
Deliverable D6.1: Case studies specifications Page 1 of 23

Version 1.6 – 25/03/2016

Project Number: FP7-611404

D6.1 – Case studies specification
Authors1

A. Grasset (Thales), T. Seceleanu (ABB), M. Torrents (UPC), R. Canal (UPC), A. Gon-
zález (UPC), A. Chatzidimitriou (UoA), D. Gizopoulos (UoA), S. Di Carlo (POLITO)

Version 1.6 – 27/11/2015

Lead contractor: Thales

Contact person:

Arnaud Grasset
Thales Research & Technology
1, avenue Augustin Fresnel
91767 Palaiseau Cedex, France

Tel. +33 (0)1 69 41 60 55
Fax. +33 (0)1 69 41 60 01

E-mail: arnaud.grasset@thalesgroup.com

Involved Partners2: THALES, ABB, UPC, UoA,
POLITO

Work package: WP6

Affected tasks: T6.1

Nature of deliverable3 R P D O

Dissemination level4 PU5 PP RE CO

1 Authors listed here only identify persons that contributed to the writing of the document.
2 List of partners that contributed to the activities described in this deliverable.
3 R: Report, P: Prototype, D: Demonstrator, O: Other

Deliverable D6.1: Case studies specifications Page 2 of 23

Version 1.6 – 25/03/2016

COPYRIGHT

© COPYRIGHT CLERECO Consortium consisting of:

• Politecnico di Torino (Italy) – Short name: POLITO
• National and Kapodistrian University of Athens (Greece) - Short name: UoA
• Centre National de la Recherche Scientifique - Laboratoire d'Informatique, de Ro-

botique et de Microélectronique de Montpellier (France) - Short name: CNRS
• Intel Corporation Iberia S.A. (Spain) - Short name: INTEL
• Thales SA (France) - Short name: THALES
• Yogitech s.p.a. (Italy) - Short name: YOGITECH
• ABB (Norway and Sweden) - Short name: ABB
• Universitat Politècnica de Catalunya: UPC

CONFIDENTIALITY NOTE
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED, OR MODIFIED IN WHOLE OR IN

PART FOR ANY PURPOSE WITHOUT WRITTEN PERMISSION FROM THE CLERECO
CONSORTIUM. IN ADDITION TO SUCH WRITTEN PERMISSION TO COPY, REPRODUCE, OR

MODIFY THIS DOCUMENT IN WHOLE OR PART, AN ACKNOWLEDGMENT OF THE
AUTHORS OF THE DOCUMENT AND ALL APPLICABLE PORTIONS OF THE COPYRIGHT

NOTICE MUST BE CLEARLY REFERENCED

ALL RIGHTS RESERVED.

4 PU: public, PP: Restricted to other programme participants (including the commission services), RE Restrict-

ed to a group specified by the consortium (including the Commission services), CO Confidential, only for members of the consor-
tium (Including the Commission services)

5 This deliverable contains two confidential sections regarding the Thales flight management system. We added these sec-
tions to give more information to reviewers. However they will be removed from the public version posted on the website.

Deliverable D6.1: Case studies specifications Page 3 of 23

Version 1.6 – 25/03/2016

 INDEX

COPYRIGHT .. 2	

INDEX .. 3	

Scope of the document ... 4	

1. Introduction ... 5	

2. HPC case study specification .. 6	
 Overview of the case study ... 6	2.1.
 The Sierpinski Framework ... 8	2.1.
 Approach ... 9	2.2.

3. Industrial case study specification .. 11	
 Overview of the case study ... 11	3.1.
 Use Case Description .. 12	3.2.

3.2.1. Drive Controller .. 13	
3.2.2. Safety Option ... 14	
3.2.3. Other design elements ... 14	

 Approach ... 15	3.3.
 Summary .. 16	3.4.

4. Avionics case study specification .. 17	
 Overview of the case study ... 17	4.1.
 Description of the case study (confidential) .. 18	4.2.
 Task-level description & requirements (confidential) ... 18	4.3.
 Hardware demonstration platform .. 18	4.4.
 Reliability requirements and failure modes .. 19	4.5.
 Case study input data set .. 20	4.6.

5. Conclusion ... 21	

6. Acronyms .. 22	

7. References ... 23	

Deliverable D6.1: Case studies specifications Page 4 of 23

Version 1.6 – 25/03/2016

Scope of the document

This document is an outcome of the task T6.1 “Case studies specifications” described in the
description of work (DoW) of CLERECO project under Work Package 6 (WP6). Figure 1 depicts
graphically the goal of this deliverable, its main results, and which work packages will use its
outputs.

