

Microprocessor Reliability-Performance Tradeoffs
Assessment at the Microarchitecture Level

Sotiris Tselonis Manolis Kaliorakis Nikos Foutris George Papadimitriou Dimitris Gizopoulos
Department of Informatics & Telecommunications, University of Athens, Greece

{tseloniss, manoliskal, nfoutris, georgepap, dgizop}@di.uoa.gr

Abstract—Early decisions in microprocessor design require a

careful consideration of the corresponding performance and
reliability implications of transient faults. The size and
organization of important on-chip hardware components such as
caches, register files and buffers have a direct impact on both the
microprocessor resilience to soft errors and the execution time of
the applications. In this paper, we employ a state-of-the-art x86-
64 full-system micro-architectural simulator and a
comprehensive fault injection framework built on top of it to
deliver a detailed evaluation of the reliability and performance
tradeoffs for major hardware components across several
important parameters of their design (size, associativity, write
policy, etc.). We also propose a simple and flexible fitness
function that measures the aggregate effect of such design
changes on the reliability and the performance of the studied
workload.

Keywords— microprocessors, reliability estimation, transient
faults, performance, fault injection

I. INTRODUCTION
Despite the continuous performance improvement in

modern microprocessor chips, a known downside of
technology scaling is the increased susceptibility of hardware
structures to soft errors [1] [2] [3]. Design decisions related to
the parameters of such key hardware components (size or
associativity of a cache memory or size of a physical register
file) should be both performance and reliability aware,
because both aspects are workload and microarchitecture
dependent [4].

Both microarchitectural and RTL simulators are available
at the early stages of a microprocessor design. RTL
simulations are more accurate but have very low throughput.
On the other hand, cycle accurate microarchitectural
simulators [5] offer the potential of making performance and
reliability evaluations at higher levels of abstraction but at a
significantly higher throughput, helping engineers to make
design decisions early enough at the design stage. While
microarchitectural simulators provide a set of measurements
for performance, they do not provide relevant support for
reliability studies. A major missing part of the microprocessor
models in simulators is that of the data/instruction arrays in
caches, improving simulation time but rendering reliability
studies through fault injection impossible. Thus, extensions in
these structures are inevitable to make fault injection
experiments feasible [6] [7].

Major storage arrays of a microprocessor (caches, register
files, queues, buffers etc.) are of prevalent importance since
occupy very large parts of the chip’s silicon estate and largely
determine the overall microprocessor reliability. Several

microprocessor reliability studies are used for early reliability
assessments based on ACE (Architecturally Correct
Execution) analysis [8] [9] [10] [14], probabilistic models [11]
[12] or fault injection [6] [7] [13] [14] [15]. Probabilistic
models as well as ACE analysis are undoubtedly faster than
fault injection, but they overestimate the vulnerability of
microprocessor structures by several times [14] [16]. On the
other hand, fault injection on top of microarchitectural
simulators resembles much closer the actual behavior of
hardware and software in the presence of faults [6] [14].
Statistically significant fault injection campaigns on such
infrastructures deliver very accurate reports on the faulty
behavior of hardware components [17] at the expense of larger
simulation times.

In this paper we present a complete fault injection analysis
of transient faults which jointly considers the reliability and
the performance impact of several important design
parameters on a modern out-of-order x86-64 architecture. We
focus on the most important storage arrays of the
microprocessor: the physical register file, the cache memories
(split L1 data and L1 instruction cache and the unified L2
cache) and the load/store queue. Starting from a baseline
configuration for all the components of our study, we modify
the sizes of the hardware structures and assess the impact on
reliability and performance. For each cache memory structure
we also study the impact of the different write policies (write
back vs. write though) while for the important case of the L1
caches (both instruction and data), we extensively evaluate the
impact of different associativity points as well as their
behavior in the presence or absence of L1 prefetchers. To our
knowledge, no study of this extent that considers all these
parameters has been reported previously.

