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Abstract—Developing new methods to evaluate the software
reliability in an early design stage of the system can save the
design costs and efforts, and will positively impact product time-
to-market. This paper introduces a new approach to evaluate, at
early design phase, the reliability of a computing system running
a software. The approach can be used when the hardware
architecture is not completely defined yet.

In order to be independent of the hardware architecture and
at the same time accurate, we propose to use the Low-Level
Virtual Machine (LLVM) framework. In addition, to reduce the
reliability evaluation time, our approach consists in analyzing
the variable lifetimes to compute the probability of masked
faults. Finally, to achieve a better characterization we propose to
consider also the presence of caches and register files. For this
purpose, a cache emulator as well as a register file emulator
are developed. Simulations run with our approach produce
very similar results to those run with a hardware-based fault
injector. This proves the accuracy of our approach to evaluate
system reliability with a gain in the simulation time and without
requiring a hardware platform.

Index Terms—Reliability, Hardware Faults, Lifetime, LLVM,
Data Cache, RAM

I. INTRODUCTION

System reliability has become an important design aspect

for computer systems due to the aggressive technology minia-

turization, which introduces a large set of different failure

sources for hardware components [1] [2] [3]. The hardware

system can be affected by faults caused by physical manu-

facturing defects, environmental perturbations (e.g., radiations,

electromagnetic interference), or aging-related phenomena [4].

Faults propagate through the different hardware structures

composing the full system, as shown in Fig. 1. However,

they can be masked during this propagation either at the

technological or at architectural level [5] [3]. When a fault

reaches the software layer of the system, it can corrupt data,

instructions or the control flow. These errors may impact the

correct software execution by producing erroneous results or

prevent the execution of the application leading to abnormal

termination or application hang. The software stack can play

an important role in masking errors, which enables the im-

provement of the system reliability. In this work we investigate

the role of the software and its impact on the overall system

reliability in a very early design stage of the system, i.e., when

the hardware architecture is possibly not yet fully defined.

In order to evaluate the reliability in such early design

stage, we need to investigate methods and tools to describe the

software independently from the target hardware architecture.
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Fig. 1: System Layers and Fault Propagation

At this stage, the Instruction Set Architecture (ISA) might be

unknown and therefore cannot be used to perform simulations

to analyze how faults propagate through the software mod-

ules. A possible solution is to use virtualization techniques

to abstract the ISA. The virtualization concept ensures the

possibility to make analysis without previous knowledge of

the ISA. Different alternatives of virtual environment imple-

menting virtual ISA are available in the literature [6] [7] [8].

LLVM [8] is a compiler framework that uses virtualization

with virtual instruction sets to perform complex analysis of

software applications on different architectures. LLVM uses

the intermediate representation as a form to represent code

in the compiler. This representation is similar to an assembly

code and independent from the source language and the target

machine.

In this paper, we introduce a new approach to evaluate the

system reliability without performing a long fault injection

campaign, as usually used by existing approaches in the

literature [9]. The method we propose allows evaluating the

outcome of the software when a single fault affects its data.

We use the concept of the variable lifetime and the variable

residence to compute the percentage of masked faults. To be

accurate, we propose to use the LLVM virtual ISA. Further-
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more, to achieve a better characterization, we must follow a

holistic approach when targeting the software layer. Thus we

take into account the presence of the cache and the register

files. Since we are working at a high level, where the concept

of data cache is not modeled, we build a system emulator

to represent a simplified model of a memory subsystem. We

emulate the behavior of different system components: the

RAM, the data cache, and the register files.

The main advantages of the proposed approach are: (i)

it does not require a fully predefined hardware, and (ii) it

significantly reduces the simulation time compared to the

standard hardware reliability evaluation techniques. To validate

our approach, we compare the results to those of an FPGA-

based fault injection tool using the microprocessor LEON3

[10]. The similarity of the results proves the effectiveness and

the efficiency of our approach.

The rest of the paper is organized as follows. Section II

summarizes related works. Section III introduces the proposed

approach. Section IV presents the experiments and the results.

