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Abstract—Modern many-core Graphics Processing Units 

(GPUs) are extensively employed in general purpose computing 
(GPGPU), offering a remarkable execution speedup to inherently 
data parallel workloads. Unlike graphics computing, GPGPU 
computing has more stringent reliability requirements. Thus, 
accurate reliability assessment of GPU hardware structures is 
important for making informed decisions for error protection.  

In this paper we focus on microarchitecture-level reliability 
assessment for GPU architectures. The paper makes the 
following contributions. First, it presents a comprehensive fault 
injection framework that targets key hardware structures of 
GPU architectures such as the register file, the shared memory, 
the SIMT stack and the instruction buffer, which altogether 
occupy large part of a modern GPU silicon area. Second, it 
reports our reliability assessment findings for the target 
structures, when the GPU executes a diverse set of twelve 
GPGPU applications. Third, it discusses remarkable differences 
in the results of fault injection when the applications are 
simulated in the virtual NVIDIA GPUs instruction set (ptx) vs. 
the actual instruction set (sass). Finally, it discusses how the 
framework can be employed either by architects in the early 
stages of design phase or by programmers for a GPU 
application’s error resilience enhancement.  

Keywords—reliability assessment, fault injection, GPGPU, 
microarchitecture simulators 

I. INTRODUCTION 

An impressive set of performance-demanding applications 
from different research fields – biology, chemistry, finance, 
numerical analytics, physics, defense and intelligence, etc. – 
can be accelerated, harnessing the abundant computational 
power of modern Graphics Processing Units (GPUs). 
However, the ever increasing rate of hardware faults that 
follow silicon manufacturing advances jeopardizes the 
evolution of both CPU and GPU architectures. Transient, 
intermittent and permanent hardware faults affect the 
functionality and performance of modern computing systems. 
Even though the sources of potential failure are well 
understood (radiation, latent manufacturing defects, operation 
mode, aging etc. [1]) it is important to accurately quantify 
their impact on the new GPU architectures. Existing 
knowledge for CPUs vulnerability to hardware faults can’t 
infer the corresponding vulnerability of GPUs because of the 
major differences in the design philosophy of the two 
architectures [2][3].  

Metrics for the reliability assessment of classic computer 
architectures have been defined [4][5] and have already been 

adapted for GPUs [3][6][7]; for example the Architectural 
Vulnerability Factor (AVF) quantifies the probability that a 
transient fault in a hardware component produces a program-
visible error taking into account both the hardware and the 
software masking. 

Early and accurate reliability evaluation of GPU hardware 
components is critical to guide design decisions for error 
protection, i.e. it indicates the order of importance of 
structures for protection against hardware faults. The earlier 
the reliability evaluation is performed the better for the 
reduction of design time. Several hardware-based methods 
have been proposed for the protection of GPU hardware 
components against faults [8]-[14]. Selection of the most 
suitable protection method significantly relies on early and 
accurate reliability assessment. 

When major design parameters (i.e. size of hardware 
components, workload etc.) are unknown early in the design, 
decision-making for protection mechanisms is a difficult task. 
To reduce the unknowns of this decision-making, CPU and 
GPU microarchitectural simulators are valuable tools 
employed for various early assessments of the simulated 
architectures. Microarchitectural simulators are commonly 
used for performance, power and reliability studies that can 
guide important design decisions. Analysis of hardware 
structures and software workloads employing 
microarchitectural simulators is an excellent choice for several 
reasons: 

• availability in early stages of design phase,  
• configurability of many hardware components, 
• very high execution throughput compared to RTL 

simulators. 
Our approach for building the proposed fault injection 

infrastructure on top of a microarchitectural GPU simulator 
allows its employment by architects and programmers early in 
the development stages of a new system. Architects can 
exploit the framework’s easily reconfigurable capabilities to 
evaluate different GPU hardware design options in terms of 
both performance and reliability. On the other hand, 
programmers can also use the proposed framework to 
characterize accurately the error resilience of the applications. 
Overall, extending a microarchitectural simulator with 
detailed fault injection features renders it an appropriate 
framework for comprehensive reliability assessments and 
tangible evaluation of several GPUs error detection and 
correction mechanisms which can be either software or 
hardware based.  
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II. RELATED WORK 

Different aspects of the reliability of GPU architectures 
have been studied recently: reliability evaluation methods, soft 
and hard error detection and tolerance solutions that are based 
either on hardware or software [3][6]-[16].  

GPUs reliability evaluation includes approaches that 
employ microarchitectural simulators to determine the 
Architectural Vulnerable Factor (AVF) of hardware structures 
using Architectural Correct Execution (ACE) analysis [3][7] 
[13]. ACE-based analysis has already been made on top of the 
publicly available GPU simulators for NVIDIA and AMD 
architectures, GPGPU-sim [17] and Multi2sim [18], 
respectively. Similarly to CPUs, ACE-based estimation of 
GPUs AVF is very fast as it usually requires a single run of an 
application for the reliability characterization of a hardware 
component. However, ACE analysis is based on tracking of 
data through the entire architecture and requires substantial 
extensions of the simulator. Moreover, ACE analysis for 
CPUs is known to overestimate the vulnerability of the 
hardware structures [19][20].  

