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Abstract—Transient and permanent faults in complex digital
systems used for safety-critical applications may result in catas-
trophic effects. It becomes therefore extremely important to adopt
techniques such as fault injection to observe the behavior of the
system in the presence of faults. Several tools have been proposed
in the literature that support fault injection. However, few of them
allow observing complex computer-based systems. This paper
presents current advances in this field, by focusing on Low Level
Virtual Machine (LLVM) based fault injectors and FAUMachine.
We give an overview of the LLVM environment, and two based
fault injection tools: LLFI and KULFI. Moreover, we introduce
FAUmachine as virtual machine that supports fault injection in
different components of the system (memory, disk and network).
We present limitations and difficulties of the tool, and we propose
a new implementation that allows injecting faults into the register
of the target processor. The paper concludes with a comparison
between the fault injection tools based on virtual machine in a
first level, and between the LLVM-based fault injection tools in
a second level.

Index Terms—Fault Injection, Virtual Machine, FAUmachine,
LLVM, LLFI, KULFI

I. INTRODUCTION

The complexity of the systems used in the safety-critical
field increases significantly the number of transient and per-
manent faults in processors. Permanent faults are defined as
faults that exist indefinitely in an element if no corrective
action is taken. Thus, they model permanent hardware failures
such as an ALU that stops working or a cache line that has
a stuck-at fault. Transient faults are defined as faults that can
appear and disappear within a given period of time during
computation. They are caused by events such as cosmic rays,
alpha particle strikes or marginal circuit operation caused by
noise for instance.

The effect of faults can be dangerous on the behavior and the
performance of the system. For this reason, it is important to
integrate techniques to observe and control the effects of faults
on the system in the early stages of the whole system design
process. Fault injection is a powerful and useful technique to
assess the system dependability on faults. It is based on the
realization of controlled experiments with the goal to evaluate
the behavior of the computing systems in the presence of
faults. This technique can speed up the occurrence and the
propagation of faults in the system in order to observe their
impact on the performance of the system [1].
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Several fault injection tools have been proposed in the
literature. Most of them target only the hardware level of the
system. This approach could be costly in term of material
since it requires direct interaction with the hardware system. In
addition it does not permit to observe complex computer-based
systems. In our research, we are interested in evaluating the
reliability of the system in an early phase of the system design,
and without having information about the characteristics of the
used hardware system. Fault injection tools based on virtual
machine can be a good solution to achieve our objectives.
First, because they permit simulating the computer without
having the real hardware system. Moreover, they target hard-
ware faults on the software level, and they allow observing
complex computer-based systems, with operating system and
user applications. In this paper, we will present some existing
tools based on Virtual Machines (VMs), considering the virtual
machine classification defined following.

Virtualization is the technology permitting to create a VM
that behaves like a real physical computer with an Operating
System (OS). It has an enormous effect in today’s IT world
since it ensures efficient and flexible performance, and permits
cost saving from sharing the same physical hardware. The
virtual machine where the software is running is called a guest
machine, and the real machine in which the virtualization takes
place is called the host machine. The words host and guest are
used to make difference between the software that runs on the
virtual machine and the software that runs on the physical
machine.

Considering the notion of virtualization, a classification of
VMs into two main categories has been proposed in [2]:

• System Virtual Machines provide a complete environment
that supports the execution of a complete operating sys-
tem. System VMs are able to provide a platform to run
programs in which the real hardware is not available for
use, and to run multiple OS environments concurrently on
the same computer with a strong isolation. The virtual
machine can provide an ISA that is different from the
one of the physical machine. In this situation the whole
software is virtualized, therefore the VM has to emulate
both the application and the OS code.

• Process Virtual Machines is a virtual platform that ex-
ecutes a single process. It is created when the process
is started and deleted when it terminates. Its goal is
to provide an independent programming environment
platform which abstracts away details of the underlying



hardware or operating system, and enables a program
to execute in the same way on any platform. Process
VMs using different guest and host ISAs are imple-
mented using an interpreter, which fetches, decodes and
emulates the execution of individual guest instructions.
Since this process is relatively slow, the dynamic binary
translation can provide better performance by converting
guest instructions to host instructions in blocks rather than
instruction by instruction, and saving them in a cache for
later reuse.