IN OUT

WP3

WP4

WP5

WP6

WP4

WP3

Deliverable D6.1

It lists and specifies the case studies that will be
used for the demonstration and validation
activities in the CLERECO project.

WP2

WP5

WP6

Results

WP2

Case studies
specification

Figure 1 - Task and deliverable overview

This document contains a description of the test cases that will be used to validate
CLERECO results. Three case studies have been selected and identified as relevant for the
needs of the demonstration activities. They come from a wide range of application domains
including High Performance Computing applications, industrial application domain as well as
safety critical embedded systems. This diversity will enable us to validate that the CLERECO
tools can be efficiently used for the design of systems with different kind of requirements and
operating conditions. The outcome of this deliverable is thus a set of case studies that have
been selected for the demonstration and validation activities of the CLERECO project.

The document is organized in the following Sections:

• Introduction. It introduces the role of the case studies in the project.
• HPC case study specification. It presents the specification of the HPC case study that

consists of a full-fledged tsunami simulator.
• Industrial automation case study specification. It presents the specification of the in-

dustrial case study that consists of a motor controller.
• Avionics case study specification. It presents the specification of the avionics case

study that consists of a Flight Management System.
• Conclusion. A short summary of the activities described in this deliverable.

Tool

Demo

System

Text

Code

Legend

Deliverable D6.1: Case studies specifications Page 5 of 23

Version 1.6 – 25/03/2016

1. Introduction

In the context of the decreasing reliability of semiconductor devices due to the technology
scaling, evaluating the reliability of a system becomes a critical and challenging task. To deal
with this evolution of technologies, the CLERECO project develops tools to perform system reli-
ability estimation early in its design phase. However, exploitation of these tools in real projects
will be possible only if developers are confident on the validity and on the accuracy of the re-
sults. Therefore, validation of the results is an important and critical task in the CLERECO project
to enable the use of the CLERECO methodology and tools in an industrial context.

 To this end, the use of industrial case studies is mandatory in order to have complex appli-
cations and not just simple benchmarks. The vulnerability of an application depends on its
characteristics and complexity. Working with complex applications will enable to deeply un-
derstand the potential and capability of the developed methodology. For instance, a small
benchmark whose code could fit in the instruction cache of the processor would not test ap-
propriately the methodology. It is also necessary to have complex applications in order to
check how the analysis effort scales with the complexity of the application.

The validation and demonstration activities of the CLERECO project rely on three case stud-
ies. These cases studies are representative of different application domains, namely: the High
Performance Computing domain, the industrial domain and the avionics domains. So, they
cover different segments of the Computing Continuum. As the CLERECO project aims to deliv-
er tools targeting many application domains, it is important to validate that the tools work with
different case studies. One of the goals of CLERECO is to provide designers a facility to esti-
mate system reliability for a wide range of applications.

The first case study will analyze the capabilities of our proposed methodology for HPC sys-
tems. Due to high cost of building a dedicated HPC system for our purposes, we will build a
scaled-down HPC system consisting of 2 AMD Opteron Processors 6338P. After having consid-
ered several applications from the HPC domain and a preliminary analysis, a tsunami simula-
tion application has been selected to be used for the CLERECO validation activity.

A second case study is an industrial application in the framework of motor controller. Such
systems are used to control electrical motors. Their reliability is therefore mandatory to guaran-
tee safety in industrial plants. It is a bare metal application (i.e., no Operating System). It will be
implemented on a Xilinx Zynq platform based on an ARM Cortex-A9 subsystem associated to
programmable logic (i.e., FPGA). The application is created starting from a high-level model
that enables to implement portions of the application as software (C code) and portions as
hardware (VHDL blocks).

The third case study is an industrial application use case based on a Flight Management Sys-
tem. This function is a fundamental part of a modern aircraft's avionics that automates a wide
variety of in-flight tasks, such as localization, flight planning, guidance, predictions and so on,
reducing the workload on the flight crew to the point that modern aircrafts no longer carry
flight engineers or navigators. The application is planned to be executed on a ARM Cortex-A15
subsystem. Differently from the previous case study, this application is executed on top of an
Operating System with no HW acceleration.

It is important to highlight here that the three use cases reflect applications from very differ-
ent domains. Motivations, requirements, design styles and tools, constraints are in general very
different. This is reflected in the descriptions provided in this document.

This document is the outcome of the task T6.1 where the three case studies have been stud-
ied. It is a specification of these case studies that will be used in the tasks T6.2 and T6.3 for the
analysis and validation. The document is organized as follows. Section 2 presents the High Per-
formance Computing case study. Section 3 describes the industrial case study that consists of

Deliverable D6.1: Case studies specifications Page 6 of 23

Version 1.6 – 25/03/2016

a motor controller. Section 4 of the deliverable is focusing on the avionic test-case expressing
the general task flow of the Flight Management System use-case, and summarizing all the use-
case related requirements.