Other reliability evaluation approaches are based on fault 
injection. GPUs have been evaluated in terms of the 
application level error resilience using fault injection 
methodology in real NVIDIA GPUs [15][16] but not on a 
microarchitecture simulator as in our case. While in this paper 
we characterize the vulnerability of major GPU hardware 
components both the works of [15] and [16]  focus on the 
error resilience of GPGPU applications (injecting at the 
source/assembly code level). Both works perform injection of 
faults only on architectural registers that are accessed during 
the execution of randomly selected instructions. The 
framework we describe in this paper allows injection of faults 
in the target hardware structures at a randomly selected 
execution cycle. In addition to single transient faults, it 
supports multiple faults (both in time and space). While 
source-level approaches deliver useful hints for the Program 
Vulnerable Factor (PVF) [26], our injection infrastructure 
provides a complete AVF measurement.  

In [6] and [14] faults are also injected in a 
microarchitectural simulator (Multi2Sim) which models AMD 
Evergreen GPU architectures running OpenCL workloads. 
Our framework focuses on the NVIDIA GPU architectures 
modeled in the GPGPU-sim simulator. To the best of our 
knowledge this is the first framework that provides reliability 
evaluation of the hardware components of CUDA enabled 
GPU devices, through fault injection in a microarchitectural 
simulator. It can support both reliability and performance 
measurements of GPU architectures early in the design stages 
and it can focus on the error resilience of the hardware 
components and applications. 

III. BACKGROUND 

A. GPU Architecture 

The architecture of modern GPUs offer acceleration to general 
purpose applications with inherent data-level parallelism. In 
this paper, we focus on CUDA enabled GPUs that are based 

on NVIDIA’s Fermi architecture [25]. NVIDIA GPU 
architectures consist of an array of Streaming Multiprocessors 
(SMs). Fig. 1 shows an overview of the GPGPU architecture 
and also illustrates the microarchitectural information of the 
SM. An SM consists of Streaming Processors (SP) for 
arithmetic operations, Special Function Units (SFU) for 
transcendental instructions and Load/Store Units (LD/ST) for 
memory operations.  An SM contains its own Register File, 
Shared Memory and set of L1 Caches (Constant, Data, 
Instruction and Texture). The SMs work separately from each 
other based on their own pipeline that is managed by the 
Single Instruction Multiple Threads Stack (SIMT-Stack) and 
the Instruction Buffer that are control logic structures.     

The CUDA kernels that are executed in a GPGPU 
Architecture consist of threads that are organized in blocks of 
threads or Common Thread Arrays (CTAs). CTAs are assigned 
to SMs during the execution of a kernel. SMs carry out the 
execution of a large number of threads employing the Single 
Instruction Multiple Threads (SIMT) Architecture which 
leverages instruction level parallelism for a single thread with 
thread level parallelism. In particular, the SMs process groups 
of 32 parallel threads known as warps. The threads of a warp 
execute the same instruction using the SPs, or the SFUs or the 
LD/ST units but with different data values per thread. In case 
of a branch instruction the threads of a warp may follow 
different paths. In such cases a branch divergence occurs, and 
threads execution is serialized with a corresponding 
performance impact. The SMs handle branch divergence by 
employing SIMT stacks dedicated to each warp. The 
architecture state of the threads assigned to an SM is kept on-
chip during the entire lifetime of the warp. The data cache and 
the shared memory are partitioned among CTAs. Threads 
belonging to the same CTA can exchange data through the 
shared memory while threads of different CTAs can exchange 
data through the global memory. The number of CTAs and 
warps that run concurrently on an SM depend on: the 
requirements of a kernel and the compute capability of the 
architecture [21]. 
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Fig. 1. NVIDIA GPGPU Architecture and a Streaming 
Multiprocessor 
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IV. METHODOLOGY  

We measure the Architectural Vulnerable Factor (AVF) of 
the hardware structures of a NVIDIA GPU architecture, 
exploiting the features of the developed framework which 
supports fault injection in the GPU register file, the shared 
memory, the instruction buffer (Valid Bit) and the SIMT stack 
(PC field, RPC field, Active Mask). Of course, the framework 
can be extended to support injections in other hardware 
components as well. 

The AVF measurements reported by fault injection 
framework are calculated by dividing the number of fault 
injection experiments on a hardware component that result in 
application failure (the types of failing behavior are explained 
later) by the total number of injected faults. 

#Fault Injections leading to Failure

#Total Fault Injections
AVF =

 
A slightly modified form of the measurement applies to 

our framework for the register file and the shared memory 
considering the particular modeling of these components in 
the simulator. In the GPGPU-sim model each thread of a 
kernel constructs and accesses its own register file and doesn’t 
reserve a set of registers from a physical register file that 
would be constructed once for each SM (this would have been 
a more convenient model for reliability assessment). 
Moreover, in GPGPU-sim each CTA that is assigned to an SM 
uses its own instance of shared memory and doesn’t occupy a 
subset of a unified shared memory within an SM (this would 
have been also a better model for injections). To overcome 
these two modeling issues of GPGPU-sim, in our analysis for 
the register file and the shared memory, we define a derating 
factor for each structure df_reg and df_smem. In order to 
estimate the final AVF of the register file and the shared 
memory, we have to multiply each factor with the relative 
percentage of failures as explained below. (Alternatively, we 
could have re-implemented register file and shared memory 
for the needs of our evaluation; but we wanted to minimally 
intrude in the simulator and reduce development time. The 
AVF estimation result would have been the same.) 

The df_reg is an intuitive quantification of the fraction of 
a GPU physical register file that we can target in a given cycle 
during the execution of a given kernel. It depends on:  

• #REGS_PER_THREAD that is the number of 
registers that a thread uses during the execution of a 
kernel,  

• #THREADS that is the number of running threads in 
an SM during the execution of a given kernel, 

• #REGFILE_SIZE_SM that is the number of registers 
in the register file of an SM. 

