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Abstract—Early decisions in microprocessor design require a 

careful consideration of the corresponding performance and 
reliability implications of transient faults. The size and 
organization of important on-chip hardware components such as 
caches, register files and buffers have a direct impact on both the 
microprocessor resilience to soft errors and the execution time of 
the applications. In this paper, we employ a state-of-the-art x86-
64 full-system micro-architectural simulator and a 
comprehensive fault injection framework built on top of it to 
deliver a detailed evaluation of the reliability and performance 
tradeoffs for major hardware components across several 
important parameters of their design (size, associativity, write 
policy, etc.). We also propose a simple and flexible fitness 
function that measures the aggregate effect of such design 
changes on the reliability and the performance of the studied 
workload. 

Keywords— microprocessors, reliability estimation, transient 
faults, performance, fault injection 

I. INTRODUCTION 
Despite the continuous performance improvement in 

modern microprocessor chips, a known downside of 
technology scaling is the increased susceptibility of hardware 
structures to soft errors [1] [2] [3]. Design decisions related to 
the parameters of such key hardware components (size or 
associativity of a cache memory or size of a physical register 
file) should be both performance and reliability aware, 
because both aspects are workload and microarchitecture 
dependent [4]. 

Both microarchitectural and RTL simulators are available 
at the early stages of a microprocessor design. RTL 
simulations are more accurate but have very low throughput. 
On the other hand, cycle accurate microarchitectural 
simulators [5] offer the potential of making performance and 
reliability evaluations at higher levels of abstraction but at a 
significantly higher throughput, helping engineers to make 
design decisions early enough at the design stage. While 
microarchitectural simulators provide a set of measurements 
for performance, they do not provide relevant support for 
reliability studies. A major missing part of the microprocessor 
models in simulators is that of the data/instruction arrays in 
caches, improving simulation time but rendering reliability 
studies through fault injection impossible. Thus, extensions in 
these structures are inevitable to make fault injection 
experiments feasible [6] [7]. 

Major storage arrays of a microprocessor (caches, register 
files, queues, buffers etc.) are of prevalent importance since 
occupy very large parts of the chip’s silicon estate and largely 
determine the overall microprocessor reliability. Several 

microprocessor reliability studies are used for early reliability 
assessments based on ACE (Architecturally Correct 
Execution) analysis [8] [9] [10] [14], probabilistic models [11] 
[12] or fault injection [6] [7] [13] [14] [15]. Probabilistic 
models as well as ACE analysis are undoubtedly faster than 
fault injection, but they overestimate the vulnerability of 
microprocessor structures by several times [14] [16]. On the 
other hand, fault injection on top of microarchitectural 
simulators resembles much closer the actual behavior of 
hardware and software in the presence of faults [6] [14]. 
Statistically significant fault injection campaigns on such 
infrastructures deliver very accurate reports on the faulty 
behavior of hardware components [17] at the expense of larger 
simulation times. 

In this paper we present a complete fault injection analysis 
of transient faults which jointly considers the reliability and 
the performance impact of several important design 
parameters on a modern out-of-order x86-64 architecture. We 
focus on the most important storage arrays of the 
microprocessor: the physical register file, the cache memories 
(split L1 data and L1 instruction cache and the unified L2 
cache) and the load/store queue. Starting from a baseline 
configuration for all the components of our study, we modify 
the sizes of the hardware structures and assess the impact on 
reliability and performance. For each cache memory structure 
we also study the impact of the different write policies (write 
back vs. write though) while for the important case of the L1 
caches (both instruction and data), we extensively evaluate the 
impact of different associativity points as well as their 
behavior in the presence or absence of L1 prefetchers. To our 
knowledge, no study of this extent that considers all these 
parameters has been reported previously. 

Each different design point is analyzed based on an 
individual statistically safe fault injection campaign. Along 
with the performance information for each configuration a 
microprocessor designer can make informed decisions about 
the hardware protection mechanisms required for a particular 
configuration and workloads [10]. To assist design decisions 
we define a simple yet flexible fitness function which 
describes the combined effect on reliability and performance 
that certain design parameters have. 