2. HPC case study specification

 Overview of the case study 2.1.

The case study chosen by partner UPC to demonstrate the application of CLERECO reliabil-
ity analysis tools in the design of a HPC system is based on a high-performance platform with
several threads running a tsunami simulation framework.

In order to design an HPC case study we needed two main resources: A HPC platform and
a software application able to exploit as much as possible the resources of this machine. In the
following paragraphs, we will explain the most relevant details of each of these parts.

HPC hardware platforms are complex machines with high costs and only few leader pro-
viders in the world. The design of a full scale HPC system is high demanding in terms of com-
plexity, time and resources that could not be afforded in the time frame of a single EU project.
A complex activity has been therefore carried out by partner UPC in the framework of the
CLERECO project to identify the specification of a system including all computing characteris-
tics of a full-scale systems but keeping at the same time complexity, design time and costs
within the available budget.

Joshua (Figure 2) is the name of the hardware platform that the UPC partner has bought for
the implementation of the hardware infrastructure of the HPC case study. Joshua is a platform
equipped with two AMD Opteron(tm) Processor 6338P. Each of these processors is composed
of 12x86 cores that can run up to 2.8 GHz each. Each core has a 1MB L2 private cache. The
whole socket has a 16MB L3 shared cache. Thus, in total Joshua has 24x86 cores each one
containing a 1MB L2 private cache in addition to 2 shared L3 caches of 16 MB each. The com-
plexity of this hardware architecture goes beyond the capability of analysis of any known
hardware fault-injection reliability analysis tool and therefore represents a challenge for the
tool suite developed in CLERECO.

Figure 2 - The Joshua platform installed in the UPC

Together with the hardware architecture, the HPC
case study requires to identify a software application
able to exploit this 24–core machine. For this purpose
we have chosen the Sierpinski Framework [8]. This
framework is an open source software to solve hyper-
bolic equations on dynamically changing fully-
adaptive conforming 2D triangular grids. A kernel
based way to solve hyperbolic problems and to apply
steering during simulation is offered. In particular, we

Figure 3 - A frame of the simulation

of the tsunami’s propagation

Deliverable D6.1: Case studies specifications Page 7 of 23

Version 1.6 – 25/03/2016

use this framework with the augmented Riemann flux solvers [5][6] to simulate the propagation
of a tsunami over the sea as it can be seen in Figure 3. In our opinion, this application is an ap-
propriate use case for the HPC scenario for two main reasons:

The first one is the highly computational demands this application requires and its capability
to be parallelized to feed and stress all the computing cores of our system. Notice that, for
each simulation step the application generates a snapshot and for recreating a 16 sec video
about 400 snapshots are needed, which results in about one hour of processing time in Joshua.

The second reason is the importance of the correctness of the results of this kind of simula-
tions. Notice that this kind of software may be used for organizations that try to predict the im-
pact of a natural hazards in the earth, such as the Emergency Response Coordination Center
(ERCC), the European Earth Observation Program, or the United Nations Office for Disaster Risk
Reduction. Also in Europe, many seaside areas along the Mediterranean Sea have been af-
fected by tsunamis. Figure 4 shows the results of a study made by the European Spatial Plan-
ning Observation Network (ESPON) in 2005 where it can be observed the potentially areas un-
der tsunami hazard in Europe. As stated before, this kind of applications are used to predict the
impact of the tsunami hazards. For this reason an error on this simulation models could be cat-
astrophic. Imagine that the strength of the tsunami is lower than what the simulation had pre-
dicted. In this case, a city that is completely out of the scope of this tsunami could had been
totally evacuated according to the prediction, taking into account the cost of this evacuation.
Or even worse, imagine that the strength of the tsunami is higher than what the simulator says
and the city is not evacuated just to save costs.

Figure 4 - European countries in tsunami hazard.

Deliverable D6.1: Case studies specifications Page 8 of 23

Version 1.6 – 25/03/2016

In order to have a more realistic validation process, we reproduce a real case. In particular,
one of the most famous and catastrophic tsunami from the last years. It is the Tohoku Tsunami
from 2011 in Japan which had catastrophic consequences, emphasized by the nuclear acci-
dents at three reactors of the Fukushima Daiichi Nuclear Power Plant complex. The Sierpinski
framework, analyzes the starting configuration of the area, and calculates the propagation of
the wave for a determined number of steps.