#REGS_PER_THREAD x #THREADS

#REGFILE_SIZE_SM
df_reg =

 
The df_smem is an intuitive quantification of fraction of 

shared memory that we can target in a given cycle during the 
execution of a given kernel. It depends on: 

• #CTA_SMEM_SIZE that is the size of shared 
memory that is used by a CTA of a kernel, 

• #CTAS that is the number of running CTAs in an SM 
during the execution of a given kernel, 

• #SMEM_SIZE that is the size of shared memory in 
an SM. 

#CTA_SMEM_SIZE x #CTAS

#SMEM_SIZE
df_smem =

 
We note that the derating-factor for the register file is 

applied only to the failure rate of register file that comes from 
fault injection when the simulator runs actual GPU assembly 
language programs (the SASS ISA of NVIDIA GPUs). If it 
runs PTX code that is an intermediate virtual ISA then the 
number of virtual registers that a thread uses are more than the 
architectural registers that would be assigned to the given 
thread. 

In addition to the AVF of the target hardware components, 
we compute the Failures In Time (FIT) for a given structure 
based on its size in bits, the AVF and a fixed intrinsic FIT rate 
(which we assume to be 0.001 FIT/bit; any arbitrary rate can 
be used).  

FITSTRUCTURE = AVF x INTRINSIC FIT x SIZE
 

Thus, we can quantify the FIT rate of a GPU architecture 
based on the FIT rates for all structures in it.  

FITGPU = Σi FITi

 
Working at the microarchitecture level, our framework can 

be employed to characterize any given GPGPU architecture 
both in terms of reliability and performance. An application’s 
Instructions Per Cycle (IPC – the usual performance metric) 
that GPGPU-sim reports can be divided with our FIT 
measurements (reliability metric); together IPC and FIT can 
provide a two-in-one metric for performance and reliability 
the Mean Instructions To Failure (MITF). A similar combined 
metric is used in [7] but instead of FIT they use AVF which 
doesn’t consider the size of a structure which our approach 
does.  

IPC
FIT

MITF ~
 

We believe that this combined information is very useful 
for architects in early stages of design phase because they can 
compare different GPGPU architectures both in terms of 
performance and reliability, and singling out the one with the 
higher IPC to FIT ratio. Programmers can also use the 
proposed framework to identify the error resilience of CUDA 
kernels that are executed in the context of an application. 
Afterwards, they can apply software based techniques in order 
of priority to enhance the error resilience of more vulnerable 
kernels while maintaining the required performance levels.    

V. EXPERIMENTAL FRAMEWORK 

We present GUFI (GPGPU-sim Fault Injector) a 
framework for reliability studies of GPU architectures 
hardware and workloads. 
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A. Fault Injection Infrastructure 

GUFI is a complete framework for reliability evaluation 
of GPU architectures that runs over a well-known simulator 
of GPUs architectures: GPGPU-sim [17]. The simulator 
provides detailed microarchitectural models of NVIDIA 
GPUs architectures and runs CUDA as well as OpenCL 
workloads. We focused our study on CUDA applications. 
Moreover, we exploit the capability of the simulator to run 
either Parallel Thread Execution assembly (PTX) or SASS 
assembly [21] and we can inject faults in the hardware 
components of any simulated architecture for both 
instruction sets.  

In order to carry out fault injection campaign in a 
hardware structure we have to go through the following 
steps. Initially, we run the application once in order to 
profile it; after completion a set of files are produced. These 
files contain useful information about kernels that run in the 
context of an application like: 

• the time interval of a kernel’s execution during the 
entire application,  

• information about the registers (name, size) that a 
thread requires,  

• the number of threads that may run concurrently for a 
given kernel’s execution on an SM, 

• the number of CTAs that may be assigned concurrently 
for a given kernel’s execution on an SM, 

• the size of shared memory that each CTA may occupy 
in the context of its execution. 

The outcome of an application’s profiling step is organized 
on the basis of invocations of each kernel and is the input of 
the second step that is the creation of masks for all target 
structures from a mask-generator. At this point, fault masks 
are generated for all targeted structures and for all invocations 
of all kernels in the context of the execution of an application. 
The number of masks is defined by the user of GUFI and is 
the same across all invocations of any kernel.  

The fault injection campaign in a hardware component can 
be set either for a user defined kernel invocation (mode 1) or 
for the whole application (mode 2). Mode 1 focuses on the 
reliability evaluation of a specific invocation of a kernel that is 
launched in the context of an application while mode 2 
enables users to make a comprehensive reliability evaluation 
of the full application in any structure and architecture. The 
user needs to follow the above steps once for any architecture. 
Overall, the generation of masks for all target hardware 
components is scalable to all architectures that the simulator 
supports, either on PTX or SASS mode. 

A GUFI user can do massive fault injection experiments 
working either on mode 1 or mode 2 as soon as fault masks 
have been created and kept on mask_dir as illustrated in Fig. 
2. Both modes employ a bash script – Campaigner – that is 
responsible for the golden run of the application and all fault 
injection experiments. The Campaigner and all the required 
files for the simulation (i.e. configuration files of the 
simulator, executable of application etc.) reside in the 
campaign’s root directory – app_dir.  