The rest of the paper is structured as following. Section 2
introduces a process virtual machine named LLVM. The first
subsection gives an overview of the tool and its functionali-
ties. The second and the third subsections present two fault
injection tools based on LLVM named respectively LLFI and
KULFI. Section 3 introduces a system virtual machine named
FAUmachine. The first subsection gives an overview of the
tool and its functionalities, the second subsection describes
the fault model supported by FAUmachine, and the third
subsection presents our contribution to implement new feature
not supported by FAUmachine, which is fault injection in CPU
registers. Section 4 compares in a first level the two fault
injection tools based of virtual machine, and in a second level
the LLVM-based fault injection tools. Section 5 concludes the
paper.

II. LLVM

A. Overview

LLVM (Low Level Virtual Machine) is a compiler frame-
work designed to support transparent, life-long program anal-
ysis and transformation for arbitrary programs, by providing
high-level information to compiler transformations at compile-
time, link-time, run-time, and in idle-time between runs [3].

LLVM research project [4], started in 2000, is developed
at the University of Illinois, UrbanaChampaign, with the
objective to provide a modern Static Single Assignment (SSA)
based compilation strategy, able to support static and dynamic
compilation of programming languages. LLVM has been the
support for many sub-projects used in academic research.

LLVM uses the LLVM Intermediate Representation (IR) as
a form to represent code in the compiler. It symbolizes the
most important aspect of LLVM, because it is designed to host
mid-level analysis and transformations found in the optimizer
section of the compiler. The LLVM IR is independent from the
source language and the target machine. It is easy for a front
end to generate, and expressive enough to permit important
optimizations to be performed for real targets.

Figure 1 describes the LLVM compiler [5]. The front end
parses, validates and diagnoses errors in the input code. Then
it translates the parsed code into LLVM IR. This IR is sent
into a code generator to produce native machine code.

As a source code front ends, the LLVM compiler supports
several programming languages, such as C, C++, Objective-
C, Fortran, Python, ect. As a machine code backends, it
supports many instruction set, such as ARM, MIPS, PowerPC,
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Fig. 1. LLVM Based Compiler [5].

SPARC, x86/x86-64, ect. This means that LLVM permits to
define an abstraction layer to make the information obtained at
software level and the information obtained at hardware level,
compatible and easily exchangeable.

As mentioned above, LLVM is provided with a set of sub-
projects and tools for compilation and code optimization. We
describe in the following subsections, two fault injection tools
based on LLVM.

B. LLFI
LLFI [6] is an LLVM based fault injection tool, that permits

to inject faults into the LLVM intermediate level of the
application source code. Using LLFI, the faults can be injected
at specific program points and data types. The effect can
be easily tracked back to the source code. LLFI is typically
used to map fault characteristics back to source code, and
understand program characteristics or source level for various
kinds of fault outcomes. The reason why LLFI injects faults
at this level, is that the LLVM intermediate code is at a higher
level than the assembly code, and is able to encode more
information than the source code. In fact, at the assembly level,
it is not easy to track back the fault behavior to the source
level. This problem could be solved with a fault injection at
the source code level. However, this solution does not allow
modeling hardware faults because many hardware faults, that
affect some control flow instructions and registers are masked
at the lower layers of the system and can not be simulated at
the application layer.

The goal behind LLFI is to identify source level heuristics
that permits to identify optimal locations for high coverage
detectors of faults causing Egregious Data Corruptions (EDC).
EDC are application outcomes that deviate significantly from
the error-free outcome [6]. Non-EDC are application outcomes
with small deviation in output. EDC and non-EDC define the
Silent Data Corruptions (SDC), which is the outcomes that
result from any deviation from the fault free outcome.

