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Scope of the document 

This document is an outcome of the task T6.1 “Case studies specifications” described in the 
description of work (DoW) of CLERECO project under Work Package 6 (WP6). Figure 1 depicts 
graphically the goal of this deliverable, its main results, and which work packages will use its 
outputs.  

IN OUT
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WP3

Deliverable D6.1

It lists and specifies the case studies that will be 
used for the demonstration and validation 
activities in the CLERECO project.

WP2

WP5

WP6

Results
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Figure 1 - Task and deliverable overview 

This document contains a description of the test cases that will be used to validate 
CLERECO results. Three case studies have been selected and identified as relevant for the 
needs of the demonstration activities. They come from a wide range of application domains 
including High Performance Computing applications, industrial application domain as well as 
safety critical embedded systems. This diversity will enable us to validate that the CLERECO 
tools can be efficiently used for the design of systems with different kind of requirements and 
operating conditions. The outcome of this deliverable is thus a set of case studies that have 
been selected for the demonstration and validation activities of the CLERECO project. 

The document is organized in the following Sections: 

• Introduction. It introduces the role of the case studies in the project. 
• HPC case study specification. It presents the specification of the HPC case study that 

consists of a full-fledged tsunami simulator. 
• Industrial automation case study specification. It presents the specification of the in-

dustrial case study that consists of a motor controller. 
• Avionics case study specification. It presents the specification of the avionics case 

study that consists of a Flight Management System. 
• Conclusion. A short summary of the activities described in this deliverable. 
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1. Introduction 

In the context of the decreasing reliability of semiconductor devices due to the technology 
scaling, evaluating the reliability of a system becomes a critical and challenging task. To deal 
with this evolution of technologies, the CLERECO project develops tools to perform system reli-
ability estimation early in its design phase. However, exploitation of these tools in real projects 
will be possible only if developers are confident on the validity and on the accuracy of the re-
sults. Therefore, validation of the results is an important and critical task in the CLERECO project 
to enable the use of the CLERECO methodology and tools in an industrial context. 

 To this end, the use of industrial case studies is mandatory in order to have complex appli-
cations and not just simple benchmarks. The vulnerability of an application depends on its 
characteristics and complexity. Working with complex applications will enable to deeply un-
derstand the potential and capability of the developed methodology. For instance, a small 
benchmark whose code could fit in the instruction cache of the processor would not test ap-
propriately the methodology. It is also necessary to have complex applications in order to 
check how the analysis effort scales with the complexity of the application. 

The validation and demonstration activities of the CLERECO project rely on three case stud-
ies. These cases studies are representative of different application domains, namely: the High 
Performance Computing domain, the industrial domain and the avionics domains. So, they 
cover different segments of the Computing Continuum. As the CLERECO project aims to deliv-
er tools targeting many application domains, it is important to validate that the tools work with 
different case studies. One of the goals of CLERECO is to provide designers a facility to esti-
mate system reliability for a wide range of applications.   

The first case study will analyze the capabilities of our proposed methodology for HPC sys-
tems. Due to high cost of building a dedicated HPC system for our purposes, we will build a 
scaled-down HPC system consisting of 2 AMD Opteron Processors 6338P. After having consid-
ered several applications from the HPC domain and a preliminary analysis, a tsunami simula-
tion application has been selected to be used for the CLERECO validation activity. 

A second case study is an industrial application in the framework of motor controller. Such 
systems are used to control electrical motors. Their reliability is therefore mandatory to guaran-
tee safety in industrial plants. It is a bare metal application (i.e., no Operating System). It will be 
implemented on a Xilinx Zynq platform based on an ARM Cortex-A9 subsystem associated to 
programmable logic (i.e., FPGA). The application is created starting from a high-level model 
that enables to implement portions of the application as software (C code) and portions as 
hardware (VHDL blocks).  