 The Sierpinski Framework 2.1.

The tsunami propagation is calculated through a solver, which is a numerical method for
the solution of hyperbolic partial differential equations. This solver is integrated in the Sierpinski
framework and it is the responsible for accurately predicting the behavior of the tsunami wave.
Moreover, the Sierpinski framework can work with several solvers [5][6]. All of them solve the
hyperbolic partial differential equations but in a slightly different way. This is important from the
reliability point of view because different solvers may make more or less use of arithmetic or
logic operations. Thus, there can be more reliable solvers than others. In particular, the Sierpin-
ski framework can work with the following solvers:

• Lax friedrich

• Rusanov

• Fwave

• Augmented Riemann (C++)

• Hybrid solver

• Augmented Riemann (GeoClaw)

• Augmented Riemann (SIMD)

• Velocity upwinding

• FullSWOF (external)

•

In addition to the solvers, the Sierpinski framework contains a large number of configurable
parameters, which are listed in an xml file used as an input of the framework when compiling or
executing. These parameters are classified into four different groups: compiler, threading, sier-
pi, and tsunami parameters. The most important parameters for each of these groups are brief-
ly cited bellow:

• Compiler: parameters about the type of compiler (e.g., Intel or Gnu) and other aspects
that must be defined at compile time. The most important of them are the threading
framework and the solver.

• Threading: Parameters to determine the number of threads and their behavior during the
simulation.

• Sierpi: Parameters to determine the behavior of the Sierpinski framework, such as the ver-
bosity level of the execution, simulation time, or the frequency of data output.

• Tsunami: Parameters related to the input grid, the relative recursion depth of the simulation
and the size of the grids or constant values such as the gravity.

As shown in Figure 5, the framework uses the bathymetry files as part of the configuration file
introduced above. These bathymetry files are generated by international institutions, concrete-
ly we are working with data provided by the General Bathymetric Chart of the Oceans
(GEBCO) and National Oceanic and Atmospheric Administration (NOAA). For this reason, in

Deliverable D6.1: Case studies specifications Page 9 of 23

Version 1.6 – 25/03/2016

order to use them in the Sierpinski framework, these files must be preprocessed by a software
provided by the people in TUM (Munich). This software is called Tsunami
(https://github.com/TUM-I5/tsunami) and its purpose is to transform the bathymetry files to data
manageable by the tsunami simulation software.

Figure 5. Source and output files related to the Sierpinski framework.

 Approach 2.2.

The system (hardware infrastructure and running software) will be modeled resorting to the
CLERECO reliability analysis tools in order to perform the estimation of the reliability of this HPC
system. The challenge of this use case in our project will be the ability to manage the complexi-
ty of the hardware platform and the complexity of the software application in the very short
time frame available for the project in order to obtain reliability estimation to be compared
with those provided by commercially available tools.

Succeeding in the analysis of this use case will be a clear demonstration of the capability of
our tool to scale with complex applications and to enable to obtain fast results even when the
complexity of the system to analyze is high. Moreover, the availability of different solvers in the
selected application can be used to exploit the reliability reasoning capability of the CLERECO
tool to identify those solvers that enable to reach a better reliability.

In order to test the framework we have prepared three configuration files. The main
difference between them is the relative recursion depth of the simulation, which is directly re-
lated to the number of points from the resulting result of the simulation. Table 1 shows the main
differences between the input sets: large, medium and small. The differences can be observed
in the “sim time” (in Joshua machine), the number of processed cells, and a sample image of
the result. Nevertheless, the large input is the one that is going to be used for the validation
process.

Deliverable D6.1: Case studies specifications Page 10 of 23

Version 1.6 – 25/03/2016

Input set Sim time Processed
Cells

Sample

large 1360 s 10720 Million

medium 47s 163 Million

small 2s 2 Million

Table 1. Input sets of the validation framework.

Deliverable D6.1: Case studies specifications Page 11 of 23

Version 1.6 – 25/03/2016

3. Industrial case study specification

 Overview of the case study 3.1.

The case study chosen by ABB to demonstrate the results of the project is centered on the
realization of a motor drive (controller).

A motor control system is a very common application in the industrial domain. It can be
used in a simple conveyor belt with one rotating motor or a long belt with carefully synchro-
nized multiple motors to minimize forces on the belt. It can be exploited in an indoor protected
area like a paper mill or out in a ruggedized environment transporting stones and cement.

Figure 6 - Conveyor belt with drives

It can also be exploited in a complex process environment consisting of fans, pumps, com-
pressors, etc. The functionality can be an advanced factory automation utility consisting of ro-
bots, machines, and humans in constant interaction.