II. EXPERIMENTAL SETUP  

A. The Fault Injection Framework  

In our study, we used MaFIN a recently introduced and 
easily configured fault injection framework [6] [7] (with 
implemented data arrays on caches and complete fault 
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injection infrastructure) that is built on top of MARSSx86 
microarchitectural full-system x86-64 simulator [5]. We 
further extended the memory hierarchy model with a prefetch-
on-miss sequential prefetcher in the L1 instruction cache and a 
stride prefetcher in the L1 data cache [18] to better resemble a 
modern x86-64 processor. MARSSx86 and its predecessor 
(PTLsim) have been extensively used in many performance 
and reliability studies [7] [15] [19].   

We selected MARSSx86 because: (i) it accurately 
simulates an x86-64 out-of-order microprocessor model along 
with its memory system [20], (ii) it is full-system and cycle-
accurate, (iii) it consists of easily configurable 
microarchitectural structures, giving us the opportunity to 
combine both performance and reliability studies in the same 
tool framework.  

B. Hardware Structures Configuration 

We use fault injection and modify a single parameter of 
the baseline microarchitecture (presented in TABLE I) at a 
time, to monitor the impact of individual changes on the 
reliability of the structure in conjunction with the performance 
of the application. The variants of the baseline model used in 
our experiments are illustrated in TABLE II. In the first two 
columns we refer to the target structures and their 
microarchitectural features while in the last column we list the 
alternative values that each feature had in our experiments. 

TABLE I BASELINE CONFIGURATION 

Structure Baseline Model 
Pipeline OoO 
Issue Queue 32 entries 
Reorder Buffer 64 entries 
Phys. Int. Reg. File 256 registers 
L1 D cache 32KB, 64B, 4-way, write-back, stride pref. 
L1 I cache 32KB, 64B, 4-way, write-back, sequential pref. 
Unified L2 cache 1MB, 64B, 16-way, write-back, w/o pref. 
Unified LSQ 32 entries (16 load queue, 16 store queue) 
Branch Predictor Tournament Predictor 
Branch 
Target 
Buffer 

Direct branches 1K entries, 4-way 

Indirect branches 512 entries, 4-way 

RAS 16 entries 
Functional Units 2 Integer ALUs, 2 FP ALUs, 4 AGU 

C. Metrics 

We apply a fault mask during a fault injection run and 
classify its outcome in one of the following categories, 
comparing the application's output, the number of raised x86-
64 exceptions and the execution time with the golden ones. 
Masked: The application’s output and the raised exceptions 
are equal to the golden ones. 
Silent Data Corruption (SDC): The application’s output 
differs from the golden one but the raised exceptions are equal 
to the golden ones.  
Detected Unrecoverable Error (DUE): The number of raised 
exceptions is greater than the golden one. We focus on the 
raised exceptions as an indicator of an error occurrence due to 
the lack of any error detection or protection mechanism in the 
simulated model of microprocessor.  
Timeout: Program flow has been trapped and the simulator 
stopped committing instructions (deadlock) or has been 
redirected on random code areas executing instructions 

(livelock). This timeout limit was set in three times the fault-
free execution time.  
Crash: The fault causes process, system (such as kernel panic) 
or simulator crashes.  
Assert: Simulator termination due to assert function. 

TABLE II EXPERIMENTAL SETUP 

Structure Parameter Values 
Phys. Register File Number of Registers 64/128/256 

L1 D cache 

Size 16KB/32KB/64KB 
Associativity 1/2/4/8 
Write policy WB/WT 
Prefetcher enabled/disabled 

L1 I cache 

Size 16KB/32KB/64KB 
Associativity 1/2/4/8 
Write policy WB/WT 
Prefetcher enabled/disabled 

L2 cache Write policy WB/WT 
LSQ Number of entries 32/64/96 

For the performance and the reliability evaluation of the 
benchmarks we use the IPC (instructions per cycle) metric and 
the FIT (failures in time) rates respectively. In all our 
experiments, we assume an arbitrary raw FIT rate of 0.01 per 
bit, but different rates can also be used. We also define the 
fitness metric that quantifies the impact of microarchitectural 
changes on both reliability and performance: 

( )1
   1 –  fitness a a IPC

FIT
= × + ×                 (1) 