The third case study is an industrial application use case based on a Flight Management Sys-
tem. This function is a fundamental part of a modern aircraft's avionics that automates a wide 
variety of in-flight tasks, such as localization, flight planning, guidance, predictions and so on, 
reducing the workload on the flight crew to the point that modern aircrafts no longer carry 
flight engineers or navigators. The application is planned to be executed on a ARM Cortex-A15 
subsystem. Differently from the previous case study, this application is executed on top of an 
Operating System with no HW acceleration. 

It is important to highlight here that the three use cases reflect applications from very differ-
ent domains. Motivations, requirements, design styles and tools, constraints are in general very 
different. This is reflected in the descriptions provided in this document.  

This document is the outcome of the task T6.1 where the three case studies have been stud-
ied. It is a specification of these case studies that will be used in the tasks T6.2 and T6.3 for the 
analysis and validation. The document is organized as follows. Section 2 presents the High Per-
formance Computing case study. Section 3 describes the industrial case study that consists of 
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a motor controller. Section 4 of the deliverable is focusing on the avionic test-case expressing 
the general task flow of the Flight Management System use-case, and summarizing all the use-
case related requirements. 

2. HPC case study specification  

 Overview of the case study 2.1.

The case study chosen by partner UPC to demonstrate the application of CLERECO reliabil-
ity analysis tools in the design of a HPC system is based on a high-performance platform with 
several threads running a tsunami simulation framework. 

In order to design an HPC case study we needed two main resources: A HPC platform and 
a software application able to exploit as much as possible the resources of this machine. In the 
following paragraphs, we will explain the most relevant details of each of these parts.  

HPC hardware platforms are complex machines with high costs and only few leader pro-
viders in the world. The design of a full scale HPC system is high demanding in terms of com-
plexity, time and resources that could not be afforded in the time frame of a single EU project. 
A complex activity has been therefore carried out by partner UPC in the framework of the 
CLERECO project to identify the specification of a system including all computing characteris-
tics of a full-scale systems but keeping at the same time complexity, design time and costs 
within the available budget. 

Joshua (Figure 2) is the name of the hardware platform that the UPC partner has bought for 
the implementation of the hardware infrastructure of the HPC case study. Joshua is a platform 
equipped with two AMD Opteron(tm) Processor 6338P. Each of these processors is composed 
of 12x86 cores that can run up to 2.8 GHz each. Each core has a 1MB L2 private cache. The 
whole socket has a 16MB L3 shared cache. Thus, in total Joshua has 24x86 cores each one 
containing a 1MB L2 private cache in addition to 2 shared L3 caches of 16 MB each. The com-
plexity of this hardware architecture goes beyond the capability of analysis of any known 
hardware fault-injection reliability analysis tool and therefore represents a challenge for the 
tool suite developed in CLERECO.  

 

Figure 2 - The Joshua platform installed in the UPC 

Together with the hardware architecture, the HPC 
case study requires to identify a software application 
able to exploit this 24–core machine. For this purpose 
we have chosen the Sierpinski Framework [8]. This 
framework is an open source software to solve hyper-
bolic equations on dynamically changing fully-
adaptive conforming 2D triangular grids. A kernel 
based way to solve hyperbolic problems and to apply 
steering during simulation is offered. In particular, we 

Figure 3 - A frame of the simulation 

of the tsunami’s propagation 
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use this framework with the augmented Riemann flux solvers [5][6] to simulate the propagation 
of a tsunami over the sea as it can be seen in Figure 3. In our opinion, this application is an ap-
propriate use case for the HPC scenario for two main reasons: 

The first one is the highly computational demands this application requires and its capability 
to be parallelized to feed and stress all the computing cores of our system. Notice that, for 
each simulation step the application generates a snapshot and for recreating a 16 sec video 
about 400 snapshots are needed, which results in about one hour of processing time in Joshua. 