Initially, the campaigner launches a golden run and moves 
all output files to a dedicated directory – golden_run. 
Subsequently, it runs a (user defined) number of fault injection 
experiments that cannot exceed the number of available fault 
masks. In the context of each fault injection experiment, the 
Campaigner copies a fault file from the proper directory 
within mask_dir to app_dir. Subsequently, the campaigner 
activates the fault injection experiment. The simulator reads 
the fault file at the beginning of simulation and injects the 
fault in the target hardware component at the activation cycle. 
The fault can be either in a single bit or in multiple bits. The 
fault mask and activation cycle are defined in the fault file. All 
files that are produced in each fault injection experiment are 
moved to a dedicated directory for the given fault injection 
experiment – experiment_1 to experiment_L.  

The files produced in the context of an application are the 
following: 

• result file: Output that an application produces and 
writes in a file. 

• application stdout file: Messages that an application 
writes in stdout. 

• application stderr file: Messages that an application 
writes in stderr. 

• simulation stdout file: Messages that an application 
and simulator write in stdout. 

• simulation stderr file: Messages that an application 
and simulator write in stderr. 

After completion of a fault injection campaign, a parser 
processes the output of all experiments one by one. The parser 
classifies each experiment as Masked, Silent Data Corruption 
(SDC), or Detectable Unrecoverable Error (DUE), comparing 
the files of an experiment with the ones of golden run. The 
classes of fault effects are: 

• SDC: The application is completed but the result file 
(if any) or the application stdout file differ from the 
golden ones and there’s no indication that an error 
occurred in application stderr and simulation stderr 
files. 
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Fig. 2. The directory of fault injection campaign 
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• DUE: Simulator or application reaches an abnormal 
state and experiment’s execution is forced to 
completion, printing a warning in application stderr or 
simulation stderr files. 

• Masked: The application is completed, there’s no 
indication that an error occurred and the result file (if 
any) or the application stdout file are identical with the 
golden ones. Moreover, if a fault strikes an unused 
resource then the fault injection experiment is 
characterized as Masked i.e. the registers of an idle SM 
at the time of fault injection. Simulator has been 
extended to detect such cases and a related message is 
printed on the simulation stderr file. Thus parser can 
distinguish such cases from DUE.   

In mode 1, all experiments are done in a specific kernel 
invocation that is defined by the user. Thus, an experiment 
results in a set of effects for the injected faults: the Masked, 
SDC and DUE measurements. In mode 2, each kernel 
execution has its set of Masked, SDC and DUE counters. 
Thus, an experiment delivers the appropriate set of 
measurements, based on the invocation of the kernel that it 
belongs to. In this paper, we report the results for mode 2 
because it provides a broader view: it enables us to evaluate 
the reliability of the targeted hardware component for an 
entire application but it also delivers interesting findings 
across all its kernels and their invocations.  

B. Applications 

In the context of our reliability evaluation, we use 12 
different applications from ispass2009-benchmarks [17], 
NVIDIA CUDA SDK package [21] and Rodinia benchmark 
suite [22]. In TABLE I we report the simulation time of the 
applications, the breakdown of applications into kernels, the 
number of invocations of each kernel, the number of CTAs 
(gridDim) and the number of threads per CTA (blockDim) in 
each kernel. We shortly describe each application and we also 
report the input data set below. 

Breadth-First Search (BFS): BFS is a breadth-first search 
algorithm which traverses all the connected components in a 
graph. We use BFS with the default input of 4096 nodes.  
Compute Coulombic Potential (CCP): CCP computes the 
coulombic potential at each grid point over one plane in a 3D 
grid in which point charges have been distributed. CCP 
processes the default data that are produced at the beginning of 
its execution.      
Gaussian Elimination (GE): GE is an algorithm for solving 
systems of linear equations. We employ GE to solve a system 
of 30 linear equations. 
Hot Spot (HS): HS estimates processor temperature based on 
an architectural floor plan and simulated power measurements. 
We try HS with the default input for temperature and power 
values that are organized on two individual 512x512 matrices. 
K-Means (KM): KM is a data-mining algorithm that features 
high degree of data parallelism. We run KM with 1000 objects 
and each object consists of 34 features.   
Laplace (LPS): LPS implements a Laplace discretization on a 
3D structured grid. We run LPS with the default input data that 
are produced at the beginning of its execution. 
Lower Upper Decomposition (LUD): LUD is an algorithm 
that calculates the solutions of a set of linear equations. We run 
LUD with the default input data that are produced at the 
beginning of its execution. 
Merge Sort (MS): MS implements a merge-sort for sorting 
batches of short- to mid-sized (key, value) array pairs. We run 
MS with for an array of 16384 pairs. 
Needleman-Wunsch (NW): NW is a nonlinear global 
optimization method for DNA sequence alignments. We run 
NW with the default input dataset that is produced at the 
beginning of its execution. 
Pathfinder (PATHF): PATHF finds a path on a grid from the 
bottom to the top with the smallest accumulated weights and 
each step of the path moves straight ahead or diagonally ahead. 
We run PATHF with 10000 rows, 100 columns and 20 height.  
Scalar Product (SP): SP computes the scalar product of 
vectors. We run SP with the default input dataset produced at 

TABLE I. Applications 

Application Suite Simulation 
time (s)  Invocations gridDim blockDim 

BFS [22] 7 
_Z6KernelP4NodePiPbS2_S2_S1_i 8 8 512 
_Z7Kernel2PbS_S_S_i 8 8 512 

CCP [17] 87 _Z7cenergyifPf 1 8x32 16x8 

GE [22] 5 
_Z4Fan1PfS_ii 29 1 512 
_Z4Fan2PfS_S_iii 29 8x8 4x4 

HS [22] 112 _Z14calculate_tempiPfS_S_iiiiffffff 1 43x43 16x16 

KM [22] 69 
_Z11kmeansPointPfiiiPiS_S_S0_ 13 2x2 256 
_Z14invert_mappingPfS_ii 1 4 256 

