The contents of Table 4 are the average values of three
independent runs. The enhanced model has the following
functionalities enabled: (a) the cache memories are enhanced
with the data arrays, (b) the fault injection handler is integrated
(for demonstration purposes, single, quintuple and tenfold
transient and permanents faults are injected into L1 data cache
array. The permanent fault injection constitutes the worst-case
scenario in terms of simulation overhead, since it is active and
affecting functionality of the simulator throughout the entire
simulation interval); and (c) the statistics handler measures
statistics relevant to the detection latency and the fault
activations. The fault detection comparison happens at the end
of the simulation interval (to detect an architecture state
mismatch) and after the completion of the application run (to
detect application level errors).

Data presented on Table 4 are produced from the end-to-
end execution of a memory-intensive application, a bubblesort
algorithm (sorting 10,000 integer), when 0, 1, 5, and 10
transient faults are injected into the L1 data cache (Table 3
shows the configuration of the simulated x86 model). The host
machine of the experiments was an Intel i7-3970X CPU

clocked at 3.5 GHz using 32 GBytes of RAM and running
Ubuntu 12.04.04 LTS operating system.

Parameter Setting
Pipeline depth 24 (max branches in-flight)

Fetch/Issue/Commit 4/4/4 instructions per cycle
RAS 16 entries

BTB 4KB (4-way set associative, 1K
entries)

Combined Predictor 16KB (64K entries, 2 bits per entry,
16 bits BHR)

meta predictor table: 64K entries
Issue Queue 16 entries (one per cluster)

Reorder Buffer 128 entries
Functional Units 4 clusters (ALUs: 4 INT, 4 FPU)

L1 instruction cache 64KB (64B line, 512 sets, 2-ways, 2
cycles latency)

L1 data cache 64KB (64B line, 512 sets, 2-ways, 2
cycles latency)

L2 cache 2MB inclusive (64B line, 8-ways, 5
cycles latency)

Main memory Infinite size (50 nsec latency)
Table 3: Enhanced x86 microprocessor configuration.
The enhanced model of MARSSx86 simulator has a lower

simulation throughput than the original model but the
overhead on the simulation time from the integration of the
fault injection framework is up to 5.8% when tenfold
permanent faults are injected (3.3% when 10 transient faults
are injected). In particular, 1.5% (out of 5.8%) is due to

Emulator
(checkpoint)

Warm-up
(k x86 instr.) Faulty simulation interval (n x86 instr.)

switch-to-simulator inject-fault

reset-stats cmp-arch.-state Emulation
(until workload end)

cmp-app.-state

arch. SDC
benign

masked
app. DUE
app. SDC

Hangs

2014 IEEE 20th International On-Line Testing Symposium (IOLTS) 143

modeling the data array functionality on the simulator, while
the rest 4.3% is due to the fault injection-related source code.
Another key insight of these first results is that simulation
throughput does not increase significantly as the number of
injected faults is increased. On contrast, it remains almost
stable. In particular, on singe and tenfold permanent faults
injections the simulation throughput is 0.0467 and 0.0456,
respectively, while on the transient fault injections the
simulation throughput is equal to 0.0470 with single faults
injected and 0.0468 with then faults injected.

 Original Model
(MIPS)

Enhanced Model
(MIPS) Slowdown

Si
m

ul
at

ed
 x

86

In
st

ru
ct

io
ns

 p
er

 se
co

nd
 Transient Fault Injections

No fault 0.0484 0.0477 1.5%
1-fault - 0.0470 2.9%
5-faults - 0.0469 3.1%

10-faults - 0.0468 3.3%
Permanent Fault Injections

1-fault 0.0484 0.0467 3.5%
5-faults - 0.0461 4.7%

10-faults - 0.0456 5.8%
Table 4: Comparison of the original model of MARSSx86
simulator with the enhanced model (i.e. MARSSx86 with

the proposed fault injection framework integrated) in
terms of x86 simulated instructions per second on the

host machine (³No fault´ experiment measures the
overhead induced only from the integration of the data
arrays into the cache memory of MARSSx86 simulator).