The second reason is the importance of the correctness of the results of this kind of simula-
tions. Notice that this kind of software may be used for organizations that try to predict the im-
pact of a natural hazards in the earth, such as the Emergency Response Coordination Center 
(ERCC), the European Earth Observation Program, or the United Nations Office for Disaster Risk 
Reduction. Also in Europe, many seaside areas along the Mediterranean Sea have been af-
fected by tsunamis. Figure 4 shows the results of a study made by the European Spatial Plan-
ning Observation Network (ESPON) in 2005 where it can be observed the potentially areas un-
der tsunami hazard in Europe. As stated before, this kind of applications are used to predict the 
impact of the tsunami hazards. For this reason an error on this simulation models could be cat-
astrophic. Imagine that the strength of the tsunami is lower than what the simulation had pre-
dicted. In this case, a city that is completely out of the scope of this tsunami could had been 
totally evacuated according to the prediction, taking into account the cost of this evacuation. 
Or even worse, imagine that the strength of the tsunami is higher than what the simulator says 
and the city is not evacuated just to save costs. 

 

 

 

 
Figure 4 - European countries in tsunami hazard. 
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In order to have a more realistic validation process, we reproduce a real case. In particular, 
one of the most famous and catastrophic tsunami from the last years. It is the Tohoku Tsunami 
from 2011 in Japan which had catastrophic consequences, emphasized by the nuclear acci-
dents at three reactors of the Fukushima Daiichi Nuclear Power Plant complex. The Sierpinski 
framework, analyzes the starting configuration of the area, and calculates the propagation of 
the wave for a determined number of steps.  

 The Sierpinski Framework 2.1.

The tsunami propagation is calculated through a solver, which is a numerical method for 
the solution of hyperbolic partial differential equations. This solver is integrated in the Sierpinski 
framework and it is the responsible for accurately predicting the behavior of the tsunami wave. 
Moreover, the Sierpinski framework can work with several solvers [5][6]. All of them solve the 
hyperbolic partial differential equations but in a slightly different way. This is important from the 
reliability point of view because different solvers may make more or less use of arithmetic or 
logic operations. Thus, there can be more reliable solvers than others. In particular, the Sierpin-
ski framework can work with the following solvers:  

• Lax friedrich 

• Rusanov 

• Fwave 

• Augmented Riemann (C++) 

• Hybrid solver  

• Augmented Riemann (GeoClaw) 

• Augmented Riemann (SIMD) 

• Velocity upwinding 

• FullSWOF (external)  

•  

In addition to the solvers, the Sierpinski framework contains a large number of configurable 
parameters, which are listed in an xml file used as an input of the framework when compiling or 
executing. These parameters are classified into four different groups: compiler, threading, sier-
pi, and tsunami parameters. The most important parameters for each of these groups are brief-
ly cited bellow:  

• Compiler: parameters about the type of compiler (e.g., Intel or Gnu) and other aspects 
that must be defined at compile time. The most important of them are the threading 
framework and the solver.  

• Threading: Parameters to determine the number of threads and their behavior during the 
simulation.  

• Sierpi: Parameters to determine the behavior of the Sierpinski framework, such as the ver-
bosity level of the execution, simulation time, or the frequency of data output.  

• Tsunami: Parameters related to the input grid, the relative recursion depth of the simulation 
and the size of the grids or constant values such as the gravity. 

As shown in Figure 5, the framework uses the bathymetry files as part of the configuration file 
introduced above. These bathymetry files are generated by international institutions, concrete-
ly we are working with data provided by the General Bathymetric Chart of the Oceans 
(GEBCO) and National Oceanic and Atmospheric Administration (NOAA).  For this reason, in 
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order to use them in the Sierpinski framework, these files must be preprocessed by a software 
provided by the people in TUM (Munich). This software is called Tsunami 
(https://github.com/TUM-I5/tsunami) and its purpose is to transform the bathymetry files to data 
manageable by the tsunami simulation software.  

 

 

Figure 5. Source and output files related to the Sierpinski framework. 

