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Abstract—High-performance microprocessors employ data 
prefetchers to mitigate the ever-growing gap between CPU 
computing rates and memory latency. Technology scaling along 
with low voltage operation exacerbates the likelihood and rate of 
hard (permanent) faults in technologies used by prefetchers such 
as SRAM and flip flop arrays. Faulty prefetch behavior does not 
affect correctness but can be detrimental to performance. Hard 
faults in data prefetchers (unlike their soft counterparts which 
are rare) can cause significant single-thread performance 
degradation and lead to large performance variability across 
otherwise identical cores. In this paper, we characterize in-depth 
both of these aspects in microprocessors suffering from multiple 
hard faults in their data prefetcher components. Our study 
reveals fault scenarios in the prefetcher table that can degrade 
IPC by more than 17%, while faults in the prefetch input and 
request queues can slow IPC up to 24% and 26%, respectively, 
compared to fault-free operation. Moreover, we find that a faulty 
data prefetcher can substantially increase the performance 
variability across identical cores: the standard deviation of IPC 
loss for different benchmarks can be more than 4.5%.  

Keywords—performance degradation; performance variability; 
permanent faults; dependable performance; microarchitectural 
simulators 

I. INTRODUCTION 

Multi-core microprocessor architectures dominate most 
application domains. The inherent unreliability of deep 
nanometer-scale technologies [4] [5] and near-threshold 
voltage (NTV) operation [1] [26] [27] increase the 
vulnerability of  SRAM array cells and flip flops to hard faults; 
if unaddressed, these faults will impose significant constraints 
on microprocessor design. 

To hide the latency of memory accesses, computer 
architects integrate multi-layer cache memories along with 
sophisticated data prefetchers [14] [15]; both structures can 
occupy noticeable silicon real estate. Data prefetch designs 
predict the flow of data and correspondingly boost instructions 
per cycle (IPC) by reducing the stalls due to cache misses. The 
most widely used class of data prefetch mechanisms, the stride 
data prefetchers, has been shown to be highly effective for 
scientific, multi-media, desktop and engineering applications 
[13]. 

Technology modeling in resilience roadmaps predicts that 
the failure probability of SRAM cells will be higher in 16nm 
and 12nm nodes [22]. NTV operation exacerbates permanent 

faults in SRAMs due to exposing variations across cells [26]. 
Thus, most reliability studies have focused on caches due to 
the area they occupy and their immediate impact on both 
functional correctness and performance [2] [3] [16] [19] [20]. 
Foutris et al. are the only ones who have measured the impact 
of single faults in data prefetchers [8].  

Unlike cache memories, data prefetchers do not affect 
program correctness because they do not modify program state. 
However, hard faults in prefetcher arrays can degrade 
performance significantly, by (a) reducing training 
opportunities, and therefore decreasing the number of 
generated prefetch requests (reduce prefetch coverage); (b) 
issuing prefetch requests later or earlier than the fault-free case 
(degrade prefetch timeliness); and, (c) perturbing the prefetch 
address-generation logic (reduce prefetch accuracy). In [8], 
Foutris et al. reported that more than 48% of single hard faults 
in SRAM cells of a conservative data prefetcher model can 
degrade performance up to 3%. In many-core designs, faults in 
data prefetcher arrays will trigger imbalances in the data 
stream sent to memory system, leading to inter-core 
performance variability. This is an undesirable property for the 
data-center deployment [1], especially since NTV operation 
can be an attractive candidate for low power servers [26]. 
According to Total-Cost-of-Ownership (TCO) estimation 
frameworks such as the one in reported in [10], performance 
variability negatively affects system cost, power consumption 
and worsens the system’s environmental impact. Finally, 
performance variability is undesirable in the mobile and 
desktop markets [12], because it reduces the ability to provide 
performance guarantees for real-time applications. 

We visualize the motivation of this paper in Figure 1 
where we present the performance variability in a multi-core 
design with faulty data prefetchers in different cores, suffering 
from the same number of faults and executing the same 
benchmark (GemsFDTD). The IPC difference between the 
worst and best cases is 17%, while standard deviation ranges 
from 1.9% to 4.5%. Thus, a faulty data prefetcher can 
significantly increase the variability across otherwise identical 
cores. 

In this paper, we contribute the following: 

• We measure the performance impact of multiple 
permanent faults on an L1 stride data prefetcher. 
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• We measure the performance impact of single 
permanent faults in the prefetcher’s supporting queues. 

