
GUFI: a Framework for GPUs Reliability Assessment

Sotiris Tselonis Dimitris Gizopoulos

University of Athens
Department of Informatics & Telecommunications

{tseloniss, dgizop}@di.uoa.gr

Abstract—Modern many-core Graphics Processing Units

(GPUs) are extensively employed in general purpose computing
(GPGPU), offering a remarkable execution speedup to inherently
data parallel workloads. Unlike graphics computing, GPGPU
computing has more stringent reliability requirements. Thus,
accurate reliability assessment of GPU hardware structures is
important for making informed decisions for error protection.

In this paper we focus on microarchitecture-level reliability
assessment for GPU architectures. The paper makes the
following contributions. First, it presents a comprehensive fault
injection framework that targets key hardware structures of
GPU architectures such as the register file, the shared memory,
the SIMT stack and the instruction buffer, which altogether
occupy large part of a modern GPU silicon area. Second, it
reports our reliability assessment findings for the target
structures, when the GPU executes a diverse set of twelve
GPGPU applications. Third, it discusses remarkable differences
in the results of fault injection when the applications are
simulated in the virtual NVIDIA GPUs instruction set (ptx) vs.
the actual instruction set (sass). Finally, it discusses how the
framework can be employed either by architects in the early
stages of design phase or by programmers for a GPU
application’s error resilience enhancement.

Keywords—reliability assessment, fault injection, GPGPU,
microarchitecture simulators

I. INTRODUCTION

An impressive set of performance-demanding applications
from different research fields – biology, chemistry, finance,
numerical analytics, physics, defense and intelligence, etc. –
can be accelerated, harnessing the abundant computational
power of modern Graphics Processing Units (GPUs).
However, the ever increasing rate of hardware faults that
follow silicon manufacturing advances jeopardizes the
evolution of both CPU and GPU architectures. Transient,
intermittent and permanent hardware faults affect the
functionality and performance of modern computing systems.
Even though the sources of potential failure are well
understood (radiation, latent manufacturing defects, operation
mode, aging etc. [1]) it is important to accurately quantify
their impact on the new GPU architectures. Existing
knowledge for CPUs vulnerability to hardware faults can’t
infer the corresponding vulnerability of GPUs because of the
major differences in the design philosophy of the two
architectures [2][3].

Metrics for the reliability assessment of classic computer
architectures have been defined [4][5] and have already been

adapted for GPUs [3][6][7]; for example the Architectural
Vulnerability Factor (AVF) quantifies the probability that a
transient fault in a hardware component produces a program-
visible error taking into account both the hardware and the
software masking.

Early and accurate reliability evaluation of GPU hardware
components is critical to guide design decisions for error
protection, i.e. it indicates the order of importance of
structures for protection against hardware faults. The earlier
the reliability evaluation is performed the better for the
reduction of design time. Several hardware-based methods
have been proposed for the protection of GPU hardware
components against faults [8]-[14]. Selection of the most
suitable protection method significantly relies on early and
accurate reliability assessment.

When major design parameters (i.e. size of hardware
components, workload etc.) are unknown early in the design,
decision-making for protection mechanisms is a difficult task.
To reduce the unknowns of this decision-making, CPU and
GPU microarchitectural simulators are valuable tools
employed for various early assessments of the simulated
architectures. Microarchitectural simulators are commonly
used for performance, power and reliability studies that can
guide important design decisions. Analysis of hardware
structures and software workloads employing
microarchitectural simulators is an excellent choice for several
reasons:

• availability in early stages of design phase,
• configurability of many hardware components,
• very high execution throughput compared to RTL

simulators.
Our approach for building the proposed fault injection

infrastructure on top of a microarchitectural GPU simulator
allows its employment by architects and programmers early in
the development stages of a new system. Architects can
exploit the framework’s easily reconfigurable capabilities to
evaluate different GPU hardware design options in terms of
both performance and reliability. On the other hand,
programmers can also use the proposed framework to
characterize accurately the error resilience of the applications.
Overall, extending a microarchitectural simulator with
detailed fault injection features renders it an appropriate
framework for comprehensive reliability assessments and
tangible evaluation of several GPUs error detection and
correction mechanisms which can be either software or
hardware based.

90978-1-5090-1953-3/16/$31.00 ©2016 IEEE

II. RELATED WORK

Different aspects of the reliability of GPU architectures
have been studied recently: reliability evaluation methods, soft
and hard error detection and tolerance solutions that are based
either on hardware or software [3][6]-[16].

GPUs reliability evaluation includes approaches that
employ microarchitectural simulators to determine the
Architectural Vulnerable Factor (AVF) of hardware structures
using Architectural Correct Execution (ACE) analysis [3][7]
[13]. ACE-based analysis has already been made on top of the
publicly available GPU simulators for NVIDIA and AMD
architectures, GPGPU-sim [17] and Multi2sim [18],
respectively. Similarly to CPUs, ACE-based estimation of
GPUs AVF is very fast as it usually requires a single run of an
application for the reliability characterization of a hardware
component. However, ACE analysis is based on tracking of
data through the entire architecture and requires substantial
extensions of the simulator. Moreover, ACE analysis for
CPUs is known to overestimate the vulnerability of the
hardware structures [19][20].

Other reliability evaluation approaches are based on fault
injection. GPUs have been evaluated in terms of the
application level error resilience using fault injection
methodology in real NVIDIA GPUs [15][16] but not on a
microarchitecture simulator as in our case. While in this paper
we characterize the vulnerability of major GPU hardware
components both the works of [15] and [16] focus on the
error resilience of GPGPU applications (injecting at the
source/assembly code level). Both works perform injection of
faults only on architectural registers that are accessed during
the execution of randomly selected instructions. The
framework we describe in this paper allows injection of faults
in the target hardware structures at a randomly selected
execution cycle. In addition to single transient faults, it
supports multiple faults (both in time and space). While
source-level approaches deliver useful hints for the Program
Vulnerable Factor (PVF) [26], our injection infrastructure
provides a complete AVF measurement.