Figure 7 - Robot with control system

Deliverable D6.1: Case studies specifications Page 12 of 23

Version 1.6 – 25/03/2016

 Use Case Description 3.2.

The contexts in which motors described above operate are more often than never imposing
certain levels of safety. The implementation of safety related regulations comes usually as addi-
tional modules and functions within the motor controllers.

A typical safety application for rotating motors is an emergency stop button. This is because
the human being often is close to the motor. If something happens, there must be a possibility
to immediate turn the motor off without questions asked. The motor sizes can range from tiny
non-cost to huge expensive. The motor controller then also serves as a protection device for
the motor.

Figure 8 represents a typical and simplified ABB Motor Controller, consisting of the Drive Con-
troller (DC) and the safety option (within the red square). The Control System (CS) is represent-
ed by the HMI (Human Machine Interface) and Configuration on top.

Figure 8 - Motor Controller, closed loop

Safety critical components are marked in yellow.

Within CLERECO we focus on two safety features: Safe Torque OFF (STO) and Safety Limited
Speed (SLS).

Safely-limited speed (Figure 9) ensures that the specified speed limit of the motor is not ex-
ceeded. This allows machine interaction to be performed at a slow speed without stopping the
drive. The safety functions module comes with four individual SLS settings for speed monitoring.
The implementation should provide the possibility to change the speed limit of the SLS on the
fly.

Safe torque off (Figure 10), when activated, it brings the machine safely into a non-torque
state and/or prevents it from starting accidentally. The function can be used to effectively im-
plement the prevention of unexpected startup functionality, thus making stops safe by pre-
venting the power only to the motor, while still maintaining power to the main drive control cir-

Deliverable D6.1: Case studies specifications Page 13 of 23

Version 1.6 – 25/03/2016

cuits. Prevention of unexpected startup requires for example a lockable switch in addition to
the STO function. Note that STO does not protect against electrical hazards.

Figure 9 - SLS behavior.

Figure 10 - STO behavior.

Usually, the implementation of STO and SLS is localized in a physically separate module (de-
pending on the requirements). These modules may be dedicated to only one safety function –
see Figure 11, or to several functions – see Figure 12.

Figure 11 - An ABB module containing Safe

Torque Off Function

Figure 12 - ABB safety functions module (SLS

among them).

However, in CLERECO, we will use a different platform for the implementation of such func-
tionalities (together), in order to accommodate multiple possible variations of both functionali-
ty and targeted technology.

3.2.1. Drive Controller

The Drive Controller is continuously instructing one or several motors what to do. Set points
are typically given via the HMI and this is transformed into motor commands. DC continuously
receives feedback of position (and speed) from the resolver. This is used for running the motor
control loop.

• HMI gives commands to the DC, which is translated into motor commands.
• The resolver continuously measures motor position and feed this back to the control

loop for supervision.
• The current transformer (CT) protects the motor from overcurrent conditions compar-

ing calculated and actual values.

Deliverable D6.1: Case studies specifications Page 14 of 23

Version 1.6 – 25/03/2016

• In addition, it reacts on commands from the Safety Option (Emergency Stop and
Safety Limited Speed).

Implementation details around the DC to be established:

• Select HW (standard test PCB with relevant CPU)
• Select operating system, if any
• Develop application for motor speed control, motor overload protection, HMI inter-

action, safety option interaction
• Digital output for PWM control (Pulse Width Modulation)
• Analog inputs to handle resolver signal and current measurements
• Communication solution towards safety option

3.2.2. Safety Option

This Safety Option is the motor safety supervisor. It continuously monitors the motor activities
via the resolver feedback. Based on predefined motor limitations, it can cut of the power to
the motor. This normally means the DC has failed or is not aligned with the SO.

• SO is connected to HMI or Control System (CS) to receive motor configuration data
(motor characteristic).

• SO takes also direct input from user via ES and directly disables the power to the mo-
tor in addition to informing the DC.

• It receives Resolver feedback making it possible to supervise DC – not based on mo-
tor commands, but on motor characteristic (overload, overheating, etc.).

A simplified SO solution could be not to supervise DC, but only adding an Emergency Stop
button.

Implementation details around the SO:

• Select HW (standard test PCB with relevant CPU)
• Select operating system
• Develop application for STO, SLP, HMI interaction, drive controller interaction
• Output power circuitry
• 2 digital inputs for STO and SLS
• 1 digital output for STO enforcement
• Analog input to handle resolver signal
• Communication solution towards drive controller

3.2.3. Other design elements

A Resolver is an ultra-reliable rotary motion-sensing transformer mounted on the rotating
shaft of the motor to detect all motor movements. It reports the motor position and speed to
the Motor Controller system closing the control loop.