Each different design point is analyzed based on an
individual statistically safe fault injection campaign. Along
with the performance information for each configuration a
microprocessor designer can make informed decisions about
the hardware protection mechanisms required for a particular
configuration and workloads [10]. To assist design decisions
we define a simple yet flexible fitness function which
describes the combined effect on reliability and performance
that certain design parameters have.

II. EXPERIMENTAL SETUP

A. The Fault Injection Framework

In our study, we used MaFIN a recently introduced and
easily configured fault injection framework [6] [7] (with
implemented data arrays on caches and complete fault

!"#$%&'''%()*+%,-.&%/01*%.23451673%8,/.9%

!

:;<=#=)$;(=<)>)=)?#$?@(#A""%B!"#$%&'''%

!

injection infrastructure) that is built on top of MARSSx86
microarchitectural full-system x86-64 simulator [5]. We
further extended the memory hierarchy model with a prefetch-
on-miss sequential prefetcher in the L1 instruction cache and a
stride prefetcher in the L1 data cache [18] to better resemble a
modern x86-64 processor. MARSSx86 and its predecessor
(PTLsim) have been extensively used in many performance
and reliability studies [7] [15] [19].

We selected MARSSx86 because: (i) it accurately
simulates an x86-64 out-of-order microprocessor model along
with its memory system [20], (ii) it is full-system and cycle-
accurate, (iii) it consists of easily configurable
microarchitectural structures, giving us the opportunity to
combine both performance and reliability studies in the same
tool framework.

B. Hardware Structures Configuration

We use fault injection and modify a single parameter of
the baseline microarchitecture (presented in TABLE I) at a
time, to monitor the impact of individual changes on the
reliability of the structure in conjunction with the performance
of the application. The variants of the baseline model used in
our experiments are illustrated in TABLE II. In the first two
columns we refer to the target structures and their
microarchitectural features while in the last column we list the
alternative values that each feature had in our experiments.

TABLE I BASELINE CONFIGURATION

Structure Baseline Model
Pipeline OoO
Issue Queue 32 entries
Reorder Buffer 64 entries
Phys. Int. Reg. File 256 registers
L1 D cache 32KB, 64B, 4-way, write-back, stride pref.
L1 I cache 32KB, 64B, 4-way, write-back, sequential pref.
Unified L2 cache 1MB, 64B, 16-way, write-back, w/o pref.
Unified LSQ 32 entries (16 load queue, 16 store queue)
Branch Predictor Tournament Predictor
Branch
Target
Buffer

Direct branches 1K entries, 4-way

Indirect branches 512 entries, 4-way

RAS 16 entries
Functional Units 2 Integer ALUs, 2 FP ALUs, 4 AGU

C. Metrics

We apply a fault mask during a fault injection run and
classify its outcome in one of the following categories,
comparing the application's output, the number of raised x86-
64 exceptions and the execution time with the golden ones.
Masked: The application’s output and the raised exceptions
are equal to the golden ones.
Silent Data Corruption (SDC): The application’s output
differs from the golden one but the raised exceptions are equal
to the golden ones.
Detected Unrecoverable Error (DUE): The number of raised
exceptions is greater than the golden one. We focus on the
raised exceptions as an indicator of an error occurrence due to
the lack of any error detection or protection mechanism in the
simulated model of microprocessor.
Timeout: Program flow has been trapped and the simulator
stopped committing instructions (deadlock) or has been
redirected on random code areas executing instructions

(livelock). This timeout limit was set in three times the fault-
free execution time.
Crash: The fault causes process, system (such as kernel panic)
or simulator crashes.
Assert: Simulator termination due to assert function.