LPS [17] 74 _Z13GPU_laplace3diiiiPfS_ 1 4x25 32x4 

LUD [22] 172 
_Z12lud_diagonalPfii 16 1 16 
_Z12lud_internalPfii 15 15x15 to 1x1 16x16 
_Z13lud_perimeterPfii 15 15x1 to 1x1 32 

MS [21] 32 

_Z21mergeSortSharedKernelILj1EEvPjS0_S0_S0_j 1 1 1 16 512 
_Z25generateSampleRanksKernelILj1EEvPjS0_S0_jjj 4 1 256 
_Z26mergeRanksAndIndicesKernelPjS_jjj 8 1 256 
_Z30mergeElementaryIntervalsKernelILj1EEvPjS0_S0_S0_S0_S0_jj 4 128 128 

NW [22] 67 
_Z20needle_cuda_shared_1PiS_iiii 32 1x1 to 32x1 16 
_Z20needle_cuda_shared_2PiS_iiii 31 31x1 to 1x1 16 

PATHF [22] 48 _Z14dynproc_kerneliPiS_S_iiii 5 47 256 
SP [21] 31 _Z13scalarProdGPUPfS_S_ii 1 128 256 

VADD [21] 2 _Z6VecAddPKfS0_Pfi 1 204 256 
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the beginning of its execution. 
Vector Add (VADD): VADD adds two vectors. We run 
VADD with the default input dataset produced at the beginning 
of its execution. 

VI. EXPERIMENTAL RESULTS 

In this section we present the results of our reliability and 
performance evaluation for all applications of the 
experimental analysis. Apart from reporting the overall 
application vulnerability, we also break it down into kernels’ 
vulnerability for all the hardware structures of our study. 

We use GUFI for fault injection of transient faults in the 
hardware components of a CUDA enabled GPU architecture.  
We run fault injection campaigns for the register file (regfile), 
the shared memory (smem), the active mask of SIMT-stack 
(simt-ams), and the valid bit of instruction buffer  entry 
(ibuffer-entry) for the 12 GPGPU applications discussed in the 
previous section1. For the register file, we study its reliability 
when the simulated architecture runs PTX ISA (regfile - ptx) 
and when it runs SASS ISA (regfile - sass). We study the error 
resiliency of shared memory only for the applications that use 
it to exchange data among the threads of the same CTA 
(block) in a kernel. Overall, we carried out 55 fault injection 
campaigns (mode 2) and each fault injection campaign 
consists of 2000 injections experiments (fault injection 
campaigns on regfile-ptx, regfile-sass, simt-stack, ibuffer for 
12 applications and fault injection campaigns on smem for 7 
applications that use it)2 . Fault injection experiments were 
uniformly distributed to kernels’ executions. Our GUFI 
framework can be used for fault injection in any architecture 
that the GPGPU-Sim simulator models; the following results 
come from experiments in the simulated model that resembles 
GeForce GTX480 graphics processor configuration based on 
Fermi Architecture.  

Even though commercial NVIDIA GPU chips of Fermi 
Architecture incorporate ECC protection in the register file 
and the shared memory, GPGPU-Sim does not model it. The 
results of our fault injection campaigns for single-bit transient 
faults on the unprotected GPU architecture provide insights 
about its inherent fault tolerance. Such information is very 
important for the architects in early design stages. Knowledge 
about the contribution of each hardware component in the 
overall FIT rate of an unprotected GPU along with area and 
power costs (provided from other tools) assists the architects 
in making informed decisions about the most suitable error 
protection schemes. For example, our measurements (see Fig. 
9) using GUFI (for a fixed intrinsic FIT rate of 0.001 FIT/bit) 
report a GPU FIT rate of 1760 FIT for the HS benchmark with 
all studied components unprotected. When the shared memory 
gets protected for single bit errors the overall GPU FIT rate 
for HS benchmark is reduced to 1611 FIT but when the 
register file gets protected the GPU FIT rate is only 163. If the 

                                                           
1 The configuration of the machine which we use for all our experiments is 
the following: processor - Intel Core i7-4771 @ 3.50GH, memory 16 GB, 
operating system – Ubuntu 15.04.  
2 This number comes from the formula of [23] and results in a statistical safe 
number of fault injection with confidence level 99% and error margin less 
than 3%.  

designer decides to protect both then the overall GPU FIT rate 
will be only 14 FIT. On the average across all benchmarks, the 
FIT rate of an unprotected GPU is 1063 FIT; one with only the 
shared memory protected is 963 FIT; when only the register 
file is protected it is 108 FIT. If both components are protected 
the average FIT rate for the GPU across all benchmarks is 
only 8 FIT.  

A further step is such an analysis can be the modeling of 
an ECC scheme such as the typical SECDED (Single Error 
Correction Double Error Detection) in a hardware structure of 
GPGPU-sim (current version of GUFI does not support any 
ECC scheme). This can be easily realized and obviously an 
injection campaign for single-bit transient faults will result in 
all faults Masked (actually the injection campaign is not 
needed since the single-bit faults are by design corrected by 
the ECC hardware). In such a case, GUFI can be used for 
multiple (double, triple, etc.) bit transient faults injections to 
see how many stay uncorrected by the SECDED ECC and 
what is their effect; multi-bit injection is a feature that our 
framework also supports.  

The configuration of the simulated architecture is shown in 
TABLE II. 