LLFI supports the fault injection of transient hardware fault
occurring in the processor, which are the result of cosmic ray
or alpha particle strikes affecting flip flops and logic elements.
LLFI considers faults in the functional unit (the ALU and the
address computation for loads and store. However, faults in
the memory components, in the control logic of the processor
and in the instructions are not considered by the tool, which



is a limitation of the approach. In the new released version of
LLFI, there is consider of permanent faults that occur in the
processor, such as stuck-at.

C. KULFI

KULFI [7] (Kontrollable Utah LLVM Fault Injector), de-
veloped by Gauss Research Group at School of Computing,
University of Utah, Salt Lake City, USA, is an LLVM based
fault injection tool, that permits to inject random single bit er-
rors at instruction level. It allows injecting faults into both data
and address registers. It permits to simulate faults occurring
within CPU state elements, providing a finer control over fault
injection. For example, it enables to the user to define some
relevant options related to the fault injection mechanism, such
as the probability of the fault occurrence, the byte position in
which the fault could be injected, the suitable choice whether
the fault should be injected into the pointer register or the data
register.

KULFI considers the injection of both dynamic faults and
static faults. Dynamic faults represent the transient faults and
are injected to a fault site randomly selected during program
execution. Static faults represent the permanent faults and are
injected to a fault site selected randomly before the program
execution.

III. FAUMACHINE

A. Overview

FAUmachine, an open source tool [8] developed in the
Friedrich Alexander University of Erlangen-Nuremberg in
Germany, is a virtual machine that permits to install a full
operating system (Linux, OpenBSD, Mac OS X) and run them
as if they are independent computers. It supports CPUs 80286,
80386, pentium, pentium II and AMD64 as microprocessors.

FAUmachine differs from the standard virtual machines,
like QEMU [9] or VMWare [10] in many aspects. The main
motivation behind the FAUmachine project is to build a virtual
machine that provides a realistic hardware simulator able to
simulate hardware faults [11]. It permits to inject faults and
observe the whole operating system or application software.
Thanks to the virtualization, FAUmachine permits a high
simulation speed for both complex hardware and software
systems [12]. FAUmachine also supports automated tests,
including the specification of faults to be injected.

Listing 1. Injecting a stuck-at 1 in bit 0 of the memory address 0xfff0fff

architecture behaviour of fi is
signal err : boolean;
begin

process
begin
wait for 1000 ms;

shortcut_bool_out(err,
":pc:mem0:u3",
"stuck_at_1/0xfff0fff/0");

err <= true;
wait;

end process;
end behaviour;

The fault injection mechanism could be simulated either
through a Graphical User Interface (GUI) provided by the
virtual machine, or using VHDL scripts where the type, the
location, the time, and the duration of fault should be defined
(e.g. Listing 1). VHDL is just used as a language to describe
the faults in the fault injection experiment. It is not used
to describe the whole system and simulate the architecture.
Injecting faults using VHDL script is more efficient and yields
to significant results because the experiments are automated.
In fact, the user has the possibility to define a test bench,
which is a set of predefined stimuli and responses that are fed
to and awaited from the system under test. In addition, several
number of faults could be defined and injected simultaneously
during one experiment. FAUmachine gives also the opportu-
nity of running experiments deterministically. It means that
each run can be repeated for an arbitrary number of times,
with exactly the same system under test conditions as to the
temporal flow of events [13].

B. Fault Model
FAUmachine supports the fault injection in several compo-

nents of the system:
• Memory: transient bit-flip faults, and permanent stuck-at

and coupling faults, the
• Disk, CD/DVD drive: transient and permanent block

faults, and transient and permanent whole disk faults, and
the

• Network: transient, intermittent and permanent send and
receive faults.

The fault injection mechanism in FAUmachine is imple-
mented inside the simulators of different components. Each
component has a specialized fault type. For example, the
simulator of the network interface card permits to specify the
percentage of packet loss. The simulator of memory faults
permits to define the bit and the address where the fault is
injected.