TABLE II EXPERIMENTAL SETUP

Structure Parameter Values
Phys. Register File Number of Registers 64/128/256

L1 D cache

Size 16KB/32KB/64KB
Associativity 1/2/4/8
Write policy WB/WT
Prefetcher enabled/disabled

L1 I cache

Size 16KB/32KB/64KB
Associativity 1/2/4/8
Write policy WB/WT
Prefetcher enabled/disabled

L2 cache Write policy WB/WT
LSQ Number of entries 32/64/96

For the performance and the reliability evaluation of the
benchmarks we use the IPC (instructions per cycle) metric and
the FIT (failures in time) rates respectively. In all our
experiments, we assume an arbitrary raw FIT rate of 0.01 per
bit, but different rates can also be used. We also define the
fitness metric that quantifies the impact of microarchitectural
changes on both reliability and performance:

()1
 1 – fitness a a IPC

FIT
= × + × (1)

In equation (1), FIT is the fraction of the failures in time
(on average for all benchmarks) that a hardware component
with a specific configuration has over the one of the baseline
model (FIT=FITconf/FITbase); therefore, FIT >1 means that the
studied configuration has a higher FIT rate (smaller reliability)
than the baseline configuration. Similarly, IPC is the fault free
committed instructions per cycle (on average for all
benchmarks) with a specific hardware configuration over the
one with the baseline hardware configuration
(IPC=IPCconf/IPCbase); therefore, IPC>1 means that the studied
configuration is faster than the baseline. Parameter a is
designer-defined (taking values from 0 to 1) and represents a
wide range of designs that put more emphasis on the reliability
or on the performance or balances both. The smaller the value
of a, the more importance is given to performance (IPC). On
the contrary, the larger the value of a, the more importance is
given to reliability. If a equals to 0.5, then the same
importance is given to both performance and reliability.
Consequently, every fitness value of equation (1) represents a
design point corresponding to an experimental setup that can
be either better (in terms of reliability and performance) than
the baseline configuration (fitnessconf > fitnessbase) or worse
(fitnessconf < fitnessbase), where fitnessbase = 1.00.

III. EXPERIMENTAL RESULTS
In our experiments, we focused on individual deviations

from the baseline configuration, modifying only one
configuration parameter at a time to assess its effect on
reliability and performance.

A. Fault Sampling

For each injection campaign we used the formula of [17]
which provides the number of injection experiments required

!

!

given the following inputs: (i) the size of a hardware structure
in bits, (ii) the execution time of a benchmark in cycles, and
(iii) the required statistical confidence level and error margin.
Among these inputs confidence and error margin mainly affect
the number of required fault injections. We ran 2000 fault
injection experiments for each campaign corresponding to
2.88% error margin and 99% confidence level.

B. Benchmarks

Performance and reliability evaluations are workload
dependent [4] [10] and a careful selection of benchmarks is
vital for the accuracy of a study. We carried out fault injection
campaigns during the execution of 7 benchmarks (search,
corner, edge, sha, qsort, smooth) from MiBench suite because
their short execution time enables us to execute them
completely and observe the effect of a fault in the program's
output [21]. Moreover, they are representative of real world
applications (having many similarities to SPEC benchmarks
i.e. instruction mix, throughput) and they also have been
previously used in many reliability studies [7] [14] [15] [22].

C. Characterization of results

Our extensive fault injection campaigns of single transient
faults target important microarchitectural structures (L1 Data
cache, L1 Instruction cache, L2 unified cache, physical integer
register file, and LSQ) across different values of their
parameters shown on TABLE II. In total 336,000 fault
injections have been executed (7 benchmarks x 24 different
parameters combinations x 2000 injections per campaign).

We present our findings in two subsections. The first one
presents the reliability characterization of the hardware
structures at the different design points. In the second, we
apply the fitness metric to correlate the performance and the
reliability for all the variations of the components from the
baseline model.

a) Reliability Characterization
In the bars from Figure 1 to Figure 11, we present the fault

effect classification on average and per benchmark for each
parameter of the hardware components (size in all
components, associativity of L1 caches, write policy of all
caches and behavior of L1 caches with or without prefetcher).
Moreover, the second row of TABLE III to TABLE VII
presents the Failures In Time (FIT) for each aforementioned
parameter of the hardware components. In essence, a
structure’s reliability is inversely proportional to FIT and
depends on the raw fit rate, the number of structure’s bit and
the vulnerability factor (percentage of not masked categories).
The most vulnerable component is the L2 cache with 2318.9
FIT for the baseline model (TABLE V) and the most reliable
is the LSQ with 0.5 FIT for the baseline model (TABLE VII).