In [6] and [14] faults are also injected in a
microarchitectural simulator (Multi2Sim) which models AMD
Evergreen GPU architectures running OpenCL workloads.
Our framework focuses on the NVIDIA GPU architectures
modeled in the GPGPU-sim simulator. To the best of our
knowledge this is the first framework that provides reliability
evaluation of the hardware components of CUDA enabled
GPU devices, through fault injection in a microarchitectural
simulator. It can support both reliability and performance
measurements of GPU architectures early in the design stages
and it can focus on the error resilience of the hardware
components and applications.

III. BACKGROUND

A. GPU Architecture

The architecture of modern GPUs offer acceleration to general
purpose applications with inherent data-level parallelism. In
this paper, we focus on CUDA enabled GPUs that are based

on NVIDIA’s Fermi architecture [25]. NVIDIA GPU
architectures consist of an array of Streaming Multiprocessors
(SMs). Fig. 1 shows an overview of the GPGPU architecture
and also illustrates the microarchitectural information of the
SM. An SM consists of Streaming Processors (SP) for
arithmetic operations, Special Function Units (SFU) for
transcendental instructions and Load/Store Units (LD/ST) for
memory operations. An SM contains its own Register File,
Shared Memory and set of L1 Caches (Constant, Data,
Instruction and Texture). The SMs work separately from each
other based on their own pipeline that is managed by the
Single Instruction Multiple Threads Stack (SIMT-Stack) and
the Instruction Buffer that are control logic structures.

The CUDA kernels that are executed in a GPGPU
Architecture consist of threads that are organized in blocks of
threads or Common Thread Arrays (CTAs). CTAs are assigned
to SMs during the execution of a kernel. SMs carry out the
execution of a large number of threads employing the Single
Instruction Multiple Threads (SIMT) Architecture which
leverages instruction level parallelism for a single thread with
thread level parallelism. In particular, the SMs process groups
of 32 parallel threads known as warps. The threads of a warp
execute the same instruction using the SPs, or the SFUs or the
LD/ST units but with different data values per thread. In case
of a branch instruction the threads of a warp may follow
different paths. In such cases a branch divergence occurs, and
threads execution is serialized with a corresponding
performance impact. The SMs handle branch divergence by
employing SIMT stacks dedicated to each warp. The
architecture state of the threads assigned to an SM is kept on-
chip during the entire lifetime of the warp. The data cache and
the shared memory are partitioned among CTAs. Threads
belonging to the same CTA can exchange data through the
shared memory while threads of different CTAs can exchange
data through the global memory. The number of CTAs and
warps that run concurrently on an SM depend on: the
requirements of a kernel and the compute capability of the
architecture [21].

SM

SM SM SM

Interconnection

Memory

L2 Cache

Instruction
Cache

Fetch

Decode

Instruction
Buffer

Register File

Issue Logic

L1 Texture Cache

L1 Constant Cache

Shared Memory

L1 Data Cache

Write Back

SIMT Stack

SFU

SPSPSPSPSPSPSPSP LD/STLD/ST

Instruction Buffer
R Warp 0 Inst. V

R Warp 1 Inst. V

… … …

R Warp n Inst. V

SIMT Stack
PC RPC Active Mask

PC RPC Active Mask

PC RPC Active Mask

PC RPC Active Mask

PC RPC Active Mask

PC RPC Active Mask

PC RPC Active Mask

PC RPC Active Mask

PC RPC Active MaskSt
ac

k
pe

r
W

ar
p

Fig. 1. NVIDIA GPGPU Architecture and a Streaming
Multiprocessor

91

IV. METHODOLOGY

We measure the Architectural Vulnerable Factor (AVF) of
the hardware structures of a NVIDIA GPU architecture,
exploiting the features of the developed framework which
supports fault injection in the GPU register file, the shared
memory, the instruction buffer (Valid Bit) and the SIMT stack
(PC field, RPC field, Active Mask). Of course, the framework
can be extended to support injections in other hardware
components as well.

The AVF measurements reported by fault injection
framework are calculated by dividing the number of fault
injection experiments on a hardware component that result in
application failure (the types of failing behavior are explained
later) by the total number of injected faults.

#Fault Injections leading to Failure

#Total Fault Injections
AVF =

A slightly modified form of the measurement applies to

our framework for the register file and the shared memory
considering the particular modeling of these components in
the simulator. In the GPGPU-sim model each thread of a
kernel constructs and accesses its own register file and doesn’t
reserve a set of registers from a physical register file that
would be constructed once for each SM (this would have been
a more convenient model for reliability assessment).
Moreover, in GPGPU-sim each CTA that is assigned to an SM
uses its own instance of shared memory and doesn’t occupy a
subset of a unified shared memory within an SM (this would
have been also a better model for injections). To overcome
these two modeling issues of GPGPU-sim, in our analysis for
the register file and the shared memory, we define a derating
factor for each structure df_reg and df_smem. In order to
estimate the final AVF of the register file and the shared
memory, we have to multiply each factor with the relative
percentage of failures as explained below. (Alternatively, we
could have re-implemented register file and shared memory
for the needs of our evaluation; but we wanted to minimally
intrude in the simulator and reduce development time. The
AVF estimation result would have been the same.)

The df_reg is an intuitive quantification of the fraction of
a GPU physical register file that we can target in a given cycle
during the execution of a given kernel. It depends on:

• #REGS_PER_THREAD that is the number of
registers that a thread uses during the execution of a
kernel,

• #THREADS that is the number of running threads in
an SM during the execution of a given kernel,

• #REGFILE_SIZE_SM that is the number of registers
in the register file of an SM.

#REGS_PER_THREAD x #THREADS

#REGFILE_SIZE_SM
df_reg =

The df_smem is an intuitive quantification of fraction of

shared memory that we can target in a given cycle during the
execution of a given kernel. It depends on:

• #CTA_SMEM_SIZE that is the size of shared
memory that is used by a CTA of a kernel,

• #CTAS that is the number of running CTAs in an SM
during the execution of a given kernel,

• #SMEM_SIZE that is the size of shared memory in
an SM.