Section V concludes the paper.

II. RELATED WORK

In this section, we report related work existing in the

literature. In subsection II-A, we introduce the fault injection

techniques. In subsection II-B, we present the reliability eval-

uation tools based on LLVM. In subsection II-C, we present

existing methods that use the concept of lifetime analysis.

A. Fault Injection

Fault injection is a widely used technique to evaluate the

system reliability [9]. It is based on performing controlled

experiments in order to observe the system behavior in the

presence of faults. Two main classifications of fault injection

techniques exist in the literature: hardware-based techniques

that directly inject faults in the target hardware, and software-

based techniques that model the hardware fault at an abstract

level. The hardware-based techniques [11] perform fault in-

jection campaigns in more realistic conditions and provide

therefore more accurate results. The software-based techniques

[12] [13] provide cheaper solutions to evaluate the reliability

of the whole system with sufficient accuracy levels. In gen-

eral, the fault injection techniques are expensive in term of

simulation time and energy consumption because they require

computing a big number of simulations (up to 10K) for the

same application. Our approach provides a better solution

to evaluate the fault effect by performing only one program

execution.

B. LLVM-based Evaluation Tools

The reliability evaluation tools based on LLVM use the fault

injection method to simulate hardware faults [14]. Thomas et

al. [15] develop LLFI, an LLVM-based fault injector permit-

ting to inject transient faults into the processor’s computation

units. The tool is used to map fault outcomes back to the

source code, and understand the relationship between program

characteristics and the various types of fault outcomes. Sharma

et al. [16] develop KULFI, another LLVM-based fault injector

permitting to inject single bit flips into the instructions as

well as in the data/address registers. KULFI simulates faults

occurring within the CPU and provides a finer control over

the fault-injection process.

The limitation of the previous tools is that they are still

time-consuming and they do not target memory components

such as caches or RAM. We target in our approach the data

cache and the data in the RAM.

C. Lifetime Analysis

Mukherjee et al. [3] use lifetime analysis to compute the

Architectural Vulnerability Factor (AVF) of the instruction

queue and execution units. Biswas et al. [17] apply the lifetime

concept to compute the AVF of the data cache, the data

translation buffer, and the store buffer. Montesinos et al. [18]

use the register lifetime to propose a technique that protects

register files against soft errors.

While the previous techniques compute lifetime analysis on

a physical processor, our approach uses a virtual ISA. Besides,

the proposed techniques in [3] target faults in instructions, in

[17] target faults in only some address-based structures, and

in [18] target only register files. In our approach, we target the

data in different components of the system (RAM, data cache

and register files).

III. PROPOSED APPROACH

In this section, we present our approach. We explain the

concept of lifetime analysis and variable residence. Then

we introduce our system emulator and the considered fault

classifications.

A. Lifetime Analysis

During the program execution, a variable can be read or

written. The variable is alive from the first write (followed by

a read) to the last read (before the next write or the ending of

the program), otherwise it is dead. When a variable is dead,

its content is irrelevant to the correct program execution since

it will be either re-written or never used again. Thus any fault

affecting this variable will be masked.

In Fig. 2, we present the steps of the lifetime computation.

Starting from the original source code written in any program-

ming language (or possibly the binary code), we generate the

corresponding LLVM code using the LLVM compiler. Since

LLVM does not provide information about the exact timing

when an instruction is executed, we instrument the original

code by adding the information of the current clock cycle

of the executed instruction (we consider that each LLVM

instruction is executed in one clock cycle). In particular,

we use a counter that is incremented after each instruction.