 

 Approach 2.2.

The system (hardware infrastructure and running software) will be modeled resorting to the 
CLERECO reliability analysis tools in order to perform the estimation of the reliability of this HPC 
system. The challenge of this use case in our project will be the ability to manage the complexi-
ty of the hardware platform and the complexity of the software application in the very short 
time frame available for the project in order to obtain reliability estimation to be compared 
with those provided by commercially available tools. 

Succeeding in the analysis of this use case will be a clear demonstration of the capability of 
our tool to scale with complex applications and to enable to obtain fast results even when the 
complexity of the system to analyze is high.  Moreover, the availability of different solvers in the 
selected application can be used to exploit the reliability reasoning capability of the CLERECO 
tool to identify those solvers that enable to reach a better reliability. 

In order to test the framework we have prepared three configuration files. The main 
difference between them is the relative recursion depth of the simulation, which is directly re-
lated to the number of points from the resulting result of the simulation. Table 1 shows the main 
differences between the input sets: large, medium and small. The differences can be observed 
in the “sim time” (in Joshua machine), the number of processed cells, and a sample image of 
the result. Nevertheless, the large input is the one that is going to be used for the validation 
process. 
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Input set Sim time  Processed 
Cells 

Sample 

large 1360 s 10720 Million 

 

medium 47s 163 Million 

 

small 2s 2 Million 

 

Table 1. Input sets of the validation framework. 
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3. Industrial case study specification 

 Overview of the case study 3.1.

The case study chosen by ABB to demonstrate the results of the project is centered on the 
realization of a motor drive (controller). 

A motor control system is a very common application in the industrial domain. It can be 
used in a simple conveyor belt with one rotating motor or a long belt with carefully synchro-
nized multiple motors to minimize forces on the belt. It can be exploited in an indoor protected 
area like a paper mill or out in a ruggedized environment transporting stones and cement.  

 

Figure 6 - Conveyor belt with drives 

It can also be exploited in a complex process environment consisting of fans, pumps, com-
pressors, etc. The functionality can be an advanced factory automation utility consisting of ro-
bots, machines, and humans in constant interaction. 

 

Figure 7 - Robot with control system 
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 Use Case Description 3.2.

The contexts in which motors described above operate are more often than never imposing 
certain levels of safety. The implementation of safety related regulations comes usually as addi-
tional modules and functions within the motor controllers. 

A typical safety application for rotating motors is an emergency stop button. This is because 
the human being often is close to the motor. If something happens, there must be a possibility 
to immediate turn the motor off without questions asked. The motor sizes can range from tiny 
non-cost to huge expensive. The motor controller then also serves as a protection device for 
the motor.  

Figure 8 represents a typical and simplified ABB Motor Controller, consisting of the Drive Con-
troller (DC) and the safety option (within the red square). The Control System (CS) is represent-
ed by the HMI (Human Machine Interface) and Configuration on top. 

 

Figure 8 - Motor Controller, closed loop 

Safety critical components are marked in yellow.  

Within CLERECO we focus on two safety features: Safe Torque OFF (STO) and Safety Limited 
Speed (SLS).  

Safely-limited speed (Figure 9) ensures that the specified speed limit of the motor is not ex-
ceeded. This allows machine interaction to be performed at a slow speed without stopping the 
drive. The safety functions module comes with four individual SLS settings for speed monitoring. 
The implementation should provide the possibility to change the speed limit of the SLS on the 
fly.  

Safe torque off (Figure 10), when activated, it brings the machine safely into a non-torque 
state and/or prevents it from starting accidentally. The function can be used to effectively im-
plement the prevention of unexpected startup functionality, thus making stops safe by pre-
venting the power only to the motor, while still maintaining power to the main drive control cir-
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cuits. Prevention of unexpected startup requires for example a lockable switch in addition to 
the STO function. Note that STO does not protect against electrical hazards. 

 

Figure 9 - SLS behavior. 
 