#CTA_SMEM_SIZE x #CTAS

#SMEM_SIZE
df_smem =

We note that the derating-factor for the register file is

applied only to the failure rate of register file that comes from
fault injection when the simulator runs actual GPU assembly
language programs (the SASS ISA of NVIDIA GPUs). If it
runs PTX code that is an intermediate virtual ISA then the
number of virtual registers that a thread uses are more than the
architectural registers that would be assigned to the given
thread.

In addition to the AVF of the target hardware components,
we compute the Failures In Time (FIT) for a given structure
based on its size in bits, the AVF and a fixed intrinsic FIT rate
(which we assume to be 0.001 FIT/bit; any arbitrary rate can
be used).

FITSTRUCTURE = AVF x INTRINSIC FIT x SIZE

Thus, we can quantify the FIT rate of a GPU architecture
based on the FIT rates for all structures in it.

FITGPU = Σi FITi

Working at the microarchitecture level, our framework can

be employed to characterize any given GPGPU architecture
both in terms of reliability and performance. An application’s
Instructions Per Cycle (IPC – the usual performance metric)
that GPGPU-sim reports can be divided with our FIT
measurements (reliability metric); together IPC and FIT can
provide a two-in-one metric for performance and reliability
the Mean Instructions To Failure (MITF). A similar combined
metric is used in [7] but instead of FIT they use AVF which
doesn’t consider the size of a structure which our approach
does.

IPC
FIT

MITF ~

We believe that this combined information is very useful
for architects in early stages of design phase because they can
compare different GPGPU architectures both in terms of
performance and reliability, and singling out the one with the
higher IPC to FIT ratio. Programmers can also use the
proposed framework to identify the error resilience of CUDA
kernels that are executed in the context of an application.
Afterwards, they can apply software based techniques in order
of priority to enhance the error resilience of more vulnerable
kernels while maintaining the required performance levels.

V. EXPERIMENTAL FRAMEWORK

We present GUFI (GPGPU-sim Fault Injector) a
framework for reliability studies of GPU architectures
hardware and workloads.

92

A. Fault Injection Infrastructure

GUFI is a complete framework for reliability evaluation
of GPU architectures that runs over a well-known simulator
of GPUs architectures: GPGPU-sim [17]. The simulator
provides detailed microarchitectural models of NVIDIA
GPUs architectures and runs CUDA as well as OpenCL
workloads. We focused our study on CUDA applications.
Moreover, we exploit the capability of the simulator to run
either Parallel Thread Execution assembly (PTX) or SASS
assembly [21] and we can inject faults in the hardware
components of any simulated architecture for both
instruction sets.

In order to carry out fault injection campaign in a
hardware structure we have to go through the following
steps. Initially, we run the application once in order to
profile it; after completion a set of files are produced. These
files contain useful information about kernels that run in the
context of an application like:

• the time interval of a kernel’s execution during the
entire application,

• information about the registers (name, size) that a
thread requires,

• the number of threads that may run concurrently for a
given kernel’s execution on an SM,

• the number of CTAs that may be assigned concurrently
for a given kernel’s execution on an SM,

• the size of shared memory that each CTA may occupy
in the context of its execution.

The outcome of an application’s profiling step is organized
on the basis of invocations of each kernel and is the input of
the second step that is the creation of masks for all target
structures from a mask-generator. At this point, fault masks
are generated for all targeted structures and for all invocations
of all kernels in the context of the execution of an application.
The number of masks is defined by the user of GUFI and is
the same across all invocations of any kernel.

The fault injection campaign in a hardware component can
be set either for a user defined kernel invocation (mode 1) or
for the whole application (mode 2). Mode 1 focuses on the
reliability evaluation of a specific invocation of a kernel that is
launched in the context of an application while mode 2
enables users to make a comprehensive reliability evaluation
of the full application in any structure and architecture. The
user needs to follow the above steps once for any architecture.
Overall, the generation of masks for all target hardware
components is scalable to all architectures that the simulator
supports, either on PTX or SASS mode.

A GUFI user can do massive fault injection experiments
working either on mode 1 or mode 2 as soon as fault masks
have been created and kept on mask_dir as illustrated in Fig.
2. Both modes employ a bash script – Campaigner – that is
responsible for the golden run of the application and all fault
injection experiments. The Campaigner and all the required
files for the simulation (i.e. configuration files of the
simulator, executable of application etc.) reside in the
campaign’s root directory – app_dir.

Initially, the campaigner launches a golden run and moves
all output files to a dedicated directory – golden_run.
Subsequently, it runs a (user defined) number of fault injection
experiments that cannot exceed the number of available fault
masks. In the context of each fault injection experiment, the
Campaigner copies a fault file from the proper directory
within mask_dir to app_dir. Subsequently, the campaigner
activates the fault injection experiment. The simulator reads
the fault file at the beginning of simulation and injects the
fault in the target hardware component at the activation cycle.
The fault can be either in a single bit or in multiple bits. The
fault mask and activation cycle are defined in the fault file. All
files that are produced in each fault injection experiment are
moved to a dedicated directory for the given fault injection
experiment – experiment_1 to experiment_L.

The files produced in the context of an application are the
following:

• result file: Output that an application produces and
writes in a file.

• application stdout file: Messages that an application
writes in stdout.

• application stderr file: Messages that an application
writes in stderr.

• simulation stdout file: Messages that an application
and simulator write in stdout.

• simulation stderr file: Messages that an application
and simulator write in stderr.

After completion of a fault injection campaign, a parser
processes the output of all experiments one by one. The parser
classifies each experiment as Masked, Silent Data Corruption
(SDC), or Detectable Unrecoverable Error (DUE), comparing
the files of an experiment with the ones of golden run. The
classes of fault effects are:

• SDC: The application is completed but the result file
(if any) or the application stdout file differ from the
golden ones and there’s no indication that an error
occurred in application stderr and simulation stderr
files.

app_dir

Campaigner
Configuration Files of Simulator
Executable
Input Files
Fault Mask Generator
Fault Mask File mask_dir

result_dir

result_file
application_stdout_file
application_stderr_file
simulation_stdout_file
simulation_stderr_file

golden_run

experiment_1

experiment_L

Register File

Shared Memory

SIMT-Stack

Instruction Buffer

mixed_dir

kernel_1

kernel_N

invocation_1

invocation_N

Fig. 2. The directory of fault injection campaign

93

• DUE: Simulator or application reaches an abnormal
state and experiment’s execution is forced to
completion, printing a warning in application stderr or
simulation stderr files.