Then we execute the program and we record a trace that

contains information about each write (’store’ or ’alloca’

instruction) and read (’load’ instruction) operation computed

by the program. We record, for each read/write operation, the

corresponding clock cycle, the physical address of the variable,

the operation type (read or write), and the variable size. Once
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Variable trace

Original source code / 

Binary code

LLVM compilation

Execution

Clock cycle Variable Physical address Size(bit) Operation(w/r)

1 a 0x7fbece0 32 w

2 b 0x7fbece8 32 w

8 a 0x7fbece0 32 r

9 b 0x7fbece8 32 r

11 b 0x7fbece8 32 w

12 b 0x7fbece8 32 r

int a,b;

…
b += a;

printf(“%d”, b);

LLVM code
%a = alloca i32

%b = alloca i32

…
%4 = load i32* %a

%5 = load i32* %b

%6 = add i32 %4, %5

store i32 %6, i32* %b

%7 = load i32* %b

%8 = call i32 @printf(i32 %7)

a
b

b

Lifetime analysis

Variable Lifetime intervals Lifetime in the program

a 1:8 63%

b 2:9,11:12 72%

Fig. 2: Lifetime Computation

we have the trace, we calculate the cumulative number of clock

cycles in which the variable was alive. Divided by the total

program clock cycles, this corresponds to the lifetime of the

variable in the program. Clearly, the lifetime of the program

variables is depending from the used workload.

ALU

CU
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System
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Fig. 3: Data Location in System

B. Variable Residence

In modern microprocessors, the concept of data caches is

introduced to store data in order to accelerate their future

requests by the processor. To be cost-effective and to enable

efficient use of data, the caches are relatively small compared

to the RAM. This cache-based architecture introduces a sort of

hardware redundancy for increasing performances. This means

that the same variable can have, at the same time, several

copies in different locations. It can reside in the RAM (the

data segment or the stack), the data cache and/or the CPU

(the registers), as shown in Fig. 3. While at the software level

it is the same variable, from the hardware point of view only

one copy is active in the program and influences the execution.

Therefore, a fault affecting one of the non active copies might

be masked. Thus to compute the percentage of masked faults,

we take into account the variable residence. In addition to that,

since a fault in the data can affect any of the memory units

containing data as shown in Fig. 3, we also consider in our

computation the target component (i.e. where the fault occurs).

To determine the variable residence, we require information

about the program execution and the memory units. In our

analysis, we want to target a hardware-independent level. At

this level, the concepts of data cache and register files are

not defined. We developed a memory subsystem emulator

representing a simplified model of the actual system. The

concept of system emulator is explained in the next subsection.

Clock Var address Size Operation

1 0x7fbece0 32 w

2 0x7fbece8 32 w

8 0x7fbece0 32 r

9 0x7fbece8 32 r

11 0x7fbece8 32 w

Data cache emulator
(size = 128 bit, no-write 

allocation, LRU)

Register file 

emulator
(size = 32bit)

RAM

8 0x7fbece0

9 0x7fbece8

8 0x7fbece0

1 0x7fbece0

2 0x7fbece8

8 0x7fbece0

9 0x7fbece8

9 0x7fbece8

8 0x7fbece0

11 0x7fbece8

LRU

Fig. 4: System Emulator

C. System Emulator

As presented in Fig. 4, the system emulator considers three

main units: the RAM, the data cache and the register files.

While in this paper we focus on a single cache layer, the

proposed method can be straightforwardly scaled to multiple

levels of cache. The structure of each unit is designed in a way

to be: (i) as close as possible to a real system behavior, and

(i) as generic as possible to support different characteristics

of different microprocessors. For each component, we require

some hardware configurations to be given by the user as input

to the tool. These parameters are the only link of our approach

with the hardware characteristics. In this paper, we consider

the following:

• The RAM contains all the active variables used during

the program execution. As input, we require the RAM

size.

• The data cache contains, for each clock cycle, a set of

the recently used variables for future request. As input,

we need the data-cache size, its write-miss policy (write

allocation or no write allocation), its write-hit policy

(write through or write back) and its replacement strategy

(Least Recently Used (LRU), Least Recently Replaced

(LRR), random).

• The register files contain, for each clock cycle, a small

set of the recently used variables by the program. As
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input, we need the size of the register files where data

are stored.

During the program execution, we build for each clock cycle

the content of each component, as shown in Fig. 4. The data-

cache emulator and the register-file emulator are updated for

each clock cycle when a variable has either a write or a read

operation.

The data-cache emulator is implemented as a priority queue.