TABLE II. Simulated NVIDIA GPU Architecture (GeForce 
GTX480) 

SMs 15 
Warp size 32 
Maximum Threads per SM 1536 
Maximum CTAs per SM 8 
Registers per SM 32768 
Shared Memory per SM 48 KB 
Memory Controllers 6 

 
The IPC as well as the average warp occupancy of the 

applications under study are shown in TABLE III. The 
average warp occupancy is an intuitive metric for an 
application that consists of multiple kernels. We estimate the 
warp occupancy of a Streaming Multiprocessor for each 
kernel that runs on the GPU. Afterwards, we weight the warp 
occupancy with the ratio of the kernel’s execution time over 
the application’s execution time and then add the individual 
weighted warp occupancies of all kernels. 

TABLE III. Performance metrics 

 
 
 
 
  

 
 
 
 
 
 

 
 
The effects of faults across the application differ 

significantly. Applications BFS, GE and NW have a higher 
tolerance than the others in all hardware structures because 

Application IPC 
Average Warp 

Occupancy 
BFS 20.57 33.00% 
CCP 396.41 67.00% 
GE 16.44 20.74% 
HS 591.45 50.00% 
KM 91.99 17.00% 
LPS 445.01 58.00% 
LUD 53.56 14.08% 
MS 207.88 44.58% 
NW 23.16 3.19% 

PATHF 475.03 67.00% 
SP 329.75 100.00% 

VADD 101.46 100.00% 
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their input dataset results in small pressure of the hardware 
components. Thus, the majority of fault injection experiments 
hit idle resources. In TABLE III, the low average warp 
occupancy and the noticeable low IPC of BFS, GE and NW 
indicate that their input data sets impose low pressure to the 
hardware components. Namely, their IPC is low because for 
the given input data sets they execute kernels that have just a 
few threads that are grouped in a few warps. Therefore, the 
small number of concurrently running warps cannot hide the 
latency of long operations; thus the low IPC values. BFS 
application consists of 8 invocations of two kernels and 
neither of them stretches the architecture as the average warp 
occupancy is 33% and the IPC is only 20.57. GE application 
consists of 29 invocations of two kernels and neither of them 
stretches the architecture as the average warp occupancy is 
20.74% and the IPC is 16.44. NW application consists of 32 
and 31 invocations of two kernels and neither of them 
stretches the architecture as the average warp occupancy is 
only 3% and the IPC is only 23.16.   

In Fig. 3 - Fig. 6, NW and SP stand out among 
applications because they feature respectively the highest and 
the lowest Masked faults rates: regfile – ptx runs (100%, 
92.15%), regfile – sass runs (99.35%, 70.65%), simt – ams 
(100%, 97.75%) and ibuffer - entry (97.10% , 19.85%).  

The SDC rates are higher than DUE rates in all 
applications except for KM and MS in regfile – ptx (Fig. 3) 
and regfile – sass (Fig. 4). This is because some faults in KM 
were detected as they caused segmentation fault and some 
faults in MS were detected because the application uses a 
software detection mechanism that can detect some errors. In 
[16] MS is also reported with higher DUE than SDC rates.  

There is a common trend in the behavior of applications 
when we inject faults in register file running ptx Fig. 3 and 
sass mode Fig. 4. However the Masked rates in all 
applications are always higher in the case of ptx mode. The 
difference ranges from 0.65 percentile units (p.u.) for NW to 
21.50 p.u. for SP and is due to the fact that a thread in ptx 
mode of simulation uses more registers than in sass mode of 
simulation and thus a fault in a register in ptx mode  is easier 
to be Masked than one in sass mode. Thus, ptx based 
reliability measurements induce some underestimation of the 
actual hardware vulnerability; this is expected since ptx is a 
virtual layer above the actual hardware architecture. 

Fig. 5 illustrates the results of fault injection in the active 
mask of SIMT-Stack. The injected faults can strike every 
entry of the stack that is dedicated to a warp and not just the 
entries that are certainly used. This justifies the high Masked 
rates that the active mask of SIMT-Stack features. Actually, 
the usage of entries of SIMT-Stack is related to the branch 
divergence that hosted warps feature. For example, given a 
uniform distribution of targeted entries a warp with no branch 
divergence would have higher Masked rates than another warp 
with higher branch divergence. We also observe that none of 
the faults in SIMT-Stack causes SDC (only DUEs happen) 
and this is expected since SIMT-Stack involves control logic.  

Fig. 6 shows the results of fault injection in the valid bit of 
the instruction buffer. In the instruction buffer the Masked 

rates are less dominant than in the other structures. In the case 
of real hardware, a fault in the valid bit of instruction buffer 
may result in SDC error (i.e. some arithmetic or memory 
instruction skip their issue), yet the simulator usually reaches 
an abnormal state and raises an assertion (which we classify in 
the DUE class). In any case, the faults in instruction buffer 
entries are more severe than in other structures because there 
is a very small probability of masking.  

 Fig. 7 illustrates the results of fault injection in the shared 
memory. We inject faults in the shared memory only for the  
applications that use it for communication among threads of  
the same CTA (block); only the 7 of the 12 applications that 
use shared memory for this purpose are shown in Fig. 7. In 
Fig. 7, PATHF application features the highest Masked rates 
(98.55%) while the Masked rates of LUD (75.50%) and SP 
(75.95%) are very close and make up the bottom boundary.  