• We evaluate the degree of performance variability 
among cores caused by faulty L1 stride data prefetchers. 

Our results show that the performance loss is up to 26% 
(on average, 0.5% when quintuple faults are injected into the 
prefetch table array, and 1.5% and 2.5% when a single fault is 
injected into the prefetch input and request queues, 
respectively). Meanwhile, the performance variability can be 
more than 26% compared to the fault-free case (standard 
deviation of IPC loss between benchmarks ranges from 0.01% 
to 4.5%). 
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Figure 1: Performance variability across 4 identical cores for GemsFDTD 
with five hard faults in the data prefetcher of each core. 

II. BACKGROUND AND RELATED WORK 

The impact of hard faults in data prefetchers was first 
measured by Foutris et al. [8]. Their work however is limited 
to single hard faults on prefetch tables (PT) and does not 
include multiple faults in PTs, faults in supporting logic 
(Prefetch Input Queue - PIQ and Prefetch Request Queue - 
PRQ) and performance variability. Previous work on SRAM 
hard faults focused on caches but not on prefetchers. Abella et 
al. [1] proposed disabling/re-mapping to guarantee predictable 
performance at low voltages. Agarwal et al. [2] focused on 
yield improvements tolerating process variations. Ansari et al. 
[3] proposed the Zerehcache architecture to deal with 
massively defective caches. Chishti et al. [7] employed special 
types of error-correcting codes to improve lifetime reliability. 
Performance implications with disabled cache parts were 
discussed in [16], [19]. Roberts et al. [20] proposed cache-line 
merging techniques, and Wilkerson et al. [24] employed 
cache-line combining/disabling to survive voltage scaling. 

Recent work either shows a large number of hard faults in 
SRAM arrays that operate in near-threshold voltages [26], [27], 
or projects high fault rates in 16-nm and 12-nm processes [22]. 
In both contexts, the single-bit failure probability (Pfail) of 
SRAM cells is expected to fall between 10-6 and 10-4 [22]. 
Under a binomial probability distribution, such failure rates 
would result in multiple hard faults per SRAM array. Circuit-
level techniques such as wordline boosting [18] can be 
employed to reduce these probabilities; however, such 
techniques add complexity and area to the array design. 

III. EXPERIMENTAL SETUP 

First, we calculate the cumulative probability of multiple 
faults in a typical 10Kbit SRAM array for a stride data 
prefetcher. Based on the single cell probabilities presented in 

[22] and a bimodal distribution we draw, in Figure 2, the 
cumulative probability for four technology nodes (32nm, 
22nm, 16nm, 12nm). In 32nm, the multiple fault probability 
remains very low between 10-4 and 10-5. Moving towards 
deeper nanometer-scale technologies the cumulative 
probability converges to 1.0 with 5 faults. Thus, we 
experiment with up to 5-tuple faults in a data prefetcher. 

We then perform a comprehensive statistical fault-injection 
campaign on top of the PTLsim x86 architectural simulator 
[25]. We employ the same microprocessor configuration as in 
[8], enhanced with a L1 data stride prefetcher with 64 entries, 
tracking strides up to 5 bits wide (32 cache lines). An 8-entry 
PIQ and an 8-entry PRQ allow for queueing training and 
prefetch requests. The prefetch table is assumed to be direct 
mapped and PC-indexed. 
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Figure 2: Cumulative probability of 1…k faults for 10K bit SRAM arrays in 
four technologies. Future technologies at 16m, and 12nm manufacturing 
process converge to probability 1.0 when 1…5 faults exist in the structure. 

Each training event can issue 2 prefetch requests at 
Address+Stride and Address+2*Stride.  We use a statistical 
fault-injection framework (with a confidence level of 99% and 
an error margin of 3%, according to the sampling described in 
[17]) that includes a faults database populated with the fault 
descriptions (component, entry, bit, type) for the L1 cache-
stride data prefetcher. We use the stuck-at fault model [21] in 
which a faulty cell permanently stores logic 0 or 1. A total of 
900 different fault masks (100 single, 300 triple, 500 quintuple 
faults) are injected in the data prefetcher component (the total 
number of fault injection runs for the 29 SPEC CPU2006 
benchmarks are 26,100). 