We present in Fig. 5 the algorithm we follow for its construc-

tion. Whenever a variable is written or read, if write-allocation

(or only read if no-write allocation), either we update its

position to the head, if already in the cache, or we add it,

if not. The process of adding variables depends on the state

of the cache at the current clock cycle and the replacement

policy. If the cache has enough space for the new variable,

it is added to the head. Otherwise we keep deleting existing

variables with respect to the replacement mechanism, till we

find enough space for the new variable.

Var in 

cache?

Update var to 

the cache head 

Write-miss 

policy?

Cache 

full?

Operation 

= read?

Add var to the 

cache head 

Replacement 

mechanism?

Delete LRR 

var from cache 

Delete a random 

var from cache

Delete LRU 

var from cache 

No-write 

allocation

No

No

Yes

Yes

Write 

allocation
Yes

No

LRRLRU random

Operation (r/w) 

on a var

Fig. 5: Cache Building

The register-file emulator is also implemented as a priority

queue. The process of adding variables is simpler. It follows

the algorithm presented in Fig. 6. If the variable is already

in the registers, we simply update it to the head. In the other

case, the variable is added based on the LRU replacement

mechanism.

D. Fault Classification

Once we have the variable residence and the variable

lifetime in the program, we classify the fault outcomes into

masked, i.e. the program terminates correctly, or failure, i.e.

the fault affects either the program outputs (erroneous results)

or the program execution (crash or hang).

Var in 

Registers?

Update var to the 

register head 

Registers 

full?

Add var to the 

register head 

Delete LRU var

from registers

No

No

Yes

Yes

Operation (r/w) 

on a var

Fig. 6: Register-File Building

1) Fault Classification in the RAM: In order to classify

the faults occurring on data in the RAM, we consider, for

each clock cycle, the variable lifetime in the program and its

residence in the data cache. We use the following assumptions:

• A fault affecting a variable that (i) is living in the program

and (ii) will be reloaded to the data cache before its death,

results to a failure, as shown in Fig. 7.

• A fault affecting a variable that does not satisfy the

previous condition is masked.

Lifetime:

Life in RAM:

Life in cache:

Life in μP:

Failure in RAM:

Failure in cache:

W R R R W R R

Failure in the RAM & data cache

Lifetime of a variable for each location:

Fig. 7: Lifetime Analysis based on the Variable Residence

and the Variable Lifetime in the Program (cache policy: write

though with no-write allocation).

2) Fault Classification in the data cache: In order to

classify the faults occurring in the data cache, for each clock

cycle, we consider the variable lifetime in the program and its

residence in both the data cache and the register files. We use

the following assumptions:

• A fault affecting a variable that (i) is living in the pro-

gram, (ii) resides in the data cache and not in the register,

and (iii) will be used (read/written) before leaving the

data cache, results to a failure, as shown in Fig. 7.

• A fault affecting a variable that is (i) living in the pro-

gram, (ii) residing in the data cache and in the registers,

and (iii) will be reloaded to the register files before
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leaving the data cache, results also to a failure, as shown

in Fig. 7.

• A fault affecting a variable that does not satisfy the

previous conditions is masked.

The computed percentage of masked faults corresponds to

the minimum of masked faults in the program. In fact, the

program can contain techniques of software fault tolerance,

such as software masking (e.g., C=AxB, if B=0 then any fault

in A will be masked) or redundancy (e.g., data duplication

or triplication). Any faults occurring in a variable protected

by such techniques is masked, while the lifetime analysis

would consider them as failures. Thus, we enhance our tool by

adding a configuration file where the user can state, for each

variable, if there is a fault tolerance mechanism implemented

at software level. In particular, it is possible to provide the

list of variables either protected or detected by the software

itself. Then in our analysis we compute that any fault occurring

in one of these variables is masked in case of protection, or

detected in case of detection.

IV. EXPERIMENTS AND RESULTS

In this section, we present the results obtained by applying

our approach on different benchmarks and we compare them

to the results of an FPGA-based fault injector.