• Masked: The application is completed, there’s no
indication that an error occurred and the result file (if
any) or the application stdout file are identical with the
golden ones. Moreover, if a fault strikes an unused
resource then the fault injection experiment is
characterized as Masked i.e. the registers of an idle SM
at the time of fault injection. Simulator has been
extended to detect such cases and a related message is
printed on the simulation stderr file. Thus parser can
distinguish such cases from DUE.

In mode 1, all experiments are done in a specific kernel
invocation that is defined by the user. Thus, an experiment
results in a set of effects for the injected faults: the Masked,
SDC and DUE measurements. In mode 2, each kernel
execution has its set of Masked, SDC and DUE counters.
Thus, an experiment delivers the appropriate set of
measurements, based on the invocation of the kernel that it
belongs to. In this paper, we report the results for mode 2
because it provides a broader view: it enables us to evaluate
the reliability of the targeted hardware component for an
entire application but it also delivers interesting findings
across all its kernels and their invocations.

B. Applications

In the context of our reliability evaluation, we use 12
different applications from ispass2009-benchmarks [17],
NVIDIA CUDA SDK package [21] and Rodinia benchmark
suite [22]. In TABLE I we report the simulation time of the
applications, the breakdown of applications into kernels, the
number of invocations of each kernel, the number of CTAs
(gridDim) and the number of threads per CTA (blockDim) in
each kernel. We shortly describe each application and we also
report the input data set below.

Breadth-First Search (BFS): BFS is a breadth-first search
algorithm which traverses all the connected components in a
graph. We use BFS with the default input of 4096 nodes.
Compute Coulombic Potential (CCP): CCP computes the
coulombic potential at each grid point over one plane in a 3D
grid in which point charges have been distributed. CCP
processes the default data that are produced at the beginning of
its execution.
Gaussian Elimination (GE): GE is an algorithm for solving
systems of linear equations. We employ GE to solve a system
of 30 linear equations.
Hot Spot (HS): HS estimates processor temperature based on
an architectural floor plan and simulated power measurements.
We try HS with the default input for temperature and power
values that are organized on two individual 512x512 matrices.
K-Means (KM): KM is a data-mining algorithm that features
high degree of data parallelism. We run KM with 1000 objects
and each object consists of 34 features.
Laplace (LPS): LPS implements a Laplace discretization on a
3D structured grid. We run LPS with the default input data that
are produced at the beginning of its execution.
Lower Upper Decomposition (LUD): LUD is an algorithm
that calculates the solutions of a set of linear equations. We run
LUD with the default input data that are produced at the
beginning of its execution.
Merge Sort (MS): MS implements a merge-sort for sorting
batches of short- to mid-sized (key, value) array pairs. We run
MS with for an array of 16384 pairs.
Needleman-Wunsch (NW): NW is a nonlinear global
optimization method for DNA sequence alignments. We run
NW with the default input dataset that is produced at the
beginning of its execution.
Pathfinder (PATHF): PATHF finds a path on a grid from the
bottom to the top with the smallest accumulated weights and
each step of the path moves straight ahead or diagonally ahead.
We run PATHF with 10000 rows, 100 columns and 20 height.
Scalar Product (SP): SP computes the scalar product of
vectors. We run SP with the default input dataset produced at

TABLE I. Applications

Application Suite Simulation
time (s) Invocations gridDim blockDim

BFS [22] 7
_Z6KernelP4NodePiPbS2_S2_S1_i 8 8 512
_Z7Kernel2PbS_S_S_i 8 8 512

CCP [17] 87 _Z7cenergyifPf 1 8x32 16x8

GE [22] 5
_Z4Fan1PfS_ii 29 1 512
_Z4Fan2PfS_S_iii 29 8x8 4x4

HS [22] 112 _Z14calculate_tempiPfS_S_iiiiffffff 1 43x43 16x16

KM [22] 69
_Z11kmeansPointPfiiiPiS_S_S0_ 13 2x2 256
_Z14invert_mappingPfS_ii 1 4 256

LPS [17] 74 _Z13GPU_laplace3diiiiPfS_ 1 4x25 32x4

LUD [22] 172
_Z12lud_diagonalPfii 16 1 16
_Z12lud_internalPfii 15 15x15 to 1x1 16x16
_Z13lud_perimeterPfii 15 15x1 to 1x1 32

MS [21] 32

_Z21mergeSortSharedKernelILj1EEvPjS0_S0_S0_j 1 1 1 16 512
_Z25generateSampleRanksKernelILj1EEvPjS0_S0_jjj 4 1 256
_Z26mergeRanksAndIndicesKernelPjS_jjj 8 1 256
_Z30mergeElementaryIntervalsKernelILj1EEvPjS0_S0_S0_S0_S0_jj 4 128 128

NW [22] 67
_Z20needle_cuda_shared_1PiS_iiii 32 1x1 to 32x1 16
_Z20needle_cuda_shared_2PiS_iiii 31 31x1 to 1x1 16

PATHF [22] 48 _Z14dynproc_kerneliPiS_S_iiii 5 47 256
SP [21] 31 _Z13scalarProdGPUPfS_S_ii 1 128 256

VADD [21] 2 _Z6VecAddPKfS0_Pfi 1 204 256

94

the beginning of its execution.
Vector Add (VADD): VADD adds two vectors. We run
VADD with the default input dataset produced at the beginning
of its execution.

VI. EXPERIMENTAL RESULTS

In this section we present the results of our reliability and
performance evaluation for all applications of the
experimental analysis. Apart from reporting the overall
application vulnerability, we also break it down into kernels’
vulnerability for all the hardware structures of our study.