Hardware Structures Size
Firstly, we focus on the sizes of the L1 caches, the physical
register file and the LSQ. Figure 1 to Figure 4 show the faulty
behavior classification for these four structures per benchmark
and on average for the 7 benchmarks.

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16

djpeg search smooth edges corners sha qsort avg

L1 Data Cache across different size (KB)

Masked SDC DUE Timeout Crash Assert
Figure 1: Faults classification in L1 Data cache (sizes).

60%

65%

70%

75%

80%

85%

90%

95%

100%

64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16 64 32 16

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache across different size (KB)

Masked SDC DUE Timeout Crash Assert
Figure 2: Faults classification in L1 Instr. cache (sizes).

60%

65%

70%

75%

80%

85%

90%

95%

100%

25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64 25
6

12
8 64

djpeg search smooth edges corners sha qsort avg

Integer Register File across different size (number of regs)

Masked SDC DUE Timeout Crash Assert
Figure 3: Faults classification in Physical Register File (sizes).

In the two L1 caches (Figure 1 and Figure 2), there are
some benchmarks with opposite behavior but the average
trend shows an increase of percentage of masked class for
larger sizes: the average masked class of L1 Data cache
increases by 7 percentage points and the one of L1 Instruction
cache increases by 5 percentage points from 16KB to 64KB.
In the register file (Figure 3), all benchmarks follow the same
trend featuring higher percentage of masked class when the
register file contains more registers and the average
percentage of masked class of register file increases by 7
percentage points from 64 to 256 registers. The LSQ (Figure

!

!

4) features a smaller but still important 2 percentage points
increase in the percentage of masked category from 32 to 96
entries.

All structures follow the trend to feature less FIT rates
(more reliable) for smaller sizes because the size of a structure
is more dominant than the vulnerability factor (percentage of
not masked categories) in the computation of FIT. Especially,
the highest reliability (the least FIT rate) is observed for 16KB
L1 Data cache (251.1 FIT in TABLE III), 16KB L1
Instruction cache (159.4 FIT in TABLE IV), physical register
file of 64 registers (4.3 FIT in TABLE VI) and LSQ of 32
entries (0.5 FIT in TABLE VII). The trend of both first level
caches is similar to the reported findings in [10], which are
based on ACE analysis and use SPEC2000 benchmarks.

60%

65%

70%

75%

80%

85%

90%

95%

100%

96 64 32 96 64 32 96 64 32 96 64 32 96 64 32 96 64 32 96 64 32 96 64 32

djpeg search smooth edges corners sha qsort avg

LSQ across different size (number of LSQ entries)

Masked SDC DUE Timeout Crash Assert

Figure 4: Faults classification in LSQ (sizes).

Caches Associativity
In this part, we study the L1 caches for different associativity
values. In Figure 5, the average percentage of masked
category of L1 Data cache is almost insensitive to
associativity while the percentage of masked category of only
two benchmarks (djpeg and smooth) features changes for
different associativity. In Figure 6, the masked category of L1
Instruction cache increases by 6 percentage points from a
direct-mapped to an 8-way set associative cache (for the same
size of 32KB).

In general, the most reliable is the 2-way set associative L1
Data cache (346.4 FIT in TABLE III) and the 8-way set
associative L1 Instruction cache (193.6 FIT in TABLE IV).

60%

65%

70%

75%

80%

85%

90%

95%

100%

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

djpeg search smooth edges corners sha qsort avg

L1 Data Cache across different associativity (number of ways)

Masked SDC DUE Timeout Crash Assert
Figure 5: Faults classification in L1 Data cache (associativity).

60%

65%

70%

75%

80%

85%

90%

95%

100%

8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache across different associativity (number of ways)

Masked SDC DUE Timeout Crash Assert
Figure 6: Faults classification in L1 Instr. cache (associativity).