Table 5 presents some first results for the reliability
evaluation of the L1 data cache memory. Single-bit transient
faults (randomly selected from the fault mask database) are
injected in a randomly selected entry at randomly selected
clock cycle (Section II-E). To evaluate cache memories, we
develop four memory-intensive applications: (a) vectorADD1:
adds two arrays consisting of 10,000 integer elements and
prints the sum in hard-disk file at the end of the calculations,
(b) vectorADD2: adds two arrays consisting of 10,000 integer
elements and prints the sum in hard-disk file after each
individual addition, (c) mMul: a matrix multiplication
algorithm (100x100 integer arrays) that stores the product of
operation in a hard-disk file at the end; and (d) bubblesort: a
sorting algorithm (for 1,000 integer numbers). Overall, 1,265
fault injection experiments were performed (125 running
vectorADD1, 664 with vectorADD2, 336 executing mMul, and
140 with the bubblesort algorithm). These numbers of
injection give only a first report on the reliability studies that
can be performed on our framework. Accurate reliability
estimates for the caches and other structures can be only
derived from significantly more extended campaigns with
larger numbers of injected faults.

The variation in the rates of fault categories across the
four applications is mainly related to their different data use
profiles. Similar behavior is also encountered in analytical
methods, such as [12], where L1 data cache AVF
approximately varies from 8% to 42% depending on the

benchmark. Compared to analytical methods our fault
injection experiments show lower cache SDC vulnerability in
three of the four applications. This is justified from the fact
that analytical methods to calculate the AVF provide an over-
estimation regarding component¶V�YXOQHUDELOLW\, which results
in over-designed microprocessors and negatively impacts
time-to-market (TTM) and product costs.

Fault
Category VectorADD1 VectorADD2 mMul BubbleSort

App. SDC 2.4% 0.6% 47.5% 7.8%
App. DUE 0.8% 0.2% 0.6% 0.0%

Hang 17.4% 0.3% 0.3% 0.7%
Masked 79.4% 98.9% 51.6% 91.5%
Table 5: First results for the reliability evaluation of a L1
data cache memory with single transient fault injection.

IV. RELATED WORK
Reliability evaluation has been carried out at various
abstraction levels. Mainly is classified into simulation-based
techniques and analytical methods.

Simulation-based methods: Many simulation based fault
injection schemes in various abstraction levels have been
proposed in the literature. Wang et al. [43] explored the effect
of transient faults on IVM microprocessor model though RT-
level fault injections, while on [42] examined the correlation
between ACE analysis and RT-level fault injection
experiments. Li et al. [18] proposed a hybrid simulation
infrastructure to reliability evaluate various microprocessor
components. Maniatakos et al. [23] developed a fault injection
infrastructure on IVM microprocessor model. In [17] proposed
a hardware-software framework to characterize a system under
the presence of permanent faults. The authors of [41] proposed
a fault injection framework on a microarchitectural simulator
to perform dependability analysis. In [30] a fault injection tool
based on the cycle accurate full system simulator Gem5 is
proposed. Authors of [14] propose a technique to reduce the
fault simulation time through grouping error simulations that
produce same intermediate execution state. In [25], a statistical
method to estimate the outcome of a system in presence of soft
errors is proposed. In this paper, we propose an architecture-
level fault injection framework for early reliability evaluation
on the storage structures of a modern x86-64 architecture
enhanced with data arrays in the cache hierarchy. Several
research approaches proposed a reliability prediction
framework build at the circuit- or gate-level [29] [40]. Even
though their high accuracy, the low simulation throughput
prevents the detailed evaluation of the propagation of faults
into the higher level of the system stack. Finally, FPGA-based
fault injection environments offer high throughput simulations,
though the limited observability and controllability gives less
flexibility [32] [33] .

Analytical Methods: Mukherjee et al. [26] introduced
ACE analysis. Biswas et al. [3] extended the original ACE
analysis framework to enable address-based processor
structures. Fu et al. [12] proposed a unified framework for
estimating microprocessor reliability in the presence of soft
errors at the architecture level. Sridharan et al. [35] introduced
hardware vulnerability factor for hardware vulnerability
estimation to bound the inaccuracy of AVF measurements.
Savino et al. [34] proposed an analytical way to estimate the

144 2014 IEEE 20th International On-Line Testing Symposium (IOLTS)

reliability of a microprocessor-based system. Finally, Suh et al.
[38] proposed a Markov model for reliability evaluation of
cache under the presence of single and multi-bit upsets.

V. CONCLUSIONS
Early estimation of microprocessor reliability, to support the
employment of efficient methods that guarantee correct
operation is critical for forthcoming technologies. We have
presented a first report on a flexible architecture-level fault
injection framework for early reliability evaluation. The
developed infrastructure was built on top of MARSSx86 full
system simulator and supports characterization in the presence
of any number of hardware faults of different types (transient,
intermittent, permanent) in microprocessor components.