The SP application is the most vulnerable in all structures 
and this is expected because it stretches the overall 
architecture according to average warp occupancy (100%) in 
TABLE III. The application VADD also follows this trend for 
regfile – ptx, regfile – sass mode and ibuffer-entry. 
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Fig. 3. Fault effects classification results for fault injection in 
regfile in ptx mode. 

60%

70%

80%

90%

100%

BFS CCP GE HS KM LPS LUD MS NW PATHF SP VADD

regfile - sass

Masked DUE SDC
 

Fig. 4. Fault effects classification results for fault injection in 
regfile in sass mode. 
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Fig. 5. Fault effect classification results for fault injection in 
active mask of simt-stack in sass mode. 
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Fig. 6. Fault effects classification results for fault injection in 
valid bit of instruction buffer entry in sass mode. 
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Fig. 7. Fault effects classification results for fault injection in 
shared memory in sass mode (the remaining applications BFS, 
CCP, GE, KM and VADD do not use the shared memory). 

 

Fig. 8. Vulnerability of the hardware components for all applications (sum of the SDC and DUE classes). This measurement corresponds to 
the AVF of each component for each application. 

Fig. 9. Failures In Time (FIT) due to faults in hardware components for each application (0 denotes small FIT rates; we round the rates to 
the closest integer).
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Fig. 8 shows the vulnerability of all hardware structures 
and for all applications (sum of the non-Masked fault effect 
classes; corresponds to the AVF of each structure). Derating 
factor applies solely to fault injection results of register file in 
sass mode and shared memory as explained earlier in the 
paper. Both the df_reg and df_smem derating factors are the 
percentage of registers that can be injected during the 
execution of a kernel. Applications that consist of multiple 
kernels’ executions have a pair of derating factors (df_reg and 
df_smem) for each kernel execution. The value of each 
derating factor in the vulnerability of application is 
proportional to the ratio of execution time of each kernel 
invocation to the total execution time of application. 
Moreover, in Fig. 8 we observe that all applications except for 
BFS and GE feature higher register file vulnerability in the 
sass mode than in ptx mode. We expect that both BFS and GE 
with bigger input datasets would stretch the register file and 
the overall architecture thereby making the rule of 
underestimated vulnerability of registerfile in ptx mode apply 
to these applications too. Of course, the actual vulnerability of 
the register file is defined  by the results of fault injection in 
the sass mode. 

Fig. 9 shows (rounded to the closest integer) the FIT rates 
of all hardware structures for all applications of our study. 
With respect to the average values the order of structures 
based on their (per-bit) vulnerability (from Fig. 8) is as 
follows: instruction buffer (35.70%), register file (6.07%), 
shared memory (2.91%) and SIMT-stack (0.96%). However, 

due to the different sizes of the components the order of the 
average values of FIT differs from the vulnerability order and 
is as follows: register file (955 FIT), shared memory (100 
FIT), simt-stack (7 FIT) and instruction buffer (1 FIT). This is 
expected since even though both vulnerability and size of a 
structure impact on FIT, the impact of the size is dominant. 
Thus a structure with high vulnerability but small size such as 
the instruction buffer results in less FIT than another structure 
with less vulnerability and bigger size like register file. The 
order of structures according to their contribution in FIT 
explains why newer GPGPU Architectures (i.e. Fermi 
Architecture) feature ECC protection on register file and 
shared memory. 

In Fig. 10, we summarize the combined metric of IPC over 
FIT for all applications and the average ratio which is 0.56, for 
the given set of 12 applications running on the given GPGPU 
Architecture without any fault protection. Hence, the proposed 
framework can investigate the trade-off between performance 
and reliability among different implementations, exploiting 
GPGPU-Sim that is able to model different GPGPU models 
(GTX480, QuadroFX5600, QuadroFX5800, TeslaC2050) as 
well as extra implementations (such as hardware based 
protection techniques) and the potential of the proposed fault 
injection infrastructure. If, for example, the register file and 
shared memory are SECDED-protected then all failures would 
stem from the simt-stack and the instruction buffer. The 
average IPC/FIT would then increase from 0.56 shown in Fig. 
10 to 72.44.  

TABLE IV. Breakdown of the applications’ vulnerability (AVF) in the individual kernels’ vulnerability. 

Application 
Name 

Kernel Name 
Breakdown Application Vulnerability 

regfile 
ptx 

regfile 
sasss 

simt  
stack 

ibufffer 
shared 
memory 

BFS 
_Z6KernelP4NodePiPbS2_S2_S1_i 0.15% 0.18% 0.20% 11.40% 0.00% 
_Z7Kernel2PbS_S_S_i 0.05% 0.00% 0.00% 2.20% 0.00% 

CP _Z7cenergyifPf 2.55% 3.22% 1.45% 48.55% 0.00% 

GE 
_Z4Fan1PfS_ii 0.00% 0.00% 0.00% 0.75% 0.00% 
_Z4Fan2PfS_S_iii 0.25% 0.07% 0.15% 4.70% 0.00% 

HS _Z14calculate_tempiPfS_S_iiiiffffff 1.95% 10.15% 1.75% 50.20% 2.53% 

KM 
_Z11kmeansPointPfiiiPiS_S_S0_ 1.15% 0.56% 0.20% 2.85% 0.00% 
_Z14invert_mappingPfS_ii 0.40% 0.14% 0.00% 0.90% 0.00% 

LPS _Z13GPU_laplace3diiiiPfS_ 0.90% 8.47% 1.75% 48.10% 0.78% 

LUD 
_Z12lud_diagonalPfii 0.05% 0.00% 0.00% 1.00% 0.03% 
_Z12lud_internalPfii 0.35% 2.04% 0.25% 11.05% 0.85% 
_Z13lud_perimeterPfii 0.10% 0.13% 0.10% 22.85% 1.20% 