In equation (1), FIT is the fraction of the failures in time 
(on average for all benchmarks) that a hardware component 
with a specific configuration has over the one of the baseline 
model (FIT=FITconf/FITbase); therefore, FIT >1 means that the 
studied configuration has a higher FIT rate (smaller reliability) 
than the baseline configuration. Similarly, IPC is the fault free 
committed instructions per cycle (on average for all 
benchmarks) with a specific hardware configuration over the 
one with the baseline hardware configuration 
(IPC=IPCconf/IPCbase); therefore, IPC>1 means that the studied 
configuration is faster than the baseline. Parameter a is 
designer-defined (taking values from 0 to 1) and represents a 
wide range of designs that put more emphasis on the reliability 
or on the performance or balances both. The smaller the value 
of a, the more importance is given to performance (IPC). On 
the contrary, the larger the value of a, the more importance is 
given to reliability. If a equals to 0.5, then the same 
importance is given to both performance and reliability. 
Consequently, every fitness value of equation (1) represents a 
design point corresponding to an experimental setup that can 
be either better (in terms of reliability and performance) than 
the baseline configuration (fitnessconf > fitnessbase) or worse 
(fitnessconf < fitnessbase), where fitnessbase = 1.00.  

III. EXPERIMENTAL RESULTS 
In our experiments, we focused on individual deviations 

from the baseline configuration, modifying only one 
configuration parameter at a time to assess its effect on 
reliability and performance.  

A. Fault Sampling 

For each injection campaign we used the formula of [17] 
which provides the number of injection experiments required 
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given the following inputs: (i) the size of a hardware structure 
in bits, (ii) the execution time of a benchmark in cycles, and 
(iii) the required statistical confidence level and error margin. 
Among these inputs confidence and error margin mainly affect 
the number of required fault injections. We ran 2000 fault 
injection experiments for each campaign corresponding to 
2.88% error margin and 99% confidence level.   

B. Benchmarks 

Performance and reliability evaluations are workload 
dependent [4] [10] and a careful selection of benchmarks is 
vital for the accuracy of a study. We carried out fault injection 
campaigns during the execution of 7 benchmarks (search, 
corner, edge, sha, qsort, smooth) from MiBench suite because 
their short execution time enables us to execute them 
completely and observe the effect of a fault in the program's 
output [21]. Moreover, they are representative of real world 
applications (having many similarities to SPEC benchmarks 
i.e. instruction mix, throughput) and they also have been 
previously used in many reliability studies [7]  [14]  [15]  [22]. 

C. Characterization of results  

Our extensive fault injection campaigns of single transient 
faults target important microarchitectural structures (L1 Data 
cache, L1 Instruction cache, L2 unified cache, physical integer 
register file, and LSQ) across different values of their 
parameters shown on TABLE II. In total 336,000 fault 
injections have been executed (7 benchmarks x 24 different 
parameters combinations x 2000 injections per campaign).  

We present our findings in two subsections. The first one 
presents the reliability characterization of the hardware 
structures at the different design points. In the second, we 
apply the fitness metric to correlate the performance and the 
reliability for all the variations of the components from the 
baseline model. 

a) Reliability Characterization 
In the bars from Figure 1 to Figure 11, we present the fault 

effect classification on average and per benchmark for each 
parameter of the hardware components (size in all 
components, associativity of L1 caches, write policy of all 
caches and behavior of L1 caches with or without prefetcher).  
Moreover, the second row of TABLE III to TABLE VII 
presents the Failures In Time (FIT) for each aforementioned 
parameter of the hardware components. In essence, a 
structure’s reliability is inversely proportional to FIT and 
depends on the raw fit rate, the number of structure’s bit and 
the vulnerability factor (percentage of not masked categories). 
The most vulnerable component is the L2 cache with 2318.9 
FIT for the baseline model (TABLE V) and the most reliable 
is the LSQ with 0.5 FIT for the baseline model (TABLE VII). 

Hardware Structures Size 
Firstly, we focus on the sizes of the L1 caches, the physical 
register file and the LSQ. Figure 1 to Figure 4 show the faulty 
behavior classification for these four structures per benchmark 
and on average for the 7 benchmarks. 
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Figure 1: Faults classification in L1 Data cache (sizes). 
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Figure 2: Faults classification in L1 Instr. cache (sizes). 
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Figure 3: Faults classification in Physical Register File (sizes). 