ACKNOWLEGMENT
This work is supported by the 7th Framework Program of the European Union
through the CLERECO Project, under Grant Agreement 611404, and also by
(8¶V� (XURSHDQ� 6RFLDO�)XQG� �(6)�� DQG� *UHHN� QDWLRQDO� IXQGV� XQGHU� WKH�
³7KDOHV�+2/,67,&´�SURMHFW�DQG�WKH�³',D67(0$´�SURMHct.

REFERENCES
[1] J.$EHOOD�� -�&DUUHWHUR�� 3�&KDSDUUR�� ;�9HUD�� $�*RQ]DOH]�� ³/RZ� 9FFPLQ�

Fault-7ROHUDQW� &DFKH� ZLWK� +LJKO\� 3UHGLFWDEOH� 3HUIRUPDQFH´��0,&52��
2009.

[2] R.C.%DXPDQQ�� ³Soft Errors in Advanced Computer Systems´�� ,(((�
Design & Test of Computers, vol.22, no.3, pp. 258-266, May/June,
2005.

[3] A.Biswas, P.Racunas, R.Cheveresan, J.Emer, S.S.Mukherjee, R.Rangan,
³&RPSXWLQJ� DUFKLWHFWXUDO� YXOQXUDELOLW\� IDFWRUV� IRU� DGGUHVV-based
VWUXFWXUHV´��,6&$�������

[4] M-T.Chang, P.Rosenfeld, S-/�/X��%�-DFRE��³Technology comparison for
large last-level caches (L3Cs): Low-leakage SRAM, low write-energy
STT-RAM, and refresh-optimized eDRAM´��+3&$�������

[5] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-/�/X�� ³,PSURYLQJ�
Cache Lifetime Reliability at Ultra-ORZ�9ROWDJHV´��0,&52�������

[6] H.Cho, S.Mirkhani, C.-Y.Cher, J.A.Abraham, S.Mitra, ³Quantitative
evaluation of soft error injection techniques for robust system design´��
DAC, 2013.

[7] C.&RQVWDQWLQHVFX�� ³7UHQGV� DQG� FKDOOHQJHV� LQ� YOVL� FLUFXLW� UHOLDELOLW\´��
IEEE Micro, 23:14-19, July, 2003.

[8] S.Feng, 6�*XSWD�� $�$QVDUL�� DQG� 6�0DKONH�� ³6KRHVWULQJ�� 3UREDELOLVWLF�
6RIW�(UURU�5HOLDELOLW\�RQ�WKH�&KHDS�´�$63/26�������

[9] N.)RXWULV�� '�*L]RSRXORV�� -�.DODPDWLDQRV�� 9�6ULGKDUDQ�� ³$VVHVVLQJ� WKH�
impact of hard faults in performance componets of modern
PLFURSURFHVVRUV´��ICCD, 2013.

[10] N.)RXWULV�� '�*L]RSRXORV�� ;�9HUD�� $�*RQ]DOH]�� ³'HFRQILJXUDEOH�
PLFURSURFHVVRU� DUFKLWHFWXUHV� IRU� VLOLFRQ� GHEXJ� DFFHOHUDWLRQ´�� ,6&$��
2013.

[11] N.Foutris, D.Gizopoulos, A.Chatzidimitriou, J.Kalamatianos,
9�6ULGKDUDQ�� ³3HUIRUPDQFH� $VVHVVPHQW� RI� 'DWD� Prefetchers in High
(UURU�5DWH�7HFKQRORJLHV´��6(/6(�������

[12] X.)X�� 7�/L�� -�$�%�)RUWHV�� ³6LP-SODA: A unified framework for
DUFKLWHFWXUDO�OHYHO�VRIWZDUH�UHOLDELOW\�DQDO\VLV´��:RUNVKRS�RQ�0RGHOLQJ��
Benchmarking and Simulation, 2006.

[13] G.Georgakos, P.Huber, M.Ostermayr, E.Amirante, F.Ruckerbauer,
³,QYHVWLJDWLRQ�RI�LQFUHDVHG�PXOWL-bit failure rate due to neutron induced
6(8�LQ�DGFDQFHG�HPEHGGHG�65$0V´��9/6,&�������

[14] 6�+DUL�� 5�9HQNDWDJLUL�� 6�$GYH�� +�1DHLPL�� ³*DQJ(6�� *DQJ� (UURU�
Simulation for Hardware Resiliency EvaluaWLRQ´��,6&$�������

[15] L.+XDQJ��4�;X�� ³$JH6LP��$� VLPXODWLRQ� IUDPHZRUN� IRU� HYDOXDWLQJ� WKH�
lifetime reliability of processor-EDVHG�6R&V´��'$7(�������

[16] E.Ibe, S.S.Chung, S.Wen, H.Yamaguchi, Y.Yahagi, H.Kameyama,
6�<DPDPRWR�� 7�$NLRND�� ³6SUHDGLQJ� GLYHUVLW\� LQ� PXOWL-cell neutron-
LQGXFHG�XSVHWV�ZLWK�GHYLFH�VFDOLQJ´��&,&&�������

[17] M-L.Li, P.Ramachandran, S.K.Sahoo, S.V.Adve, V.S.Adve, Y.Zhou,
³8QGHUVWDQGLQJ� WKH� SURSDJDWLRQ� RI� KDUG� HUURUV� WR� VRIWZDUH� DQG�
LPSOLFDWLRQV�IRU�UHVLOLHQW�V\VWHP�GHVLJQ´��$6/326�������

[18] M-L.Li, P.Ramachandran, U.R.Karpuzcu, S.K.S.Hari, S.V.Adve,
³$FFXUDWH�PLFURDUFKLWHFWXUH-level fault modeling for studying hardware
IDXOWV´��+3&$�������

[19] M-L./L�� 6�9�$GYH�� 3�%RVH�� -�$�5LYHUV�� ³$UFKLWHFWXUH-level soft error
analysis: examining the limits of common assumpWLRQV´��'61�������

[20] M-L./L��6�9�$GYH��3�%RVH��-�$�5LYHUV��³6RIW$UFK��$Q�DUFKLWHFWXUH-level
WRRO�IRU�PRGHOLQJ�DQG�DQDO\VLQJ��VRIW�HUURUV´��'61�������

[21] Y.Luo, S.Govindan, B.Sharma, M.Santaniello, J.Meza, A.Kansal, J.Liu,
%�.KHVVLE��.�9DLG��2�0XWOX��³&KDUDFWHULzing Apllication Memory Error
Vulnerability to Optimize Datacenter Cost via Heterogeneous ±
5HOLDELOLW\�0HPRU\´��'61�������

[22] N.0DKDWPH�� %�%KXYD�� <�)DQJ�� $�2DWHV�� ³$QDO\VLV� RI� PXOWLSOH� FHOO�
upsets due to neutrons in SRAMs for deep-n-ZHOO�SURFHVV´��,536�������

[23] M.0DQLDWDNRV�� 1�.DULPL�� &�7LUXPXUWL�� $�-DV�� <�0DNULV�� ³,QVWUXFWLRQ-
level impact analysis of low-level faults in a modern microprocessor
FRQWUROOHU´��,(((�7R&�������

[24] A.0D\EHUU\�� 0�/DTXLGDUD�� &�:HHGV�� ³Characterizing the
microarchitectural side effects of operating system calls´�� ,63$66��
2013.

[25] S.Mirkhani, S.Mitra, C-<�&KHU�� -�$EUDKDP�� ³(IIHFWLYH� 6WDWLVWLFDO�
(VWLPDWLRQ�RI�6RIW�(UURU�9XOQXUDELOLW\� IRU�&RPSOH[�'HVLJQV´��6(/6(��
2014.

[26] S.S.0XNKHUMHH�� &�7�:HDYHU�� -�(PHU�� 6�.�5HLQKDUGW�� 7�$XVWLQ�� ³$�
systesmatic methodology to compute the architectural vulnerability
factors for a high-SHUIRUPDQFH�PLFURSURFHVVRUV´��0,&52�������

[27] A.1DLU�� 6�(\HUPDQ�� /�(HFNKRXW�� /�.�-RKQ�� ³$� ILUVW-order mechanistic
PRGHO�IRU�DUFKLWHFWXUDO�YXOQXUDELOLW\�IDFWRU´��,6&$�������

[28] S.R.Nassif, 1�0HKWD��<�&DR��³$�5HVLOLHQFH�5RDGPDS´��'$7(�������
[29] G.3DSDVVR�� '�5RVVL�� &�0HWUD��0�2PDQD�� ³$� PRGHO� IRU� WUDQVLHQW� IDXOW�

SURSDJDWLRQ�LQ�FRPELQDWLRQ�ORJLF´��,2/76�������
[30] .�3DUDV\ULV�� *�7]LDQW]RXOLV�� &�$QWRQRSRXORV�� 1�%HOODV�� ³*HP),�� $�

Fault Injection Tool for Studying the Behavior of Applications on
8QUHOLDEOH�6XEVWUDWHV´� DSN, 2014.