We use GUFI for fault injection of transient faults in the
hardware components of a CUDA enabled GPU architecture.
We run fault injection campaigns for the register file (regfile),
the shared memory (smem), the active mask of SIMT-stack
(simt-ams), and the valid bit of instruction buffer entry
(ibuffer-entry) for the 12 GPGPU applications discussed in the
previous section1. For the register file, we study its reliability
when the simulated architecture runs PTX ISA (regfile - ptx)
and when it runs SASS ISA (regfile - sass). We study the error
resiliency of shared memory only for the applications that use
it to exchange data among the threads of the same CTA
(block) in a kernel. Overall, we carried out 55 fault injection
campaigns (mode 2) and each fault injection campaign
consists of 2000 injections experiments (fault injection
campaigns on regfile-ptx, regfile-sass, simt-stack, ibuffer for
12 applications and fault injection campaigns on smem for 7
applications that use it)2 . Fault injection experiments were
uniformly distributed to kernels’ executions. Our GUFI
framework can be used for fault injection in any architecture
that the GPGPU-Sim simulator models; the following results
come from experiments in the simulated model that resembles
GeForce GTX480 graphics processor configuration based on
Fermi Architecture.

Even though commercial NVIDIA GPU chips of Fermi
Architecture incorporate ECC protection in the register file
and the shared memory, GPGPU-Sim does not model it. The
results of our fault injection campaigns for single-bit transient
faults on the unprotected GPU architecture provide insights
about its inherent fault tolerance. Such information is very
important for the architects in early design stages. Knowledge
about the contribution of each hardware component in the
overall FIT rate of an unprotected GPU along with area and
power costs (provided from other tools) assists the architects
in making informed decisions about the most suitable error
protection schemes. For example, our measurements (see Fig.
9) using GUFI (for a fixed intrinsic FIT rate of 0.001 FIT/bit)
report a GPU FIT rate of 1760 FIT for the HS benchmark with
all studied components unprotected. When the shared memory
gets protected for single bit errors the overall GPU FIT rate
for HS benchmark is reduced to 1611 FIT but when the
register file gets protected the GPU FIT rate is only 163. If the

1 The configuration of the machine which we use for all our experiments is
the following: processor - Intel Core i7-4771 @ 3.50GH, memory 16 GB,
operating system – Ubuntu 15.04.
2 This number comes from the formula of [23] and results in a statistical safe
number of fault injection with confidence level 99% and error margin less
than 3%.

designer decides to protect both then the overall GPU FIT rate
will be only 14 FIT. On the average across all benchmarks, the
FIT rate of an unprotected GPU is 1063 FIT; one with only the
shared memory protected is 963 FIT; when only the register
file is protected it is 108 FIT. If both components are protected
the average FIT rate for the GPU across all benchmarks is
only 8 FIT.

A further step is such an analysis can be the modeling of
an ECC scheme such as the typical SECDED (Single Error
Correction Double Error Detection) in a hardware structure of
GPGPU-sim (current version of GUFI does not support any
ECC scheme). This can be easily realized and obviously an
injection campaign for single-bit transient faults will result in
all faults Masked (actually the injection campaign is not
needed since the single-bit faults are by design corrected by
the ECC hardware). In such a case, GUFI can be used for
multiple (double, triple, etc.) bit transient faults injections to
see how many stay uncorrected by the SECDED ECC and
what is their effect; multi-bit injection is a feature that our
framework also supports.

The configuration of the simulated architecture is shown in
TABLE II.

TABLE II. Simulated NVIDIA GPU Architecture (GeForce
GTX480)

SMs 15
Warp size 32
Maximum Threads per SM 1536
Maximum CTAs per SM 8
Registers per SM 32768
Shared Memory per SM 48 KB
Memory Controllers 6

The IPC as well as the average warp occupancy of the

applications under study are shown in TABLE III. The
average warp occupancy is an intuitive metric for an
application that consists of multiple kernels. We estimate the
warp occupancy of a Streaming Multiprocessor for each
kernel that runs on the GPU. Afterwards, we weight the warp
occupancy with the ratio of the kernel’s execution time over
the application’s execution time and then add the individual
weighted warp occupancies of all kernels.

TABLE III. Performance metrics

The effects of faults across the application differ

significantly. Applications BFS, GE and NW have a higher
tolerance than the others in all hardware structures because

Application IPC
Average Warp

Occupancy
BFS 20.57 33.00%
CCP 396.41 67.00%
GE 16.44 20.74%
HS 591.45 50.00%
KM 91.99 17.00%
LPS 445.01 58.00%
LUD 53.56 14.08%
MS 207.88 44.58%
NW 23.16 3.19%

PATHF 475.03 67.00%
SP 329.75 100.00%

VADD 101.46 100.00%

95

their input dataset results in small pressure of the hardware
components. Thus, the majority of fault injection experiments
hit idle resources. In TABLE III, the low average warp
occupancy and the noticeable low IPC of BFS, GE and NW
indicate that their input data sets impose low pressure to the
hardware components. Namely, their IPC is low because for
the given input data sets they execute kernels that have just a
few threads that are grouped in a few warps. Therefore, the
small number of concurrently running warps cannot hide the
latency of long operations; thus the low IPC values. BFS
application consists of 8 invocations of two kernels and
neither of them stretches the architecture as the average warp
occupancy is 33% and the IPC is only 20.57. GE application
consists of 29 invocations of two kernels and neither of them
stretches the architecture as the average warp occupancy is
20.74% and the IPC is 16.44. NW application consists of 32
and 31 invocations of two kernels and neither of them
stretches the architecture as the average warp occupancy is
only 3% and the IPC is only 23.16.

In Fig. 3 - Fig. 6, NW and SP stand out among
applications because they feature respectively the highest and
the lowest Masked faults rates: regfile – ptx runs (100%,
92.15%), regfile – sass runs (99.35%, 70.65%), simt – ams
(100%, 97.75%) and ibuffer - entry (97.10% , 19.85%).

The SDC rates are higher than DUE rates in all
applications except for KM and MS in regfile – ptx (Fig. 3)
and regfile – sass (Fig. 4). This is because some faults in KM
were detected as they caused segmentation fault and some
faults in MS were detected because the application uses a
software detection mechanism that can detect some errors. In
[16] MS is also reported with higher DUE than SDC rates.