Configuration and HMI is representing the Control System for configuring and setting up the
motor controller with the correct motor characteristics – typically threshold values and criticali-
ty – used for selecting application configuration and all required user interaction.

Safe Torque Off ensures that there is generated no motor torque due to energy from the DC
and Output power circuitry. This is enabled by pressing the Emergency stop (ES) button or
when the Safety-Limited Speed is exceeded. When activated, the STO function ensures that
there is generated no motor torque due to energy from the DC and output circuitry.

Implementation details around the DC: utilize standard resolver and current transducer suit-
able for the application.

Deliverable D6.1: Case studies specifications Page 15 of 23

Version 1.6 – 25/03/2016

 Approach 3.3.

Several scenarios for the implementation can be taken into account as follows.

1. No safety: the SO can be removed, we only implement the DC.
2. Limited safety: The SO and DC can be embedded on the same platform, as differ-

ent software applications running different processes.
3. Full safety: The SO and the DC can be implemented on separate platforms consist-

ing of different hardware (HW) and software (SW).
4. Full safety with redundancy: The SO and the DC can be implemented on separate

platforms consisting of different hardware (HW) and software (SW) with redundant
SO solution.

Of the above options, only the last one seems outside of the project reach – due to the rela-
tively limited number of resources.

Otherwise, in addition to the scenarios, further variations can be obtained in the realization
of the use case, in order to be able to observe an as wide as possible impact of potential reli-
ability failures, and to provide solutions for addressing them. In this sense, the expectation is
that starting with a 100% software implementation elements of design would be gradually
moved into hardware as potential high impact errors may be prognosticated with high proba-
bility.

Platform. In order to support the above goals, a Xilinx Zynq platform has been selected to im-
plement the use case. It consists of a processor connected to an FPGA logic area via AXI inter-
faces. It gives the possibility to implement both hardware and software modules of the demon-
strator. It further gives the possibility to quickly move such models from one technology to the
other (at design time), following potential negative impact results from the analysis performed
in the project.

The design will consider bare-metal implementation for the software part, that is, no operat-
ing system to run on the platform’s processors.

Process. Further, our approach to the use case is organized in two stages.

A generic model at first will be used to study both the potential of the tools and the quality
of the implementation and of the selected platform. High level specifications of safety options
are to be implemented. Following a characterization of the implementation with respect to
reliability aspects, a set of “lessons” are to be extracted and used in the second stage of the
developments.

The second phase of the approach targets the implementation of a refined, more specific
design, with more accurate safety specifications to be implemented. The resulting system is
planned to be demonstrated as operating a suitable size (dimensions and cost) motor. Final
project outcomes are to be tested on this design.

The tool landscape. Tools in the process should support the above description of goals. The
Mathworks’ Matlab-Simulink environment has been chosen for modelling the motor controller.
There are many generic examples of a Motor Control configuration in Simulink that can be
used at least in the first stage of the approach, for generating C-code and VHDL to be imple-
mented on the selected target system. The same tool provides also means to automatically
generate both C code for the software parts, as well as VHDL for the hardware parts. Hence, a
quick change in the targeted implementation technologies should be possible.

For the hardware part, the Xilinx Vivado environment has been selected. It will both synthe-
size the VHDL elements and support the integration of software and hardware modules.

Deliverable D6.1: Case studies specifications Page 16 of 23

Version 1.6 – 25/03/2016

 Summary 3.4.

A quick overview of the choices and approach in the realization of the use case is present-
ed below.

 Stage 1 Stage 2

Platform Zynq

Tools
Mathworks

Vivado

Result

3 scenarios

Hardware / software “mobility”

Generic models Specific models

Simplified safety options Final safety options

Motor models
Physical motor demonstra-

tion

Timeline M26 M34

Deliverable D6.1: Case studies specifications Page 17 of 23

Version 1.6 – 25/03/2016

Figure 13 - Illustration of a Flight

Management system

4. Avionics case study specification

 Overview of the case study 4.1.

One of the case studies selected by Thales to be rep-
resentative of safety-critical applications is a Flight Man-
agement System (FMS)[1]. It is an industrial avionics ap-
plication whose purpose in modern avionics is to provide
the crew with centralized control for the aircraft naviga-
tion sensors, computer based flight planning, fuel man-
agement, radio navigation management, and geo-
graphical situation information (Figure 13). Taking charge
of a wide variety of in-flight tasks, the FMS allows us to
reduce the workload of the flight crew allowing us to re-
duce the crew size. The FMS is especially responsible for
the flight management services allowing in-flight guid-
ance of the plane. From pre-set flight plans (take-off air-
port to landing airport), the FMS is responsible for the
plane localization, the trajectory computation allowing
the plane to follow the flight plan, and the reaction to pilot directives (see Figure 14).