A. Target Benchmarks

In order to evaluate our approach, we set up a list of

benchmarks on which we run simulations. The target bench-

marks have different execution times and memory utilization,

and cover both data-intensive and control-intensive algorithms.

We use a matrix-multiplication program with a 50x50 integer

array. We also select a set of workloads from the open-source

benchmark suite MiBench [19] (bit count, quick sort, string

search, fft, crc 32).

B. FPGA-based Fault Injector

To validate our approach, we use a hardware-based fault

injector. Such tools are considered in the literature as accurate

techniques to evaluate system reliability.

We use SCFIT, an FPGA-based fault injector proposed by

Ebrahimi et al. in [11]. It permits to inject single bit-flips in

flip flops and memory units. We apply this technique on the

LEON3 processor [10].

The SCFIT platform manages the fault-injection process and

the communication between the host computer and the FPGA

board. After implementing the target processor on the FPGA

board, the host computer sends the program to be executed.

A fault is injected in the target processor component during

the execution of the program. When the faulty execution

completes, snapshots of the RAM are sent back to the host

computer. We compare the faulty RAM to the golden RAM

in order to classify the fault.

C. Results and Comparison

For the simulations, we set up the following configurations

for the LEON3 processor, and we provide them as input to

our analysis:

- RAM size: 256 KB

- Data cache size: 4 KB

- Cache policy: write-through for the write hit, no-write

allocate for the write miss and LRU for the replacement

mechanism

- Register file size: 512 B

1) Simulations on the RAM: First we simulate the effect of

faults occurring in the data of the RAM. Fig. 8 presents the

masking probabilities of the faults analyzed by the proposed

approach compared with those obtained using the FPGA-based

fault injector.
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88,3

95,1

91,6
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Fig. 8: Results of Fault Classification in the RAM for the

LLVM-based Lifetime Analysis and the FPGA-based Fault

Injector.

2) Simulations on the Data Cache: We also simulate the

effect of faults occurring in the data cache. Fig. 8 presents the

masking probabilities of the faults analyzed with the proposed

approach compared with those obtained using the FPGA-based

fault injector.

Our results are very close to those of the FPGA-based fault

injector. On average, the absolute difference is 1.8% for the

RAM, and 1.2% for the data cache. This proves that our

approach permits to accurately evaluate the effect of faults

occurring in different memory components of the system, such

as the data cache and the RAM.

To obtain statistically significant results with an error margin

of 1% and a confidence level of 95%, 10K fault injections have

to be simulated as proposed in [20]. Thus, in term of time

and energy consumption, for 10K injections, the program is

executed 10K times and the outcomes are analyzed 10K times.

However, our approach requires only one program execution

and one fault analysis, which greatly saves the simulation

time. In all tested cases, our tool concludes the analysis in

few seconds.
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Fig. 9: Results of Fault Classification in the Data Cache for

the LLVM-based Lifetime Analysis and the FPGA-based Fault

Injector.

D. Discussion

Based on lifetime analysis, our approach permits to evaluate

the effect of faults affecting either the data cache or the

data of the RAM. As a future work, we propose to target

more system components by analyzing both faults occurring

in the data and the instructions. We can consider faults in the

registers, in the instructions of the RAM and in the instruction

cache. Furthermore, in this paper we consider only one level

of data cache. Our approach is general enough to be applied

on multiple cache levels.

V. CONCLUSION

In this paper, we presented a new approach to evaluate

system reliability without performing a long fault-injection

campaign and without requiring a hardware platform. The

approach consists in analyzing the variable lifetime and the

variable residence in different components of the system,

which permits to reduce the reliability evaluation time. In

order to be independent from the hardware architecture, we

use the LLVM virtual instruction set. Moreover, to achieve

a better characterization of the system reliability, we consider

the presence of the RAM, the data cache and the register files.

For that we build a system emulator that models the behavior

of these components.

To validate our approach, we compare the results to an

FPGA-based fault injector. The results show that we reach

our objectives. Compared to the fault injection technique,

our approach permits to save the simulation time without

losing accuracy. In addition our approach does not require the

presence of a fully defined hardware architecture.
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