There is a common trend in the behavior of applications
when we inject faults in register file running ptx Fig. 3 and
sass mode Fig. 4. However the Masked rates in all
applications are always higher in the case of ptx mode. The
difference ranges from 0.65 percentile units (p.u.) for NW to
21.50 p.u. for SP and is due to the fact that a thread in ptx
mode of simulation uses more registers than in sass mode of
simulation and thus a fault in a register in ptx mode is easier
to be Masked than one in sass mode. Thus, ptx based
reliability measurements induce some underestimation of the
actual hardware vulnerability; this is expected since ptx is a
virtual layer above the actual hardware architecture.

Fig. 5 illustrates the results of fault injection in the active
mask of SIMT-Stack. The injected faults can strike every
entry of the stack that is dedicated to a warp and not just the
entries that are certainly used. This justifies the high Masked
rates that the active mask of SIMT-Stack features. Actually,
the usage of entries of SIMT-Stack is related to the branch
divergence that hosted warps feature. For example, given a
uniform distribution of targeted entries a warp with no branch
divergence would have higher Masked rates than another warp
with higher branch divergence. We also observe that none of
the faults in SIMT-Stack causes SDC (only DUEs happen)
and this is expected since SIMT-Stack involves control logic.

Fig. 6 shows the results of fault injection in the valid bit of
the instruction buffer. In the instruction buffer the Masked

rates are less dominant than in the other structures. In the case
of real hardware, a fault in the valid bit of instruction buffer
may result in SDC error (i.e. some arithmetic or memory
instruction skip their issue), yet the simulator usually reaches
an abnormal state and raises an assertion (which we classify in
the DUE class). In any case, the faults in instruction buffer
entries are more severe than in other structures because there
is a very small probability of masking.

 Fig. 7 illustrates the results of fault injection in the shared
memory. We inject faults in the shared memory only for the
applications that use it for communication among threads of
the same CTA (block); only the 7 of the 12 applications that
use shared memory for this purpose are shown in Fig. 7. In
Fig. 7, PATHF application features the highest Masked rates
(98.55%) while the Masked rates of LUD (75.50%) and SP
(75.95%) are very close and make up the bottom boundary.

The SP application is the most vulnerable in all structures
and this is expected because it stretches the overall
architecture according to average warp occupancy (100%) in
TABLE III. The application VADD also follows this trend for
regfile – ptx, regfile – sass mode and ibuffer-entry.

60%

70%

80%

90%

100%

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

regfile - ptx

Masked DUE SDC

Fig. 3. Fault effects classification results for fault injection in
regfile in ptx mode.

60%

70%

80%

90%

100%

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

regfile - sass

Masked DUE SDC

Fig. 4. Fault effects classification results for fault injection in
regfile in sass mode.

60%

70%

80%

90%

100%

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

simt - ams

Masked DUE SDC

Fig. 5. Fault effect classification results for fault injection in
active mask of simt-stack in sass mode.

96

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

ibuffer - entry

Masked DUE SDC

Fig. 6. Fault effects classification results for fault injection in
valid bit of instruction buffer entry in sass mode.

70%

75%

80%

85%

90%

95%

100%

HS LPS LUD MS NW PATHF SP

smem

Masked DUE SDC

Fig. 7. Fault effects classification results for fault injection in
shared memory in sass mode (the remaining applications BFS,
CCP, GE, KM and VADD do not use the shared memory).

Fig. 8. Vulnerability of the hardware components for all applications (sum of the SDC and DUE classes). This measurement corresponds to
the AVF of each component for each application.

Fig. 9. Failures In Time (FIT) due to faults in hardware components for each application (0 denotes small FIT rates; we round the rates to
the closest integer).

0.
20

%

2.
55

%

0.
25

%

1.
95

%

1.
55

%

0.
90

%

0.
50

%

1.
40

%

0.
00

%

2.
15

% 7.
85

%

3.
20

%

0.
18

%

3.
22

%

0.
07

%

10
.1

5%

0.
70

% 8.
47

%

2.
17

% 7.
97

%

0.
04

% 6.
69

%

27
.5

2%

5.
72

%

0.
20

%

1.
45

%

0.
15

%

1.
75

%

0.
20

%

1.
75

%

0.
35

%

0.
85

%

0.
00

%

1.
60

%

2.
25

%

1.
00

%

13
.6

0%

48
.5

5%

5.
45

%

50
.2

0%

3.
75

%

48
.1

0%

34
.9

0%

27
.4

0%

2.
90

%

46
.7

0%

80
.1

5%

66
.7

5%

2.
53

%

0.
78

%

2.
08

%

2.
54

%

0.
16

%

0.
24

%

12
.0

3%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

Vulnerability

regfile-ptx regfile-sass simt-ams ibuffer-entry smem

28

50
6

11

15
97

11
0

13
32

34
2

12
53

6

10
52

43
28

89
9

1 11 1 13 1 13 3 6 0 12 17 70 1 0 1 0 1 1 0 0 1 1 10 0 0

14
9

0 46 12
3

15
0

9 14

70
9

0

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

FIT

regfile-sass simt-ams ibuffer-entry smem

97

Fig. 8 shows the vulnerability of all hardware structures
and for all applications (sum of the non-Masked fault effect
classes; corresponds to the AVF of each structure). Derating
factor applies solely to fault injection results of register file in
sass mode and shared memory as explained earlier in the
paper. Both the df_reg and df_smem derating factors are the
percentage of registers that can be injected during the
execution of a kernel. Applications that consist of multiple
kernels’ executions have a pair of derating factors (df_reg and
df_smem) for each kernel execution. The value of each
derating factor in the vulnerability of application is
proportional to the ratio of execution time of each kernel
invocation to the total execution time of application.
Moreover, in Fig. 8 we observe that all applications except for
BFS and GE feature higher register file vulnerability in the
sass mode than in ptx mode. We expect that both BFS and GE
with bigger input datasets would stretch the register file and
the overall architecture thereby making the rule of
underestimated vulnerability of registerfile in ptx mode apply
to these applications too. Of course, the actual vulnerability of
the register file is defined by the results of fault injection in
the sass mode.