Figure 14 - Flight Management System (FMS)

The Flight Management System is an industry level application characterized as real-time
application with different kinds of hard real-time requirements, and with high reliability and high
availability requirements. As a safety-critical application, the FMS is situated at one extremity of
the computing continuum (see Figure 15).

Figure 15 - FMS Case Study positioning in the computing continuum

Deliverable D6.1: Case studies specifications Page 18 of 23

Version 1.6 – 25/03/2016

The application is based on a commercial Flight Management System but it has been rewrit-
ten in a multi-threaded way. So, the application can be executed on a multi-core processor
and can be used to study the propagation of faults in such processor architecture. Even if it is a
simplified version of a Flight Management System, the application is still representative of avion-
ics application in terms of performance requirements and in term of memory requirements.

 Description of the case study (confidential) 4.2.

 Task-level description & requirements (confidential) 4.3.

 Hardware demonstration platform 4.4.

The demonstration platform that has been selected for this case study is based on a
66AK2E05 multicore KeyStone II System-on-Chip from Texas Instrument [2]. Its main features are:

• Four ARM Cortex-A15 Processor Cores at up to 1.4-GHz
• 4MB L2 Cache Memory Shared by all Cortex-A15 Processor Cores
• 32KB L1 Instruction and Data Caches per Core
• One TMS320C66x DSP Core Subsystem
• 2MB of Multicore Shared Memory (MSMC) that can be used as a shared L3 SRAM

Figure 16 shows the block diagram of the Keystone II SoC.

Figure 16 - Block diagram of 66AK2E05

The board used for the development and for the demonstration activities is the EVMK2E
Evaluation Module provided by Texas Instrument [2].

The selection of this platform is motivated by many reasons:

• the ARM Cortex-A15 processor model is available in the WP3 workpackage
• the ARM architecture is massively used in the embedded domain
• the Keystone-II is an advanced and complex Multi-Processor System-on-Chip

An embedded Linux OS will be used to ease the SW development and to be compatible
with the analysis done in WP4. Avionic application like the FMS are generally executed on a

Deliverable D6.1: Case studies specifications Page 19 of 23

Version 1.6 – 25/03/2016

RTOS, so it is important for this case study to validate that CLERECO methodology can be used
to analyze the whole SW stack. If using a RTOS is important in an operational context due to the
real-time requirements of the applications, using an embedded Linux is sufficient in the
CLERECO context regarding the goals that we want to achieve. We can assume that if the
CLERECO tools can support a Linux OS, they could support a light RTOS.

 Reliability requirements and failure modes 4.5.

The aerospace safety process is a top-down process driven from the safety requirements.
So, the reliability requirements of an application derive from the safety analysis. A Design As-
surance Level (DAL) is assigned to each function of the system according to the severity of its
potential failure. Acceptable failure rates are associated to each DAL (see Table 2). The FMS
being responsible of the guidance of the aircraft, it is a critical application whose safety level is
set to DAL B.

Level Severity Consequences
Failure rate
(per hour of

flight)

A Catastrophic Failure may cause a crash. Error or loss of critical func-
tion required to safely fly and land aircraft.

< 10-9

B Hazardous Failure has a large negative impact on safety or per-
formance, or reduces the ability of the crew to oper-
ate the aircraft due to physical distress or a higher
workload, or causes serious or fatal injuries among the
passengers.

10-7 à 10-9

C Major Failure is significant, but has a lesser impact than a
Hazardous failure (for example, leads to passenger dis-
comfort rather than injuries) or significantly increases
crew workload.

10-5 à 10-7

D Minor Failure is noticeable, but has a lesser impact than a
Major failure (for example, causing passenger incon-
venience or a routine flight plan change)

10-3 à 10-5

E No Effect Failure has no impact on safety, aircraft operation, or
crew workload.

>10-3

Table 2 - Safety level definition

As the application is safety critical, every deviation of its outputs should be considered as a
failure of the system (whatever is the consequence at the aircraft level). At a coarse-grain lev-
el, we can distinguish outputs to the display (localization, flightplan trajectory and nearest air-
port list) and to the auto-pilot (guidance information). Moreover, latent faults have also to be
considered. For instance, a corruption of a database that would not have caused a failure
during the experiment should be detected as it could potentially impact the next flight.

Any violation of the real-time requirements should also be considered as a failure.

Deliverable D6.1: Case studies specifications Page 20 of 23

Version 1.6 – 25/03/2016

 Case study input data set 4.6.