Figure 10 - STO behavior. 

Usually, the implementation of STO and SLS is localized in a physically separate module (de-
pending on the requirements). These modules may be dedicated to only one safety function – 
see Figure 11, or to several functions – see Figure 12. 

 

Figure 11 - An ABB module containing Safe 

Torque Off Function 

 

Figure 12 - ABB safety functions module (SLS 

among them). 

However, in CLERECO, we will use a different platform for the implementation of such func-
tionalities (together), in order to accommodate multiple possible variations of both functionali-
ty and targeted technology. 

 

3.2.1. Drive Controller 

The Drive Controller is continuously instructing one or several motors what to do. Set points 
are typically given via the HMI and this is transformed into motor commands. DC continuously 
receives feedback of position (and speed) from the resolver. This is used for running the motor 
control loop.  

• HMI gives commands to the DC, which is translated into motor commands.  
• The resolver continuously measures motor position and feed this back to the control 

loop for supervision. 
• The current transformer (CT) protects the motor from overcurrent conditions compar-

ing calculated and actual values. 
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• In addition, it reacts on commands from the Safety Option (Emergency Stop and 
Safety Limited Speed).  

Implementation details around the DC to be established: 

• Select HW (standard test PCB with relevant CPU) 
• Select operating system, if any 
• Develop application for motor speed control, motor overload protection, HMI inter-

action, safety option interaction 
• Digital output for PWM control (Pulse Width Modulation) 
• Analog inputs to handle resolver signal and current measurements 
• Communication solution towards safety option 

3.2.2. Safety Option 

This Safety Option is the motor safety supervisor.  It continuously monitors the motor activities 
via the resolver feedback. Based on predefined motor limitations, it can cut of the power to 
the motor. This normally means the DC has failed or is not aligned with the SO. 

• SO is connected to HMI or Control System (CS) to receive motor configuration data 
(motor characteristic). 

• SO takes also direct input from user via ES and directly disables the power to the mo-
tor in addition to informing the DC. 

• It receives Resolver feedback making it possible to supervise DC – not based on mo-
tor commands, but on motor characteristic (overload, overheating, etc.). 

A simplified SO solution could be not to supervise DC, but only adding an Emergency Stop 
button. 

Implementation details around the SO: 

• Select HW (standard test PCB with relevant CPU) 
• Select operating system 
• Develop application for STO, SLP, HMI interaction, drive controller interaction 
• Output power circuitry 
• 2 digital inputs for STO and SLS 
• 1 digital output for STO enforcement 
• Analog input to handle resolver signal 
• Communication solution towards drive controller 

3.2.3. Other design elements 

A Resolver is an ultra-reliable rotary motion-sensing transformer mounted on the rotating 
shaft of the motor to detect all motor movements. It reports the motor position and speed to 
the Motor Controller system closing the control loop. 

Configuration and HMI is representing the Control System for configuring and setting up the 
motor controller with the correct motor characteristics – typically threshold values and criticali-
ty – used for selecting application configuration and all required user interaction. 

Safe Torque Off ensures that there is generated no motor torque due to energy from the DC 
and Output power circuitry. This is enabled by pressing the Emergency stop (ES) button or 
when the Safety-Limited Speed is exceeded. When activated, the STO function ensures that 
there is generated no motor torque due to energy from the DC and output circuitry. 

Implementation details around the DC: utilize standard resolver and current transducer suit-
able for the application. 



Deliverable D6.1: Case studies specifications Page 15 of 23 

 

 

Version 1.6 – 25/03/2016 

 Approach 3.3.

Several scenarios for the implementation can be taken into account as follows. 

1. No safety: the SO can be removed, we only implement the DC.  
2. Limited safety: The SO and DC can be embedded on the same platform, as differ-

ent software applications running different processes.  
3. Full safety: The SO and the DC can be implemented on separate platforms consist-

ing of different hardware (HW) and software (SW). 
4. Full safety with redundancy: The SO and the DC can be implemented on separate 

platforms consisting of different hardware (HW) and software (SW) with redundant 
SO solution. 