Caches Write Policy
In this part, we study the write back and the write through

policies in all caches of memory hierarchy. In Figure 7, the
average percentage of masked category in L1 Data cache
increases by 6 percentage points when the write through
policy is used instead of the write back. In Figure 8, the L1
Instruction cache features almost the same behavior
(equivalent percentage of masked category) for both policies
since blocks that are evicted by instruction caches are never
dirty and thus cannot propagate the fault to lower levels of
memory hierarchy. In Figure 9, the write through unified L2
cache has higher masking probability than the write back L2
cache (about 2 percentage points on average). A faulty cache
line in L2 Cache that is exclusively allocated to data (not
instruction) may propagate the fault to the lower level of
memory hierarchy only if a write back policy is used.

In essence, write through caches are more reliable than
write back caches in all levels of memory hierarchy1. The
write through caches feature less FIT than write back caches:
240.4 FIT for L1 Data in TABLE III, 264.0 FIT for L1
Instruction in TABLE IV and 1390.1 FIT for unified L2 in
TABLE V.

First Level Cache Prefetchers
In this part, we study the impact of the presence of

prefetchers in L1 caches. In Figure 10, the average percentage
of masked class of L1 Data cache with prefetcher is very close
to the one without prefetcher. In Figure 11, the average
percentage of masked class of L1 Instruction cache increases
by 5 percentage points when prefetecher is enabled.

In TABLE III, the L1 Data cache with prefetcher (405.4
FIT) and the one without prefetcher (392.3 FIT) have almost
the same reliability since their FIT are close. In TABLE IV,
the L1 Instruction cache is more reliable with enabled
prefetcher because it features less failures in time (278.8 to
413.1 FIT with and without prefetcher respectively). A
prefetcher can occasionally reduce the residency time of a
cache line (by replacing it) or fill a cache line with useless
data that is not used by the processor. Our results show that

1 In case of write through cache, a transient fault hitting a bit in the cache can
only be propagated to the processor when the block is read before its eviction.
However, in a write back cache the fault can be propagated to the processor or
to the lower levels of memory hierarchy when the block is evicted and
contains dirty data.

!

!

the presence of a prefetcher enhances only L1 Instruction
cache’s reliability.

60%

65%

70%

75%

80%

85%

90%

95%

100%

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

djpeg search smooth edges corners sha qsort avg

L1 Data Cache across different write policy

Masked SDC DUE Timeout Crash Assert
Figure 7: Faults classification in L1 Data cache (write policies).

60%

65%

70%

75%

80%

85%

90%

95%

100%

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache across different write policy

Masked SDC DUE Timeout Crash Assert

Figure 8: Faults classification in L1 Instr. cache (write policies).

60%

65%

70%

75%

80%

85%

90%

95%

100%

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

W
T

W
B

djpeg search smooth edges corners sha qsort avg

L2 Unified Cache across different write policy

Masked SDC DUE Timeout Crash Assert

Figure 9: Faults classification in L2 Unified cache (write policies).

b) Function for reliability/performance correlation
In this part, we use the fitness function (defined in Section

II.C) to quantify the effect of modifications in
microarchitectural parameters both in terms of performance
and reliability. Assigning different values to parameter a, we
adjust the impact of reliability and performance in the design
decisions. TABLE III tο TABLE VII present the values of the

fitness function for all the components of our study and for
three different values of parameter a: 0.25 (design focused on
performance), 0.50 (design balanced between reliability and
performance), 0.75 (design focused on reliability). Moreover
for each microarchitectural configuration under study, TABLE
III tο TABLE VII also show the FIT and IPC on average for
all benchmarks. Individual benchmarks can be similarly
studied. The fitness function values are normalized to the
baseline configuration fitness2. The “best” fitness values for
different design priorities (the three a values) are highlighted
with shaded cells. Fitness values greater than 1 indicate a
design point which improves the fitness compared to the
baseline model.

60%

65%

70%

75%

80%

85%

90%

95%

100%

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

djpeg search smooth edges corners sha qsort avg

L1 Data Cache with and without a prefetcher

Masked SDC DUE Timeout Crash Assert
Figure 10: Faults classification in L1 Data cache (prefetcher).