C. Fault Injection in CPU Registers
1) Concept

FAUmachine does not support injecting faults in the CPU
registers. However, simulating faults in these locations is
interesting for us in our research, since we want to target
all the components of the system. Running fault injection
experiments in all possible elements of the system enable us
to achieve a detailed evaluation of the system reliability. This
was our motivation to study the possibility of implementing
the fault injection in the CPU registers inside FAUmachine.
Implementing the bit flip and the stuck-at faults requires
the modification of the Just-In-Time (JIT) compiler of
FAUmachine. The C-code of the simulated hardware of
FAUmachine tries to reflect the faulty behavior of the real
hardware, which makes possible to add new fault injection
capabilities without the need of rewriting a big part of
FAUmachine.



2) Implementation

VHDL Implementation 

GUI Implementation 
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Fig. 2. Implementation of the CPU Registers Fault Injection Process.

The implementation of the whole process is divided into
three main tasks as shown in figure 2:

• VHDL Representation of the fault: We define the structure
of the function needed to implement the VHDL script
when setting up the fault injection experiment. The func-
tion is defined as following:
shortcut bool out(Sig, PathToComponent, ”FaultType-
/RegisterName/Bit”);
where:

- Sig: the signal to the fault
- PathToComponent: the path to the instantiated com-

ponent, which should be the cpu register
- FaultType: the fault type (bit-flip or stuck-at)
- RegisterName: the name of the CPU register where

we want to inject the fault (EAX, EBX, ...)
- Bit: is the bit that we want to change the value

• GUI Representation of the fault: We implement the user
interface that permits to insert the fault parameters. It is
added to the existing fault injection interface provided by
FAUmachine as a new row with the specific parameters.

• Call-backs Implementation: We defined a set of methods
that are responsible for the fault injection mechanism.
These methods are implemented in the very generic
Intel CPU, so that all the x86 CPUs inherit the new
fault injection facility. Figure 3 presents the structure
describing the methods and the relationships between
them.

NAME_(connect) 

NAME_(fault_set) 

NAME_(port) 

Fig. 3. The Structure describing the Methods and their Relationships.

The function NAME (connect) is called when the
shortcut of the fault is established. It stores the register,
the bit number and the fault type into the fault structure
previously defined. These information are fetched from
the shortcut when the function NAME (port) is called.
No fault injection is recognized at this level. Fault
injection is done when the signal connected is set to

1. The signal change is propagated via the callback
functions NAME (fault set), which should do the real
fault injection. When NAME (fault set) is called, it
knows already which bit to change in which register
thanks to the information stored in the fault structure.

3) Discussion

The implementation described above represents only the
infrastructure needed when the fault injection function is
called. Many other internal mechanisms need to be handled.
One challenge is the modification of the JIT compiler.

For the bit flip, the JIT needs to generate slow code only in a
small time interval around the time of the bit flip. The overhead
of injecting a bit flip in the CPU register will not be so big in
average. In figure 4, we compare the compilation process with
and without fault injection. Before and after the fault injection,
we could use the standard optimized code. When we want to
inject the bit flip, the CPU is executing one block. So this
block must be splitted into single instructions in order to be
able to inject faults at any instruction we want, not only at the
beginning of the block. When the bit flip fault is activated,
we throw away all code compiled before and generate new
single-instruction code. Then we can count instructions and
inject the fault into the 100th instruction. We will have a small
delay between activating the fault and the real fault injection
but this will not be noticed. When the bit-flip is done we can
then again throw away all generated single-instruction code
and switch back to the standard optimized code generation.

Compile Time 
without FI 

Compile Time 
with FIx 

Generate standard 
optimized code 

Generate single 
instruction code 

Generate standard 
optimized code 

Fault Activation 
Fault Injection (FI) 

Fault End 

Small delay between 
the fault activation and 
the fault injection 

Process begin Process End 

Delay between the compilation 
end process with and without FI 

Generate standard 
optimized code 

Fig. 4. Compilation Process with and without the Injection of a Bit Flip
Fault.