Of the above options, only the last one seems outside of the project reach – due to the rela-
tively limited number of resources.  

Otherwise, in addition to the scenarios, further variations can be obtained in the realization 
of the use case, in order to be able to observe an as wide as possible impact of potential reli-
ability failures, and to provide solutions for addressing them. In this sense, the expectation is 
that starting with a 100% software implementation elements of design would be gradually 
moved into hardware as potential high impact errors may be prognosticated with high proba-
bility. 

Platform. In order to support the above goals, a Xilinx Zynq platform has been selected to im-
plement the use case. It consists of a processor connected to an FPGA logic area via AXI inter-
faces. It gives the possibility to implement both hardware and software modules of the demon-
strator. It further gives the possibility to quickly move such models from one technology to the 
other (at design time), following potential negative impact results from the analysis performed 
in the project. 

The design will consider bare-metal implementation for the software part, that is, no operat-
ing system to run on the platform’s processors. 

Process. Further, our approach to the use case is organized in two stages. 

A generic model at first will be used to study both the potential of the tools and the quality 
of the implementation and of the selected platform. High level specifications of safety options 
are to be implemented. Following a characterization of the implementation with respect to 
reliability aspects, a set of “lessons” are to be extracted and used in the second stage of the 
developments. 

The second phase of the approach targets the implementation of a refined, more specific 
design, with more accurate safety specifications to be implemented. The resulting system is 
planned to be demonstrated as operating a suitable size (dimensions and cost) motor. Final 
project outcomes are to be tested on this design. 

The tool landscape. Tools in the process should support the above description of goals. The 
Mathworks’ Matlab-Simulink environment has been chosen for modelling the motor controller. 
There are many generic examples of a Motor Control configuration in Simulink that can be 
used at least in the first stage of the approach, for generating C-code and VHDL to be imple-
mented on the selected target system. The same tool provides also means to automatically 
generate both C code for the software parts, as well as VHDL for the hardware parts. Hence, a 
quick change in the targeted implementation technologies should be possible. 

For the hardware part, the Xilinx Vivado environment has been selected. It will both synthe-
size the VHDL elements and support the integration of software and hardware modules. 
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 Summary 3.4.

A quick overview of the choices and approach in the realization of the use case is present-
ed below. 

 Stage 1 Stage 2 

Platform Zynq 

Tools 
Mathworks 

Vivado 

Result 

 

3 scenarios 

Hardware / software “mobility” 

Generic models Specific models 

Simplified safety options Final safety options 

Motor models 
Physical motor demonstra-

tion 

Timeline M26 M34 
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Figure 13 - Illustration of a Flight 

Management system 

4. Avionics case study specification 

 Overview of the case study 4.1.

One of the case studies selected by Thales to be rep-
resentative of safety-critical applications is a Flight Man-
agement System (FMS)[1]. It is an industrial avionics ap-
plication whose purpose in modern avionics is to provide 
the crew with centralized control for the aircraft naviga-
tion sensors, computer based flight planning, fuel man-
agement, radio navigation management, and geo-
graphical situation information (Figure 13). Taking charge 
of a wide variety of in-flight tasks, the FMS allows us to 
reduce the workload of the flight crew allowing us to re-
duce the crew size. The FMS is especially responsible for 
the flight management services allowing in-flight guid-
ance of the plane. From pre-set flight plans (take-off air-
port to landing airport), the FMS is responsible for the 
plane localization, the trajectory computation allowing 
the plane to follow the flight plan, and the reaction to pilot directives (see Figure 14). 

 

Figure 14 - Flight Management System (FMS) 

The Flight Management System is an industry level application characterized as real-time 
application with different kinds of hard real-time requirements, and with high reliability and high 
availability requirements. As a safety-critical application, the FMS is situated at one extremity of 
the computing continuum (see Figure 15). 