[31] A.3DWHO��)�$IUDP�� 6�&KHQ�� .�*KRVH�� ³0$566[���� D� IXOO� V\VWHP�
VLPXODWRU�IRU�PXOWLFRUH�[���&38V´��'$&�������

[32] A.Pellegrini, K.Constantinides, D.Zhang, S.Sudhakar, V.Bertacco,
T.Austin�� ³&UDVK7HVW�� $� IDVW� KLJK-fidelity FPGA-based resiliency
DQDO\VLV�IUDPHZRUN´��,&&'�������

[33] 0�5HEDXGHQJR��0�6RQ]D�5HRUGD��0�9LRODQWH��³$Q�DFFXUDWH�DQDO\VLV�RI�
the effects of soft errors in the instruction and data caches of a pipelined
PLFURSURFHVVRUV´��'$7(, 2003.

[34] A.Savino, S.Di Carlo, G.Politano, A.Benso, A.Bosio, G.Di Natale,
³6WDWLVWLFDO� UHOLDELOLW\� HVWLPDWLRQ� RI� PLFURSURFHVVRU-EDVHG� V\VWHPV´��
IEEE Transactions on Computers, 2012.

[35] V.6ULGKDUDQ�� '�5�.DHOL�� ³8VLQJ� KDUGZDUH� YXOQHUDELOLW\� IDFWRUV� WR�
enhance $9)�DQDO\VLV´��,6&$�������

[36] -�6ULQLYDVDQ�� 6�9�$GYH�� 3�%RVH�� 6�-�3DWHO�� ³7KH� LPSDFW� RI� WHFKQRORJ\�
VFDOLQJ�RQ�OLIHWLPH�UHOLDELOW\´��'61�������

[37] J.Stevens, P.Tschirhart, M-T.Chang, I.Bhati, P.Enns, J.Greensky,
Z.Cristi, S-/�/X��%�-DFRE�� ³$Q� LQWHJUDWHG� VLPXODWLRn inftrastructure for
the entire memory hierarchy: cache, dram, nonvolatile memory, and
GLVN´��,QWHO�7HFKQRORJ\�-RXUQDO��YRO�����QR���������

[38] J.6XK�� 0�$QQDYDUDP�� 0�'XERLV�� ³0$&$8�� $� PDUNRY� PRGHO� IRU�
reliablity evaluations of caches under single-bit and multi-ELW� XSVHWV´��
HPCA, 2012.

[39] J.6XK�� 0�0DQRRFKHKUL�� 0�$QQDYDUDP�� 0�'XERLV�� ³6RIW� HUURU�
EHQFKPDUNLQJ�RI�/��FDFKHV�ZLWK�3$50$´��6,*0(75,&6�������

[40] N.7RXED�� .�0RKDQUDP�� ³3DUWLDO� HUURU� PDVNLQJ� WR� UHGXFHH� VRIW� HUURU�
IDLOXUH�UDWH�LQ�ORJLF�FLUFXLWV´��')7�������

[41] G.Yalcin, O.S.8QVDO��$�&ULVWDO��0�9DOHUR�� ³),06,0��$� IDXOW� LQHMFWLRQ�
LQIUDVWUXFWXUH�IRU�PLFURDUFKLWHFWXUDO�VLPXODWRUV´��,&&'�������

[42] N.:DQJ�� $�0DKHUVL�� 6�-�3DWHO�� ³([DPLQLQJ� $&(� DQDO\VLV� UHOLDELOLW\�
estimates using fault-LQMHFWLRQ´��,6&$�������

[43] N.J.Wang, J.4XHN��7�0�5DIDF]��6�-�3DWHO��³&KDUDFWHUL]LQJ�WJH�HIIHFWV�RI�
transient faults on a high-SHUIRUPDQFH�SURFHVVRU�SLSHOLQH´��'61�������

[44] C.Wilkerson, H.Gao, A.R.Alameldeen, Z.Chishti, M.Khellah, S.-L.Lu,
³7UDGLQJ� RII� &DFKH� &DSDFLW\� IRU� 5HOLDELOLW\� WR� (QDEOH� /RZ Voltage
2SHUDWLRQ´��,6&$�������

[45] 0�7�<RXUVW�� ³37/VLP�� $� F\FOH� $FFXUDWH�)XOO� 6\VWHP� [��-64
0LFURDUFKLWHFWXUDO�6LPXODWRU´���,63$66�������

2014 IEEE 20th International On-Line Testing Symposium (IOLTS) 145