MS 

_Z21mergeSortSharedKernelILj1EEvPjS0_S0_S0_j 1 1 1.30% 6.60% 0.20% 14.30% 1.55% 
_Z25generateSampleRanksKernelILj1EEvPjS0_S0_jjj 0.05% 0.01% 0.00% 1.20% 0.00% 
_Z26mergeRanksAndIndicesKernelPjS_jjj 0.00% 0.01% 0.00% 0.85% 0.00% 
_Z30mergeElementaryIntervalsKernelILj1EEvPjS0_S0_S0_S0_S0_jj 0.05% 1.35% 0.65% 11.05% 0.99% 

NW 
_Z20needle_cuda_shared_1PiS_iiii 0.00% 0.03% 0.00% 1.95% 0.07% 
_Z20needle_cuda_shared_2PiS_iiii 0.00% 0.01% 0.00% 0.95% 0.09% 

PATHF _Z14dynproc_kerneliPiS_S_iiii 2.15% 6.69% 1.60% 46.70% 0.24% 
SP _Z13scalarProdGPUPfS_S_ii 7.85% 27.52% 2.25% 80.15% 12.03% 
VADD _Z6VecAddPKfS0_Pfi 3.20% 5.72% 1.00% 66.75% 0.00% 
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Fig. 10. IPC to FIT 

In addition, programmers can use the GUFI framework to 
quantify the inherent error resiliency of applications. For 
example, in TABLE IV we break down the vulnerability of 
each application for all structures into the vulnerability of the 
individual kernels. Given that the failures mainly manifest due 
to faults in the register file and the shared memory (due to 
their bigger sizes) we have to focus on the vulnerability of the 
register file (sass mode) and the shared memory for each 
kernel. If an application consists of many kernels then 
enhancing only the error resilience of the most vulnerable 
kernels will result in more error resilient application. Hence, 
in case of applications consisting of many kernels, applying 
partial protection will enhance the error resilience of the 
application with less performance degradation than the one if 
there would be protection for all the kernels of an application. 

VII. DISCUSSION 

TABLE V summarizes the sizes of the hardware 
components of the simulated Fermi Architecture and indicates 
whether GUFI supports fault injection on them. We use  
when GUFI already supports fault injection for a hardware 
component,  when GUFI partially supports fault injection 
in a hardware component (a subset of its fields) and  when 
GUFI needs some extra development effort to support fault 
injection on it.  

For most components, the sizes we report come from 
NVIDIA resources [21]; for those not included in such 
documents we estimate their sizes from the GPGPU-Sim 
configuration. For example, the Fermi Architecture’s SM can 
be assigned concurrently with 48 warps and each warp uses 
one SIMT Stack (24 bits for PC field, 24 bits for RPC field, 32 
bits for the Active Mask) while the depth of a stack cannot 
exceed the warp size. Thus, the SIMT stacks roughly occupy 
15.36 KB within an SM and 230.4 KB for the entire GPU chip. 
In addition, GPUWattch [24] that is integrated into GPGPU-
Sim models Memory Coalescing Arrays into memory 
controllers and all the Memory Coalescing Arrays roughly 
occupy 6 x 3 KB. 

Moreover, in GPGPU-Sim, the fields of data in L1 and L2 
caches are not modeled. This is also the case for the fields of 
data operands in the operand collector units. Although, the 
functional units cover a substantial area in a GPU [25], GUFI 
does not support fault injection on them. In total, the GUFI 
framework covers a significant portion of the array-based 
hardware components of a GPU: about 64% of the area of 
hardware components with documented sizes is covered by 

GUFI. Future extensions of the framework will cover other 
hardware components (marked with a ).  

TABLE V. Coverage of GUFI on the GPU hardware components  

Component Size Support 
Register file 15 x 128 KB  
Operand Collector 15 x 14 x 3 x 128 B  
Shared Memory 15 x 48 KB 
L1D 15 x 16 KB  
Constant Cache 15 x 8KB  
Texture Cache 15 x 12 KB 
L2 Cache (shared) 1 x 768 KB  

Instruction Buffer 
15 x 48 x 2  

x (2 bits + 128 B) 
 

SIMT Stack 15 x 48 x 32 x 10 B 
Memory Coalescing Arrays 6 x 3 KB  
Functional Units 480 CUDA cores  

VIII.  CONCLUSIONS 

We have introduced GUFI, a detailed fault injection 
framework built on top of a state of the art microarchitectural 
simulator of GPGPU architectures, GPGPU-sim. The 
proposed framework supports reliability evaluation 
measurements based on fault injection in several critical 
hardware components of GPU architectures: register file, 
shared memory, SIMT stack and instruction buffer. We made 
a comprehensive reliability evaluation of the target hardware 
components employing 12 GPGPU applications from different 
suites. Our study highlights meaningful differences on the 
results of fault injection in register file depending on the 
running ISA (the virtual ptx vs. the actual sass). The proposed 
infrastructure can be used extensively by the GPU reliability 
research community architects and programmers. Architects in 
early stage of design phase will be able to evaluate different 
simulated models of GPGPU architecture as well as different 
hardware based protection techniques both in terms of 
performance and reliability. Programmers can also use the 
proposed framework to break the vulnerability of an entire 
application down to the vulnerability of its kernels. Software 
based error detection/correction techniques focusing on the 
most vulnerable kernels can be then employed to improve 
resilience.  
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