 

Figure 15 - FMS Case Study positioning in the computing continuum 
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The application is based on a commercial Flight Management System but it has been rewrit-
ten in a multi-threaded way. So, the application can be executed on a multi-core processor 
and can be used to study the propagation of faults in such processor architecture. Even if it is a 
simplified version of a Flight Management System, the application is still representative of avion-
ics application in terms of performance requirements and in term of memory requirements. 

 Description of the case study (confidential) 4.2.

 Task-level description & requirements (confidential) 4.3.

 Hardware demonstration platform 4.4.

The demonstration platform that has been selected for this case study is based on a 
66AK2E05 multicore KeyStone II System-on-Chip from Texas Instrument [2]. Its main features are: 

• Four ARM Cortex-A15 Processor Cores at up to 1.4-GHz 
• 4MB L2 Cache Memory Shared by all Cortex-A15 Processor Cores 
• 32KB L1 Instruction and Data Caches per Core  
• One TMS320C66x DSP Core Subsystem 
• 2MB of Multicore Shared Memory (MSMC) that can be used as a shared L3 SRAM 

Figure 16 shows the block diagram of the Keystone II SoC. 

 

Figure 16 - Block diagram of 66AK2E05 

The board used for the development and for the demonstration activities is the EVMK2E 
Evaluation Module provided by Texas Instrument [2]. 

The selection of this platform is motivated by many reasons: 

• the ARM Cortex-A15 processor model is available in the WP3 workpackage 
• the ARM architecture is massively used in the embedded domain 
• the Keystone-II is an advanced and complex Multi-Processor System-on-Chip 

An embedded Linux OS will be used to ease the SW development and to be compatible 
with the analysis done in WP4. Avionic application like the FMS are generally executed on a 
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RTOS, so it is important for this case study to validate that CLERECO methodology can be used 
to analyze the whole SW stack. If using a RTOS is important in an operational context due to the 
real-time requirements of the applications, using an embedded Linux is sufficient in the 
CLERECO context regarding the goals that we want to achieve. We can assume that if the 
CLERECO tools can support a Linux OS, they could support a light RTOS. 

 Reliability requirements and failure modes 4.5.

The aerospace safety process is a top-down process driven from the safety requirements. 
So, the reliability requirements of an application derive from the safety analysis. A Design As-
surance Level (DAL) is assigned to each function of the system according to the severity of its 
potential failure. Acceptable failure rates are associated to each DAL (see Table 2). The FMS 
being responsible of the guidance of the aircraft, it is a critical application whose safety level is 
set to DAL B. 

 

Level Severity Consequences 
Failure rate 
(per hour of 

flight) 

A Catastrophic Failure may cause a crash. Error or loss of critical func-
tion required to safely fly and land aircraft. 

< 10-9 

B Hazardous Failure has a large negative impact on safety or per-
formance, or reduces the ability of the crew to oper-
ate the aircraft due to physical distress or a higher 
workload, or causes serious or fatal injuries among the 
passengers. 

10-7 à 10-9 

C Major Failure is significant, but has a lesser impact than a 
Hazardous failure (for example, leads to passenger dis-
comfort rather than injuries) or significantly increases 
crew workload. 

10-5 à 10-7 

D Minor Failure is noticeable, but has a lesser impact than a 
Major failure (for example, causing passenger incon-
venience or a routine flight plan change) 

10-3 à 10-5 

E No Effect Failure has no impact on safety, aircraft operation, or 
crew workload. 

>10-3 

Table 2 - Safety level definition 

 

As the application is safety critical, every deviation of its outputs should be considered as a 
failure of the system (whatever is the consequence at the aircraft level). At a coarse-grain lev-
el, we can distinguish outputs to the display (localization, flightplan trajectory and nearest air-
port list) and to the auto-pilot (guidance information). Moreover, latent faults have also to be 
considered. For instance, a corruption of a database that would not have caused a failure 
during the experiment should be detected as it could potentially impact the next flight. 