In the two L1 caches (Figure 1 and Figure 2), there are 
some benchmarks with opposite behavior but the average 
trend shows an increase of percentage of masked class for 
larger sizes: the average masked class of L1 Data cache 
increases by 7 percentage points and the one of L1 Instruction 
cache increases by 5 percentage points from 16KB to 64KB. 
In the register file (Figure 3), all benchmarks follow the same 
trend featuring higher percentage of masked class when the 
register file contains more registers and the average 
percentage of masked class of register file increases by 7 
percentage points from 64 to 256 registers. The LSQ (Figure 
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4) features a smaller but still important 2 percentage points 
increase in the percentage of masked category from 32 to 96 
entries.  

All structures follow the trend to feature less FIT rates 
(more reliable) for smaller sizes because the size of a structure 
is more dominant than the vulnerability factor (percentage of 
not masked categories) in the computation of FIT. Especially, 
the highest reliability (the least FIT rate) is observed for 16KB 
L1 Data cache (251.1 FIT in TABLE III), 16KB L1 
Instruction cache (159.4 FIT in TABLE IV), physical register 
file of 64 registers (4.3 FIT in TABLE VI) and LSQ of 32 
entries (0.5 FIT in TABLE VII). The trend of both first level 
caches is similar to the reported findings in [10], which are 
based on ACE analysis and use SPEC2000 benchmarks. 
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Figure 4: Faults classification in LSQ (sizes). 

Caches Associativity 
In this part, we study the L1 caches for different associativity 
values. In Figure 5, the average percentage of masked 
category of L1 Data cache is almost insensitive to 
associativity while the percentage of masked category of only 
two benchmarks (djpeg and smooth) features changes for 
different associativity. In Figure 6, the masked category of L1 
Instruction cache increases by 6 percentage points from a 
direct-mapped to an 8-way set associative cache (for the same 
size of 32KB).  

In general, the most reliable is the 2-way set associative L1 
Data cache (346.4 FIT in TABLE III) and the 8-way set 
associative L1 Instruction cache (193.6 FIT in TABLE IV).  
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Figure 5: Faults classification in L1 Data cache (associativity). 
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Figure 6: Faults classification in L1 Instr. cache (associativity). 

Caches Write Policy 
In this part, we study the write back and the write through 

policies in all caches of memory hierarchy. In Figure 7, the 
average percentage of masked category in L1 Data cache 
increases by 6 percentage points when the write through 
policy is used instead of the write back. In Figure 8, the L1 
Instruction cache features almost the same behavior 
(equivalent percentage of masked category) for both policies 
since blocks that are evicted by instruction caches are never 
dirty and thus cannot propagate the fault to lower levels of 
memory hierarchy. In Figure 9, the write through unified L2 
cache has higher masking probability than the write back L2 
cache (about 2 percentage points on average). A faulty cache 
line in L2 Cache that is exclusively allocated to data (not 
instruction) may propagate the fault to the lower level of 
memory hierarchy only if a write back policy is used. 

In essence, write through caches are more reliable than 
write back caches in all levels of memory hierarchy1. The 
write through caches feature less FIT than write back caches: 
240.4 FIT for L1 Data in TABLE III, 264.0 FIT for L1 
Instruction in TABLE IV and 1390.1 FIT for unified L2 in 
TABLE V. 

First Level Cache Prefetchers 
In this part, we study the impact of the presence of 

prefetchers in L1 caches. In Figure 10, the average percentage 
of masked class of L1 Data cache with prefetcher is very close 
to the one without prefetcher. In Figure 11, the average 
percentage of masked class of L1 Instruction cache increases 
by 5 percentage points when prefetecher is enabled.  

In TABLE III, the L1 Data cache with prefetcher (405.4 
FIT) and the one without prefetcher (392.3 FIT) have almost 
the same reliability since their FIT are close. In TABLE IV, 
the L1 Instruction cache is more reliable with enabled 
prefetcher because it features less failures in time (278.8 to 
413.1 FIT with and without prefetcher respectively). A 
prefetcher can occasionally reduce the residency time of a 
cache line (by replacing it) or fill a cache line with useless 
data that is not used by the processor. Our results show that 

                                                           
1 In case of write through cache, a transient fault hitting a bit in the cache can 
only be propagated to the processor when the block is read before its eviction. 
However, in a write back cache the fault can be propagated to the processor or 
to the lower levels of memory hierarchy when the block is evicted and 
contains dirty data. 
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the presence of a prefetcher enhances only L1 Instruction 
cache’s reliability.  
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Figure 7: Faults classification in L1 Data cache (write policies). 
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Figure 8: Faults classification in L1 Instr. cache (write policies). 
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Figure 9: Faults classification in L2 Unified cache (write policies). 