60%

65%

70%

75%

80%

85%

90%

95%

100%

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

w
ith

ou
t

w
ith

djpeg search smooth edges corners sha qsort avg

L1 Instruction Cache with and without a prefetcher

Masked SDC DUE Timeout Crash Assert
Figure 11: Faults classification in L1 Instr. cache (prefetcher).

IV. CONCLUSIONS
We presented a comprehensive evaluation of the impact of

major hardware structures parameters values on the reliability
of a microprocessor to transient faults using statistical fault
injection on major structures with a state-of-the-art x86-64
fault injector. We also defined a simple and flexible fitness
function that aggregates with variable weights the reliability
and performance in order to quantify the impact of several
design decisions.

2 For example, if a=0.5, IPCbase=0.80, FITbase=100, IPCconf=0.85, FITconf=120:
fitnessconfig = 0.5×1/(120/100) + 0.5×(0.85/0.80) = 0.9479

!

!

TABLE III FIT, IPC AND FITNESS VALUES FOR THE L1 DATA CACHE

TABLE IV FIT, IPC AND FITNESS VALUES FOR THE L1 INSTRUCTION CACHE

TABLE V FIT, IPC AND FITNESS VALUES FOR THE L2 CACHE

L2 Baseline WB Policy WT

FIT
IPC

2318.9
0.7932

1390.1
0.7694

a Fitness
0.25 1.000 1.145
0.5 1.000 1.319
0.75 1.000 1.494

TABLE VI FIT, IPC AND FITNESS VALUES FOR THE INTEGER
PHYSICAL REGISTER FILE

Reg. File
baseline

 256 regs.
Size

 64regs. 128regs.

FIT
IPC

4.7
0.7932

4.3
0.7057

4.6
0.8097

a Fitness
0.25 1.000 0.937 1.023
0.5 1.000 0.985 1.026
0.75 1.000 1.032 1.028

TABLE VII FIT, IPC AND FITNESS VALUES FOR THE LSQ

LSQ
baseline

32 entries
size

 64 entries 96 entries

FIT
IPC

0.5
0.7932

0.6
0.7889

0.7
0.8025

a Fitness
0.25 1.000 0.973 0.962
0.5 1.000 0.951 0.912
0.75 1.000 0.929 0.863

ACKNOWLEDGMENTS

This work is supported by the 7th Framework Program of
the European Union through the CLERECO Project, under
Grant Agreement 611404.

REFERENCES
[1] S.Nassif, N.Mehta, Y.Cao, “A Resilience Roadmap”, DATE 2010.
[2] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu, “Improving

Cache Lifetime Reliability at Ultra-low Voltages”, MICRO 2009.
[3] R.C.Baumann, “Soft Errors in Advanced Computer Systems”, IEEE Design

& Test of Computers, vol. 22, no. 3, pp. 258-266, 2005.

[4] V.Sridharan, D.R.Kaeli, “Using Hardware Vulnerability Factors to Enhance
AVF Analysis”, ISCA 2010.

[5] A.Patel, F.Afram, C.Shunfei, K.Ghose, “MARSS: A Full System Simulator
for Multicore x86 CPUs”, DAC 2011.

[6] N.Foutris, M.Kaliorakis, S.Tselonis, D.Gizopoulos, “Versatile Architecture-
Level Fault Injection Framework for Reliability Evaluation”, IOLTS 2014.

[7] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, N.Foutris, D.Gizopoulos,
“Differential Fault Injection on Microarchitectural Simulators”, IISWC 2015.

[8] A.Biswas, P.Racunas, R.Cheveresan, J.Emer, S.S.Mukherjee, “Computing
Architectural Vulnerability Factors for Address-Based Structures”, ISCA
2005.

[9] S.S.Mukherjee, C.T.Weaver, J.Emer, S.K.Reinhardt, T.Austin, “A
Systematic Methodology to Compute the Architectural Vulnerability Factors
for a High-Performance Microprocessor”, MICRO 2003.

[10] G.-H.Asadi, V.Sridharan, M.Tahoori, D.Kaeli, “Balancing Performance and
Reliability in the Memory Hierarchy”, ISPASS 2005.