Any violation of the real-time requirements should also be considered as a failure. 
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 Case study input data set 4.6.

The workload used in the case study corresponds to the emulation of a regional flight be-
tween two airports with a small number of waypoints. In the context of this case study, the pro-
graming of the flight plan has been embedded directly in the code of the application in order 
that the application does not have to handle the input commands coming from a Control Dis-
play Unit. An asynchronous task emulates the actions of the pilot at the beginning of the exe-
cution. Figure 17 shows the flight plan that is currently pre-programmed in the application. 

 

Figure 17 – Flight plan used as input dataset   

In order to have workload of different durations, different flight plans will be pre-
programmed in the application. The selection will be done through the selection of different 
compilation options. Considering that the duration of a small flight is generally of at least of 
one hour, emulating a realistic flight is clearly incompatible with the requirement to be able to 
execute the application a very high number of times for fault injection campaigns. The execu-
tion of the workload is thus reduced by use of an extremely high (and unrealistic) aircraft 
speed as a parameter of the application. 

In addition, the sensors input in the application have been replaced by an internal feed-
back loop. This simple solution avoids the complexity of emulating the sensors and simulating 
the behavior of the aircraft. The output of the trajectory task that corresponds to the future po-
sition of the aircraft that is targeted is directly transmitted to the sensors task that uses it as the 
position of the aircraft. This configuration of the application does not require managing real-
time inputs and greatly simplifies the experimental set-up. 
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5. Conclusion 

This deliverable presented the specification of the three case studies that have been se-
lected from different application domains. The first case study is representative of HPC systems. 
It consists of a scaled-down HPC system based on 2 AMD Opteron processors (with 12 CPU per 
processor) and of a tsunami simulation application. It is a real HPC application that requires 
high computing power and long execution times. The second case study comes from the in-
dustrial application domain. It is a motor controller application implemented on a Xilinx Zynq 
platform. Different HW/SW trade-offs are possible for this application. The design space explo-
ration is thus one of the challenges of this application. The third case study is based on a Flight 
Management System. It is an avionic application with high safety requirements. It is however 
one of the most computation intensive application in the avionic domain, which is developed 
to be run on an Operating System. 

Three case studies representative of industrial and complex applications have thus been se-
lected. It will enable to validate that the CLERECO methodology is applicable to complex ap-
plication without requiring prohibitive analysis efforts. Moreover, these applications come from 
a wide range of applications domains. It is an important point as the aim of CLERECO is not to 
develop a domain-specific tool but to be sufficiently flexible and generic to target a broad 
range of application domains. The selected case studies cover the embedded world as well as 
the HPC world. In the embedded systems domain, the two selected case studies have also dif-
ferent requirements. One is a bare-metal application with HW acceleration, while the other is 
OS-based with no HW acceleration. 

These case studies are going to be used in the tasks T6.2 “Use cases reliability analysis” and 
T6.3 “Validation”. Each case study selected in Task 6.1 will be analyzed using CLERECO reliabil-
ity estimation methodology and exploiting the EDA tool developed in work package WP5. The 
results of the task 6.2 will be carefully validated resorting to simulation-based techniques (e.g., 
fault injection) applied at the end of the design phase. Based on the use case, we will use dif-
ferent types of fault injection (high-level, low-level). 
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6. Acronyms 

Acronym Full text 

DC  Drive Controller 

CS Control System 

HMI Human Machine Interface 

STO Safe Torque OFF 

SLS Safety Limited Speed 

CT Current Transformer 

HW Hardware 

SW Software 

SO Safety Option 

PWM Pulse Width Modulation 

ES Emergency Stop 

CPU Central Processing Unit 

PCB Printed circuit board 

FPGA Field-Programmable Gate Arrays 

FMS Flight Management System 

DAL Design Assurance Level 
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