Each fault-injection run applies randomly 1  selected 
multiple fault masks to the sub-arrays (fields) of the prefetch 
table (i.e., tag, load address, stride, confidence, LRU, and 
valid arrays) with the exception of the prefetch input queue 
(PIQ) and the prefetch request queue (PRQ), into which we 
inject single faults only due to these structures’ small sizes. 

We run all SPEC CPU2006 benchmarks, simulating the 
largest-weight 100-million-instruction SimPoint sample per 
benchmark with a 20-million-instruction warm-up. We 

                                                           
1  We chose not to insert hard faults in a regular pattern because 

experimental data, indicating clustered fault patterns, are associated with soft 
errors only. 
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compare the results of each injection experiment to fault-free 
execution. To measure the average performance degradation, 
we look at the average IPC impact per fault group size (one, 
three, and five; based on Section II, one, three, and five faults 
have high probabilities of occurring on a 10K-bit SRAM 
array, which is the size of the prefetcher array of this study). 
To examine performance variability, we calculate the 
maximum value and standard deviation of IPC loss per fault 
group size across all benchmarks. 

IV. EXPERIMENTS 

A. Prefetch-friendly and prefetch-neutral Benchmarks 
We profile the full set of SPEC CPU2006 benchmarks to 

measure the IPC impact of a fault-free data prefetcher. On 
average, we find that the data prefetcher boosts IPC by 6.85%. 
However, performance improvement varies and depends on 
the memory access patterns generated by each benchmark. 
Thus, we classify benchmarks into two categories: (a) 
prefetch-friendly with IPC change greater than the average 
speed-up; and (b) prefetch-neutral with IPC change less than 
the average speed-up as shown in Table III. 

B. Performance Impact of Faults 
We measure the performance impact of hard faults in the 

data prefetcher. Figure 3 shows the average and maximum 
IPC slow-down (due to faults) when 1, 3 and 5 faults are 
injected in the prefetch table along with standard deviation; 
the upper diagram shows prefetch-friendly benchmarks and 
the lower shows prefetch-neutral ones. Prefetch-friendly 
benchmarks show a maximum 3.0% IPC loss due to single 
fault runs per benchmark, 5.7% IPC loss over triple faults, and 
9.2% IPC loss over quintuple faults. Thus, a faulty L1 cache-
stride data prefetcher can severely degrade microprocessor 
performance. 

Figure 4 and Figure 5 show the average and standard 
deviation of the IPC slow-down for each SPEC CPU2006 
benchmark when one, three, and five faults are injected. As 
expected, the prefetch-friendly benchmarks appear to have a 
greater IPC impact with the same number of faults compared 
to the prefetch-neutral ones. In particular, even though a fault-
free prefetcher improves execution time in GemsFDTD by 
20% and in sphinx3 by 0.6% (Table III), GemsFDTD suffers a 
maximum 17% IPC slow-down, while sphinx3 loses only 
0.06% when quintuple-faults are injected. 

To clarify the severity of the performance loss due to the 
faulty prefetcher, we also show in Table III the IPC of SPEC 
CPU2006 benchmarks for: (a) the CPU core without an L1 
cache stride data prefetcher, and (b) the same core with a fault-
free L1 cache stride data prefetcher enabled. If we compare 
the prefetcher IPC gain in Table III with the IPC loss in Figure 
4 and 5, we see that 9 out of 29 benchmarks lost the IPC gain 
from data prefetching. For example, on bzip2, the IPC without 
the data prefetcher was 1.074. When quintuple faults were 
injected into the prefetch table array, IPC was reduced to 
1.069 (we see similar behavior in: gamess, GemsFDTD, 
libquantum, tonto, cactusADM, povray, sjeng, omnetpp). 

By further analyzing the prefetcher behavior, we found 
that the extent of the performance impact that faults have, 
depends on the distribution of the training input addresses 
across the prefetch table entries (apart from the prefetch-
friendliness of the workload, as discussed on IV-A).  

Table I presents the activity per entry in the prefetcher 
table. Each column shows the number of prefetch table entries 
that is trained with less than or equal to X% of all   addresses 
training the prefetcher. X is 50%, 75% and 100% for the 2nd, 
3rd and 4th columns respectively. For example, in libquantum, 
a single entry is trained by 50% of the traffic, 2 entries by 75% 
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Figure 3: IPC loss: prefetch-friendly (upper) and prefetch-neutral (lower). 

and 5 entries  by 100% of the memory traffic (libquantum 
speed-up is 17.20%, while slow-down is up to 13.80% when 
quintuple faults are injected). In contrast, the prefetch training 
address stream generated by gcc is distributed across the 
entries of the prefetch table array (gcc speed-up is 1.89%, 
while slow-down is up to 0.06%). Therefore, in gcc, the 
probability of polluting the majority of the training addresses 
by a given number of injected faults is low. In libquantum, if a 
fault occurs in one of the heavily used entries, the majority of 
training will be affected, and so the IPC loss will be much 
greater. 