Concerning the stuck-at faults, the JIT needs also to do
some more tasks. For example, if we wanted to execute the
instruction ”add $1, %eax” without any fault injection, this
would be compiled similar to listing 2. However, when a stuck-
at 1 fault is injected into the register %eax in bit 2, this would
be compiled similar to listing 3. In general, the stuck-at fault
injection will perform well. There is only a small overhead
(about less 5%) when writing into the register affected by the
fault injection.



Listing 2. Compiling instruction without fault injection

T0 = env->reg_eax;
T1 = 1;
do_add();
env->reg_eax = T2;

Listing 3. Compiling instruction with injection of stuck-at 1 into register
%eax in bit 2

T0 = env->reg_eax;
T1 = 1;
do_add();
env->reg_eax = T2;
env->reg_eax |= 1 << 2; /* Fault-Injection */

IV. COMPARISON

Based in our research objectives, we compare in this section
the presented fault injection tools based on virtual machines,
FAUmachine and LLVM-based in a first step, and the LLVM-
based fault injection tools, LLFI and KULFI in a second step.

A. FAUmachine vs LLVM-based Fault Injection Tools
Our research objective is to evaluate the reliability of

the system in an early design phase of the system, without
previous information about the characteristics of the hardware.
We target complex computer-based systems with the operating
system and the user application. In a second stage of our
research, we want to validate our approach with a finer speci-
fication of the hardware system. We evaluate the reliability of
the whole system with the observation of the hardware faults
effect on the behavior of the global system.

LLVM-based fault injection tools aim to study the effect of
faults on a high-level code. It permits to assess the reliability
of the system targeting the user application level indepen-
dently from the hardware system. However, FAUmachine
allows injecting hardware faults in the virtual machine and
observing their effects on the operating system. Thanks to
the virtualization, FAUmachine can be used as a validation
tool to observe the behavior of the whole system without
having the real hardware system. Unlike LLVM, FAUmachine
is not independent from the hardware system but it supports a
specific set of processors. As a conclusion, FAUmachine and
LLVM-based fault injection tools are complementary. They
are both interesting in our research project since they permits
to target complex computer-based systems on both the user
application and the operating system level.

B. Comparing LLVM-based Fault Injection Tools: LLFI vs
KULFI

KULFI and LLFI are open source fault injection tools
based on LLVM. They were developed concurrently and they
share several similar features [7]. In figure 5, we provide a
table comparing the two tools on many aspects. Both LLFI
and KULFI support the injection of single bit fault into the
intermediate code level of the application (IR). KULFI is
easier to control in term of simulating the fault injection
experiments. It provides also more precise control over the
fault injection process than LLFI.

LLFI KULFI 
Principal 
Function 

Identify source code level 
heuristics of EDC causing faults 

Simulate faults occurring within CPU 
state elements  

Fault 
Model  

Transient hardware faults that 
occur in the processor 
Permanent hardware faults 
(stuck-at) 

Static faults: permanent faults, injected 
during compile time 
Dynamic faults: transient faults, 
injected during program execution 

Fault 
Injection 

Inject fault in the intermediate 
code level of the application (IR) 
Inject a single bit fault into the 
destination register 

Inject fault in the intermediate code 
level (IR) (LLVM bitcode level) 
Inject a single bit faults into both data 
and address registers 

Feedbacks Uses more recent version of 
LLVM 

Provides more precise control over the 
fault injection process 
Easier to control 

Fig. 5. Comparison between LLFI and KULFI.

V. CONCLUSION

In this paper, we presented some LLVM-based fault injec-
tion tools, that are able to inject single bit faults into the
intermediate code level of the application, and to observe their
effect on the user application. At the moment these LLVM-
based fault injection tools inject transient and permanent faults,
such as stuck-at or bit flip faults.

In this paper, we presented FAUmachine, a virtual machine
that is able to support fault injection in several components of
the system and to observe the effect of faults on the perfor-
mance and the behavior of the whole system. We presented
our contribution to add a new feature to FAUmachine, which
is the implementation of fault injection in the CPU registers.

In future work, we aim to adapt these fault injection tools
to support the fault model we defined at software level, such
as an instruction or a variable used in place of another.
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