Fig. 9 shows (rounded to the closest integer) the FIT rates
of all hardware structures for all applications of our study.
With respect to the average values the order of structures
based on their (per-bit) vulnerability (from Fig. 8) is as
follows: instruction buffer (35.70%), register file (6.07%),
shared memory (2.91%) and SIMT-stack (0.96%). However,

due to the different sizes of the components the order of the
average values of FIT differs from the vulnerability order and
is as follows: register file (955 FIT), shared memory (100
FIT), simt-stack (7 FIT) and instruction buffer (1 FIT). This is
expected since even though both vulnerability and size of a
structure impact on FIT, the impact of the size is dominant.
Thus a structure with high vulnerability but small size such as
the instruction buffer results in less FIT than another structure
with less vulnerability and bigger size like register file. The
order of structures according to their contribution in FIT
explains why newer GPGPU Architectures (i.e. Fermi
Architecture) feature ECC protection on register file and
shared memory.

In Fig. 10, we summarize the combined metric of IPC over
FIT for all applications and the average ratio which is 0.56, for
the given set of 12 applications running on the given GPGPU
Architecture without any fault protection. Hence, the proposed
framework can investigate the trade-off between performance
and reliability among different implementations, exploiting
GPGPU-Sim that is able to model different GPGPU models
(GTX480, QuadroFX5600, QuadroFX5800, TeslaC2050) as
well as extra implementations (such as hardware based
protection techniques) and the potential of the proposed fault
injection infrastructure. If, for example, the register file and
shared memory are SECDED-protected then all failures would
stem from the simt-stack and the instruction buffer. The
average IPC/FIT would then increase from 0.56 shown in Fig.
10 to 72.44.

TABLE IV. Breakdown of the applications’ vulnerability (AVF) in the individual kernels’ vulnerability.

Application
Name

Kernel Name
Breakdown Application Vulnerability

regfile
ptx

regfile
sasss

simt
stack

ibufffer
shared
memory

BFS
_Z6KernelP4NodePiPbS2_S2_S1_i 0.15% 0.18% 0.20% 11.40% 0.00%
_Z7Kernel2PbS_S_S_i 0.05% 0.00% 0.00% 2.20% 0.00%

CP _Z7cenergyifPf 2.55% 3.22% 1.45% 48.55% 0.00%

GE
_Z4Fan1PfS_ii 0.00% 0.00% 0.00% 0.75% 0.00%
_Z4Fan2PfS_S_iii 0.25% 0.07% 0.15% 4.70% 0.00%

HS _Z14calculate_tempiPfS_S_iiiiffffff 1.95% 10.15% 1.75% 50.20% 2.53%

KM
_Z11kmeansPointPfiiiPiS_S_S0_ 1.15% 0.56% 0.20% 2.85% 0.00%
_Z14invert_mappingPfS_ii 0.40% 0.14% 0.00% 0.90% 0.00%

LPS _Z13GPU_laplace3diiiiPfS_ 0.90% 8.47% 1.75% 48.10% 0.78%

LUD
_Z12lud_diagonalPfii 0.05% 0.00% 0.00% 1.00% 0.03%
_Z12lud_internalPfii 0.35% 2.04% 0.25% 11.05% 0.85%
_Z13lud_perimeterPfii 0.10% 0.13% 0.10% 22.85% 1.20%

MS

_Z21mergeSortSharedKernelILj1EEvPjS0_S0_S0_j 1 1 1.30% 6.60% 0.20% 14.30% 1.55%
_Z25generateSampleRanksKernelILj1EEvPjS0_S0_jjj 0.05% 0.01% 0.00% 1.20% 0.00%
_Z26mergeRanksAndIndicesKernelPjS_jjj 0.00% 0.01% 0.00% 0.85% 0.00%
_Z30mergeElementaryIntervalsKernelILj1EEvPjS0_S0_S0_S0_S0_jj 0.05% 1.35% 0.65% 11.05% 0.99%

NW
_Z20needle_cuda_shared_1PiS_iiii 0.00% 0.03% 0.00% 1.95% 0.07%
_Z20needle_cuda_shared_2PiS_iiii 0.00% 0.01% 0.00% 0.95% 0.09%

PATHF _Z14dynproc_kerneliPiS_S_iiii 2.15% 6.69% 1.60% 46.70% 0.24%
SP _Z13scalarProdGPUPfS_S_ii 7.85% 27.52% 2.25% 80.15% 12.03%
VADD _Z6VecAddPKfS0_Pfi 3.20% 5.72% 1.00% 66.75% 0.00%

98

0
.6

9

0
.7

7

1
.3

5

0
.3

4

0
.8

3

0
.3

2

0
.1

1

0
.1

5

1
.5

1

0.
4

4

0
.0

7

0.
1

1

0
.5

6

0.00

0.50

1.00

1.50

2.00

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD AVG

IPC / FIT

Fig. 10. IPC to FIT

In addition, programmers can use the GUFI framework to
quantify the inherent error resiliency of applications. For
example, in TABLE IV we break down the vulnerability of
each application for all structures into the vulnerability of the
individual kernels. Given that the failures mainly manifest due
to faults in the register file and the shared memory (due to
their bigger sizes) we have to focus on the vulnerability of the
register file (sass mode) and the shared memory for each
kernel. If an application consists of many kernels then
enhancing only the error resilience of the most vulnerable
kernels will result in more error resilient application. Hence,
in case of applications consisting of many kernels, applying
partial protection will enhance the error resilience of the
application with less performance degradation than the one if
there would be protection for all the kernels of an application.

VII. DISCUSSION

TABLE V summarizes the sizes of the hardware
components of the simulated Fermi Architecture and indicates
whether GUFI supports fault injection on them. We use 
when GUFI already supports fault injection for a hardware
component,  when GUFI partially supports fault injection
in a hardware component (a subset of its fields) and  when
GUFI needs some extra development effort to support fault
injection on it.

For most components, the sizes we report come from
NVIDIA resources [21]; for those not included in such
documents we estimate their sizes from the GPGPU-Sim
configuration. For example, the Fermi Architecture’s SM can
be assigned concurrently with 48 warps and each warp uses
one SIMT Stack (24 bits for PC field, 24 bits for RPC field, 32
bits for the Active Mask) while the depth of a stack cannot
exceed the warp size. Thus, the SIMT stacks roughly occupy
15.36 KB within an SM and 230.4 KB for the entire GPU chip.
In addition, GPUWattch [24] that is integrated into GPGPU-
Sim models Memory Coalescing Arrays into memory
controllers and all the Memory Coalescing Arrays roughly
occupy 6 x 3 KB.