The prefetch-neutral benchmarks show a much more 
uniform usage of the table entries, compared to the prefetch-
friendly ones, where most of the training is concentrated in a 
few entries (33 vs. 51 entries on average, respectively). This is 
because even though their memory traffic does not exhibit as 
many strides, they still allocate table entries and attempt to 
train. Furthermore, the prefetch-neutral benchmarks generate 
few prefetch requests per prefetch table entry because there 
aren’t many strides detected. Therefore, when few entries are 
trained by the majority of memory traffic (for example, in 
cactusADM the entire memory traffic is directed to only 11 
entries), the impact on IPC is negligible, since the actual 
generated prefetch requests are few. 
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Figure 4: Average IPC slow-downs for 1, 3 and 5 hard faults on Prefetch 
Table. 
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Figure 5: IPC slowdown standard deviations for 1, 3 and 5 hard faults on 
Prefetch Table. 

As we can observe in Figure 6 the faulty prefetcher is 
throttled because the faults reduce the number of training 
events. As a result, the number of issued prefetch requests 
drops for all benchmarks (on average, the number of issued 
prefetch requests drops from 22 to 20 per 1,000 committed 
instructions); therefore, performance gains due to prefetching 
are lower (the average L1 cache miss rate roughly increases 
from 26 to 27 MPKI in the quintuple injected fault scenario). 
The data in Figure 6 and Figure 4 also illustrate the greater 
performance sensitivity of the prefetch-friendly benchmarks to 
faults. Faults in the prefetch table corrupt the prefetch 
addresses sent to memory, which in turn increases the L1 
cache miss rate and hurts IPC. 

We also looked at a variety of events that can be used to 
identify at run-time when faults in the data prefetcher lead to 
significant IPC loss. We found that an off-range stride is such 
an event and is triggered when the difference between the 
trained address and a new memory address is out of the legal 
stride limits. As a result, the incoming memory address is 
dropped, since it fails to train the stride data prefetcher.  

Table II presents the number of off-range stride events per 
1K committed instructions for the fault-free and the faulty 
microprocessor models (i.e., 1, 3 and 5 faults injected into the 
prefetch table array). In particular, multiple permanent faults 
increase the amount of off-range stride events up to 25% for 
the prefetch-friendly benchmarks (off-range stride rate 
increased from 118.7 to 148.3 per 1K commits) and up to 8% 

for the prefetch-neutral benchmarks (ranging from 231.3 to 
249.3 per 1K commits).  
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Figure 6: Percentage of prefetch issue rate losses with 1,3 and 5 hard faults 
compared to the fault free prefetch issue rate 

The severe impact of faults on the performance of SPEC 
CPU2006 benchmarks indicates the need to develop and 
integrate fault detection schemes. By monitoring off-range 
stride occurrences per prefetch table entry, one could steer the 
design of fault detection mechanisms for data prefetchers, 
since the increase (up to 25%) in the number of off-range 
stride events correlates well with the number of faults in the 
prefetcher. 

We also performed a fault injection campaign in the PIQ 
and PRQ. Due to the small size of PIQ and PRQ (8 entries 
each), we injected only single faults in them. This was 
sufficient to show the severe impact on performance that hard 
faults on these queues can have on microprocessor 
performance. Even though these queues are typically 
implemented with flip flops, the probability of single faults, 
especially in NTV mode remains significant. Table III shows 
the IPC change for single faults injected into the PIQ and 
PRQ. 

Across all 29 benchmarks, the average IPC loss (1.5% and 
2.5% for PIQ and PRQ, resp.) and maximum IPC loss (24.3% 
and 26.3% for PIQ and PRQ, resp.) are significantly higher 
than that of the prefetch table because a large number of 
training addresses (buffered in PIQ) and prefetch requests 
(queued in PRQ) are likely to be polluted by a single hard 
fault. It is evident that having a faulty PRQ or PIQ severely 
slows-down performance (13 benchmarks out of the 29 lost 
the speed-up gained by the data prefetcher due to a faulty PRQ 
entry and 11 due to a faulty PIQ entry).  