b) Function for reliability/performance correlation 
In this part, we use the fitness function (defined in Section 

II.C) to quantify the effect of modifications in 
microarchitectural parameters both in terms of performance 
and reliability. Assigning different values to parameter a, we 
adjust the impact of reliability and performance in the design 
decisions. TABLE III tο TABLE VII present the values of the 

fitness function for all the components of our study and for 
three different values of parameter a: 0.25 (design focused on 
performance), 0.50 (design balanced between reliability and 
performance), 0.75 (design focused on reliability). Moreover 
for each microarchitectural configuration under study, TABLE 
III tο TABLE VII also show the FIT and IPC on average for 
all benchmarks. Individual benchmarks can be similarly 
studied. The fitness function values are normalized to the 
baseline configuration fitness2. The “best” fitness values for 
different design priorities (the three a values) are highlighted 
with shaded cells. Fitness values greater than 1 indicate a 
design point which improves the fitness compared to the 
baseline model. 
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Figure 10: Faults classification in L1 Data cache (prefetcher). 
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Figure 11: Faults classification in L1 Instr. cache (prefetcher). 

IV. CONCLUSIONS 
We presented a comprehensive evaluation of the impact of 

major hardware structures parameters values on the reliability 
of a microprocessor to transient faults using statistical fault 
injection on major structures with a state-of-the-art x86-64 
fault injector. We also defined a simple and flexible fitness 
function that aggregates with variable weights the reliability 
and performance in order to quantify the impact of several 
design decisions.  

                                                           
2 For example, if a=0.5, IPCbase=0.80, FITbase=100, IPCconf=0.85, FITconf=120: 
fitnessconfig = 0.5×1/(120/100) + 0.5×(0.85/0.80) = 0.9479 
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TABLE III FIT, IPC AND FITNESS VALUES FOR THE L1 DATA CACHE 

TABLE IV FIT, IPC AND FITNESS VALUES FOR THE L1 INSTRUCTION CACHE 

TABLE V FIT, IPC AND FITNESS VALUES FOR THE L2 CACHE 

L2 Baseline WB Policy WT 

FIT 
IPC 

2318.9 
0.7932 

1390.1 
0.7694 

a Fitness 
0.25 1.000 1.145 
0.5 1.000 1.319 
0.75 1.000 1.494 

TABLE VI FIT, IPC AND FITNESS VALUES FOR THE INTEGER  
PHYSICAL REGISTER FILE 

Reg. File 
baseline 

  256 regs. 
Size 

        64regs.                 128regs. 

FIT 
IPC 

4.7 
0.7932 

4.3 
0.7057 

4.6 
0.8097 

a Fitness 
0.25 1.000 0.937 1.023 
0.5 1.000 0.985 1.026 
0.75 1.000 1.032 1.028 

TABLE VII FIT, IPC AND FITNESS VALUES FOR THE LSQ 

LSQ 
baseline 

32 entries 
size 

     64 entries               96 entries 

FIT 
IPC 

0.5 
0.7932 

0.6 
0.7889 

0.7 
0.8025 

a Fitness 
0.25 1.000 0.973 0.962 
0.5 1.000 0.951 0.912 
0.75 1.000 0.929 0.863 
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WB, 4-way 
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       WT 

Associativity 
 

   
   1-way                2-way                8-way 

prefetcher 
 
 

 w/o prefetcher 
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      16KB                    64KB 

FIT 
IPC 

405.4 
0.7932 

240.4 
0.7606 

366.3 
0.7554 

346.4 
0.7682 

383.7 
0.7541 

392.3 
0.8569 

251.1 
0.7590 

637.4 
0.8043 

a Fitness 
0.25 1.000 1.141 0.991 1.019 0.977 1.069 1.121 0.919 
0.5 1.000 1.323 1.030 1.069 1.004 1.057 1.286 0.825 
0.75 1.000 1.504 1.068 1.120 1.030 1.045 1.450 0.731 
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0.25 1.000 0.983 0.919 0.958 1.073 0.979 1.155 0.924 
0.5 1.000 1.007 0.887 0.948 1.195 0.878 1.353 0.833 
0.75 1.000 1.032 0.854 0.938 1.318 0.776 1.551 0.743 
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