Moreover, in GPGPU-Sim, the fields of data in L1 and L2
caches are not modeled. This is also the case for the fields of
data operands in the operand collector units. Although, the
functional units cover a substantial area in a GPU [25], GUFI
does not support fault injection on them. In total, the GUFI
framework covers a significant portion of the array-based
hardware components of a GPU: about 64% of the area of
hardware components with documented sizes is covered by

GUFI. Future extensions of the framework will cover other
hardware components (marked with a ).

TABLE V. Coverage of GUFI on the GPU hardware components

Component Size Support
Register file 15 x 128 KB 
Operand Collector 15 x 14 x 3 x 128 B 
Shared Memory 15 x 48 KB 
L1D 15 x 16 KB 
Constant Cache 15 x 8KB 
Texture Cache 15 x 12 KB 
L2 Cache (shared) 1 x 768 KB 

Instruction Buffer
15 x 48 x 2

x (2 bits + 128 B)


SIMT Stack 15 x 48 x 32 x 10 B 
Memory Coalescing Arrays 6 x 3 KB 
Functional Units 480 CUDA cores 

VIII. CONCLUSIONS

We have introduced GUFI, a detailed fault injection
framework built on top of a state of the art microarchitectural
simulator of GPGPU architectures, GPGPU-sim. The
proposed framework supports reliability evaluation
measurements based on fault injection in several critical
hardware components of GPU architectures: register file,
shared memory, SIMT stack and instruction buffer. We made
a comprehensive reliability evaluation of the target hardware
components employing 12 GPGPU applications from different
suites. Our study highlights meaningful differences on the
results of fault injection in register file depending on the
running ISA (the virtual ptx vs. the actual sass). The proposed
infrastructure can be used extensively by the GPU reliability
research community architects and programmers. Architects in
early stage of design phase will be able to evaluate different
simulated models of GPGPU architecture as well as different
hardware based protection techniques both in terms of
performance and reliability. Programmers can also use the
proposed framework to break the vulnerability of an entire
application down to the vulnerability of its kernels. Software
based error detection/correction techniques focusing on the
most vulnerable kernels can be then employed to improve
resilience.

ACKNOWLEDGMENT

This work is supported by the 7th Framework Program of
the European Union through the CLERECO Project, under
Grant Agreement 611404.

REFERENCES
[1] S.R.Nassif, N.Mehta, Y.Cao, "A resilience roadmap", DATE ‘10.
[2] D. Kirk, W. W. Hwu, “Programming Massive Parallel Processors”, 2nd

edition.
[3] H. Jeon, M. Wilkening, V. Sridharan, S. Gurumurthi ,G. Loh,

"Architectural vulnerability modeling and analysis of integrated
Graphics Processors", SELSE ‘13.

[4] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, T. Austin, “A
systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor”, MICRO ‘03.

99

[5] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, R.
Rangan, “Computing architectural vulnerability factors for address-
based structures”, ISCA ‘05.

[6] N.Farazmand, R.Ubal, D.Kaeli, "Statistical fault injection-based AVF
analysis of a GPU architecture", SELSE ‘12.

[7] J.Tan, N.Goswami, T.Li, X.Fu, "Analyzing soft-error vulnerability of
GPGPU microarchitecture", IISWC ‘11.

[8] J.W.Sheaffer, D.P.Luebke, K.Skadron, "A hardware redundancy and
recovery mechanism for reliable scientific computation on graphics
processors", SIGGRAPH ‘07.

[9] R.Nathan, D.Sorin, "Argus-G: A low-cost error detection scheme for
GPGPUs", WRA ‘10.

[10] A.Durytskyy, M.Zahran, R.Karri, "Improving GPU robustness by
making use of faulty parts", ICCD ‘11.

[11] J.Tan, X.Fu, "RISE: improving the streaming processors reliability
against soft errors in GPGPUs", PACT ‘12.

[12] H. Jeon, M. Annavaram, “Warped-DMR:Light-weight error detection
for GPGPU”, MICRO ‘12.

[13] J. Tan, Z. Li, X. Fu, "Cost-effective soft-error protection for SRAM-
based structures in GPGPUs", CF ‘13,

[14] R. Shah, M. Choi , B. Jang, "Workload-dependent relative fault
sensitivity and error contribution factor of GPU onchip memory
structures”, SAMOS ‘13.

[15] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
"SASSIFI: Evaluating resilience of GPU applications", SELSE ‘15

[16] B. Fang, K. Pattabiraman, M. Ripeanu, S. Gurumurthi,“GPU-Qin: A
methodology for evaluating the error resilience of GPGPU
applications”, ISPASS ‘14.

[17] Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M.
Aamodt, "Analyzing CUDA workloads using a detailed GPU
simulator", ISPASS ‘09.

[18] R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli,"Multi2Sim: A
Simulation Framework for CPU-GPU Computing", PACT '12

[19] N. George, C. Elks, B. Johnson, J. Lach, “Transient fault models and
AVF estimation revisited”, DSN ‘10.

[20] N. J. Wang, A. Mahesri, S. J. Patel, “Examining ACE analysis reliability
estimates using fault injection”, ISCA ‘07.

[21] “NVIDIA CUDA SDK 4.2” [Online]. Available:
https://developer.nvidia.com/cuda-toolkit-42-archive

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K.
Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
IISWC ‘09,.

[23] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical fault
injection: Quantified error and confidence”, DATE ‘09.

[24] J. Leng , T. Hetherington , A. ElTantawy , S. Gilani , N. S. Kim , T.
Aamodt , Vijay Janapa Reddi, “GPUWattch: enabling energy
optimizations in GPGPUs” , ISCA ‘13

[25] P. N. Glaskowsky, "NVIDIA’s Fermi: The First Complete GPU
Computing Architecture",

[26] V. Sridharan, D. Kaeli, “Using Hardware Vulnerability Factors to
enhanche AVF analysis ”, ISCA ‘10

100