The fault location determines the extent of the performance 
impact. Figure 7 shows the average utilization of each entry of 
the PRQ and PIQ (percentage of times a given entry of the 
queue is utilized). In particular, the PIQ entries are utilized 
uniformly across all benchmarks with the exception of the top 
2 entries. The top three entries in PRQ are utilized 95% of the 
time across all benchmarks. Therefore, faults that reside in the 
rear entries of both queues have minimal impact on 
performance.  

Our analysis clearly confirms that microprocessor 
performance can be severely degraded by a faulty L1 cache-
stride data prefetcher. The impact can be more than 24% IPC 
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Table I: TRAINING ACTIVITY OF THE PREFETCH TABLE ENTRIES. NUMBER OF 
PREFETCH TABLE ENTRIES THAT HANDLE LESS THAN 50%, LESS THAN 75% 
AND 100% OF THE MEMORY TRAFFIC TRAINING THE PREFETCHER.  

Prefetch Table Entries Training Activity 

Prefetch-
friendly  

≤ 50% ≤ 75% =100% 
Prefetch-
neutral  

≤ 50% ≤ 75% =100%

bzip2 1 2 7 perlbench 3 4 63 

bwaves 4 7 12 gcc 7 20 64 

gamess 17 17 17 mcf 3 5 47 

zeusmp 9 25 62 milc 1 2 23 

leslie3d 9 17 47 gromacs 12 22 58 

dealII 1 2 24 cactusADM 4 6 11 

soplex 8 18 63 namd 2 8 57 

Gems 
FDTD 

4 7 32 gobmk 3 9 64 

quantum 1 2 5 povray 6 14 64 

tonto 3 6 40 calculix 4 8 63 

wrf 12 22 59 hmmer 6 10 59 

    sjeng 3 6 64 

    h2564ref 8 20 64 

    lbm 1 2 32 

    omnetpp 1 2 31 

    astar 4 6 47 

    sphinx3 1 2 57 

    xalancbmk 2 3 62 

average 6 11 33 average 4 8 51 

 
slow down due to a single fault in the PIQ, up to 26% IPC 

slow down due to a single fault in the PRQ, and up to 18% 
IPC slow down due to five faults in the prefetch table, mainly 
due to prefetch throttling and/or cache pollution. 

C. Performance Variability Summary 
In this section, we examine the performance variability 

across identical CPU cores due to multiple faults in their data 
prefetchers. Performance variability can affect the cost and the 
power budget of a data center. Our findings show the 
following 

The maximum IPC slow-down can be up to 7% for single 
faults in the prefetch table, 24% for the PIQ, and 26% for the 
PRQ. For most benchmarks, maximum IPC loss is higher than 
the IPC gain of the fault-free data prefetcher. This large 
variation in IPC finding holds when all cores are affected by 
the same number of faults. 

The difference in IPC slow-down for different numbers of 
faults (1 to 5) across the cores ranges between 0.005% and 
17% compared to the fault-free IPC, when considering only 
faults in the prefetch table. The same range is 0.01 to 24% for 
PIQ faults and 0.02% to 26% for PRQ faults. 

The difference between the best- and worst-case 
performance for single and multiple faults is not due to outlier 
behavior. The standard deviation of the IPC loss on the 
prefetch-friendly benchmarks due to faults in the prefetcher 
table is 0.7%, 1.3%, and 1.6% for single, triple, and quintuple 
faults, respectively.  

As Figure 5 shows, certain benchmarks have even larger 
stdev values: for example the stdev of bzip2 benchmark with 

single fault injected is 2.5%, while the gamess benchmark 
stdev is 3.4% and 4.2% for triple and quintuple faults, 
respectively.  

Table II: NUMBER OF OFF-RANGE STRIDE EVENTS FOR THE PREFETCH-
FRIENDLY AND NEUTRAL BENCHMARKS WITH A FAULT-FREE AND WITH 1, 3, 5 
FAULTS INJECTED IN THE PREFETCH TABLE. 