[11] A.Savino, S.Di Carlo, G.Politano, A.Benso, A.Bosio, G.Di Natale,
“Statistical Reliability Estimation of Microprocessor-Based Systems”, IEEE
Transaction on Computers, vol. 61, no. 11, pp. 1521-1534, 2012.

[12] J.Suh, M.Annavaram, M.Dubois, “MACAU: A Markov Model for Reliability
Evaluations of Caches Under Single-bit and Multi-bit Upsets”, HPCA 2012.

[13] H.Cho, S.Mirkhani, C.Chen-Yong, J.A.Abraham, S.Mitra, “Quantitative
Evaluation of Soft Error Injection Techniques for Robust System Design”,
DATE 2013.

[14] N.George, C.Elks, B.Johnson, J.Lach, “Transient Fault Models and AVF
Estimation Revisited”, DSN 2010.

[15] M.Kaliorakis, S.Tselonis, A.Chatzidimitriou, D.Gizopoulos, “Accelerated
Microarchitectural Fault Injection-Based Reliability Assessment”, DFTS
2015.

[16] N.J.Wang, A.Mahesri, S.J.Patel, “Examining ACE Analysis Reliability
Estimates Using Fault Injection”, ISCA 2007.

[17] R.Leveugle, A.Calvez, P.Maistri, P.Vanhauwaert, “Statistical Fault Injection:
Quantified Error and Confidence”, DATE 2009.

[18] S.P.Vanderwiel, D.J.Lilja, “Data prefetch mechanisms”, ACM Computing
Surveys, 2000, vol. 32, no. 2, pp. 174-199.

[19] N.Foutris, D.Gizopoulos, J.Kalamatianos, V.Sridharan, “Assessing the
Impact of Hard Faults in Performance Components of Modern
Microprocessors”, ICCD 2013.

[20] J.Stevens, P.Tschirhart, M.-T.Chang, I.Bhati, P.Enns, J.Greensky, Z.Chisti,
S.-L.Lu, B.Jacob, “An Integrated Simulation Infrastructure for the Entire
Memory Hierarchy: cache, DRAM, non-volatile memory, and disk”, Intel
Technology Journal, 2013, vol. 17, no. 1.

[21] M.R.Guthaus, J.S.Ringenberg, D.Ernst, T.M.Austin, T.Mudge, R.B.Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark
Suite”, IISWC 2001.

[22] A.A.Nair, L.K.John, L.Eeckhout, “AVF Stressmark: Towards an Automated
Methodology for Bounding the Worst-Case Vulnerability to Soft Errors”,
MICRO 2010.

L1D Baseline

WB, 4-way
prefetcher,32KB

policy

 WT

Associativity

 1-way 2-way 8-way

prefetcher

 w/o prefetcher

size

 16KB 64KB

FIT
IPC

405.4
0.7932

240.4
0.7606

366.3
0.7554

346.4
0.7682

383.7
0.7541

392.3
0.8569

251.1
0.7590

637.4
0.8043

a Fitness
0.25 1.000 1.141 0.991 1.019 0.977 1.069 1.121 0.919
0.5 1.000 1.323 1.030 1.069 1.004 1.057 1.286 0.825
0.75 1.000 1.504 1.068 1.120 1.030 1.045 1.450 0.731

L1I Baseline

WB, 4-way
prefetcher,32KB

policy

WT

Associativity

 1-way 2-way 8-way

prefetcher

w/o prefetcher

size

 16KB 64KB

FIT
IPC

278.8
0.7932

264.0
0.7606

339.7
0.7554

300.5
0.7682

193.6
0.7541

413.1
0.8569

159.4
0.7590

427.3
0.8043

a Fitness
0.25 1.000 0.983 0.919 0.958 1.073 0.979 1.155 0.924
0.5 1.000 1.007 0.887 0.948 1.195 0.878 1.353 0.833
0.75 1.000 1.032 0.854 0.938 1.318 0.776 1.551 0.743

!

!