Off-range stride (per 1K commits) 

Prefetch-
friendly 

fault-
free 

1 
fault

3 
faults

5 
faults 

Prefetch-
neutral  

fault-
free 

1 
fault

3 
faults

5 
faults

bzip2 81 84 91 98 perlbench 176 179 185 191 

bwaves 200 215 218 232 gcc 451 454 463 474 

gamess 1 9 15 21 mcf 30 34 47 61 

zeusmp 58 62 70 79 milc 126 131 139 149 

leslie3d 163 164 174 184 gromacs 305 306 311 317 

dealII 162 167 185 197 cactus 154 156 162 171 

soplex 185 197 254 257 namd 345 346 349 352 

Gems 
FDTD 

232 239 249 258 gobmk 323 326 332 337 

quantum 200 210 227 240 povray 344 347 350 358 

tonto 7 13 22 34 calculix 56 58 63 69 

wrf 19 22 26 32 hmmer 220 226 239 251 

     sjeng 114 128 142 151 

     h2564ref 181 181 189 196 

     lbm 414 414 418 422 

     omnetpp 314 316 321 328 

     astar 106 121 126 133 

     sphinx3 309 311 316 321 

     
xalanc 
bmk 

195 202 207 208 

average 119 126 139 148 average 231 235 242 249 

Overall average 175 181 191 199 

 
The standard deviation of IPC loss for the prefetch-neutral 

benchmarks is 0.06%, 0.07%, and 0.08% (Figure 5). The 
standard deviation of the IPC drop for all single faults injected 
into PIQ and PRQ is 2.0% and 2.4%, respectively. 

The key message regarding performance variability is that 
hard faults in data prefetchers in a many-core system 
significantly increase inter-core performance variability. 
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Figure 7: Utilization of the PIQ and PRQ entries across all SPEC CPU2006 
benchmarks. 

!

!



 

Table III: AVERAGE IPC FOR PREFETCH-FRIENDLY AND –NEUTRAL 
BENCHMARKS, WITHOUT THE DATA PREFETCHER, WITH A FAULT-FREE DATA 
PREFETCHER AND WITH SINGLE FAULTS INJECTED INTO THE PREFETCH INPUT 
AND REQUEST QUEUE. 

Average IPC 

Prefetch-
friendly 

w/o 
pref 

w 
pref 

PIQ 
fault 

PRQ 
fault 

Prefetch-
neutral 

w/o 
pref 

w 
pref 

PIQ 
fault

PRQ 
fault

bzip2 1.07 1.29 1.04 1.00 perlbench 1.66 1.71 1.68 1.67

bwaves 0.65 0.71 0.71 0.71 gcc 0.69 0.71 0.70 0.70

gamess 1.74 2.12 1.82 1.87 mcf 0.21 0.21 0.21 0.21

zeusmp 0.97 1.06 0.96 0.97 milc 0.76 0.73 0.70 0.66

leslie3d 0.78 0.84 0.80 0.82 gromacs 0.94 0.97 0.95 0.94

dealII 0.99 1.08 1.07 1.05 cactus 1.46 1.46 1.45 1.45

soplex 0.55 0.60 0.57 0.55 namd 1.55 1.56 1.55 1.55

Gems 0.53 0.63 0.48 0.51 gobmk 1.23 1.24 1.24 1.24

quantum 0.40 0.46 0.38 0.34 povray 1.13 1.14 1.13 1.13

tonto 1.60 1.86 1.57 1.57 calculix 1.13 1.18 1.18 1.17

wrf 0.79 1.07 0.87 0.82 hmmer 1.17 1.18 1.17 1.16

     sjeng 1.18 1.18 1.18 1.18

     h2564ref 1.55 1.56 1.54 1.56

     lbm 0.69 0.72 0.71 0.70

     omnetpp 0.51 0.51 0.50 0.50

     astar 0.91 0.94 0.93 0.93

     sphinx3 1.37 1.37 1.37 1.37

     xalanc 1.10 1.14 1.10 1.11

V. CONCLUSIONS 

The existence of hard faults in a stride data prefetcher can 
affect microprocessor performance significantly and increase 
inter-core performance variability. Our analysis shows that the 
performance loss due to hard faults in the prefetch table can be 
up to 17%, and up to 24% and 26% for the PIQ and PRQ 
respectively. Also, performance variability across cores is 
increased: the standard deviation of IPC loss between 
benchmarks can be more than 4.5%. Our findings imply that 
prefetchers should be supported by fault protection 
mechanisms in both current and forthcoming technologies. 
Events, such as the rate of off-range strides, can steer the 
implementation of fault detection mechanisms. 
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