The workload used in the case study corresponds to the emulation of a regional flight be-
tween two airports with a small number of waypoints. In the context of this case study, the pro-
graming of the flight plan has been embedded directly in the code of the application in order
that the application does not have to handle the input commands coming from a Control Dis-
play Unit. An asynchronous task emulates the actions of the pilot at the beginning of the exe-
cution. Figure 17 shows the flight plan that is currently pre-programmed in the application.

Figure 17 – Flight plan used as input dataset

In order to have workload of different durations, different flight plans will be pre-
programmed in the application. The selection will be done through the selection of different
compilation options. Considering that the duration of a small flight is generally of at least of
one hour, emulating a realistic flight is clearly incompatible with the requirement to be able to
execute the application a very high number of times for fault injection campaigns. The execu-
tion of the workload is thus reduced by use of an extremely high (and unrealistic) aircraft
speed as a parameter of the application.

In addition, the sensors input in the application have been replaced by an internal feed-
back loop. This simple solution avoids the complexity of emulating the sensors and simulating
the behavior of the aircraft. The output of the trajectory task that corresponds to the future po-
sition of the aircraft that is targeted is directly transmitted to the sensors task that uses it as the
position of the aircraft. This configuration of the application does not require managing real-
time inputs and greatly simplifies the experimental set-up.

Deliverable D6.1: Case studies specifications Page 21 of 23

Version 1.6 – 25/03/2016

5. Conclusion

This deliverable presented the specification of the three case studies that have been se-
lected from different application domains. The first case study is representative of HPC systems.
It consists of a scaled-down HPC system based on 2 AMD Opteron processors (with 12 CPU per
processor) and of a tsunami simulation application. It is a real HPC application that requires
high computing power and long execution times. The second case study comes from the in-
dustrial application domain. It is a motor controller application implemented on a Xilinx Zynq
platform. Different HW/SW trade-offs are possible for this application. The design space explo-
ration is thus one of the challenges of this application. The third case study is based on a Flight
Management System. It is an avionic application with high safety requirements. It is however
one of the most computation intensive application in the avionic domain, which is developed
to be run on an Operating System.

Three case studies representative of industrial and complex applications have thus been se-
lected. It will enable to validate that the CLERECO methodology is applicable to complex ap-
plication without requiring prohibitive analysis efforts. Moreover, these applications come from
a wide range of applications domains. It is an important point as the aim of CLERECO is not to
develop a domain-specific tool but to be sufficiently flexible and generic to target a broad
range of application domains. The selected case studies cover the embedded world as well as
the HPC world. In the embedded systems domain, the two selected case studies have also dif-
ferent requirements. One is a bare-metal application with HW acceleration, while the other is
OS-based with no HW acceleration.

These case studies are going to be used in the tasks T6.2 “Use cases reliability analysis” and
T6.3 “Validation”. Each case study selected in Task 6.1 will be analyzed using CLERECO reliabil-
ity estimation methodology and exploiting the EDA tool developed in work package WP5. The
results of the task 6.2 will be carefully validated resorting to simulation-based techniques (e.g.,
fault injection) applied at the end of the design phase. Based on the use case, we will use dif-
ferent types of fault injection (high-level, low-level).

Deliverable D6.1: Case studies specifications Page 22 of 23

Version 1.6 – 25/03/2016

6. Acronyms

Acronym Full text

DC Drive Controller

CS Control System

HMI Human Machine Interface

STO Safe Torque OFF

SLS Safety Limited Speed

CT Current Transformer

HW Hardware

SW Software

SO Safety Option

PWM Pulse Width Modulation

ES Emergency Stop

CPU Central Processing Unit

PCB Printed circuit board

FPGA Field-Programmable Gate Arrays

FMS Flight Management System

DAL Design Assurance Level

Deliverable D6.1: Case studies specifications Page 23 of 23

Version 1.6 – 25/03/2016

7. References

[1] Randy Walter, “Flight Management Systems”, in The Avionics Handbook, Cary R . Spitzer, Eds. CRC Press , 2001, ch.
15.

[2] Texas Instrument, “66AK2E05/02 Multicore DSP+ARM KeyStone II System-on-Chip (SoC) (Rev. D)”, datasheet, 11 Mar
2015.

[3] Texas Instrument, “EVMK2E Technical Reference Manual”, Version 2.0, November 2014.

[4] M. Schreiber, H.-J. Bungartz and M. Bader, Shared Memory Parallelization of Fully-Adaptive Simulations Using a Dy-
namic Tree-Split and -Join Approach, IEEE Xplore, Puna, India, 2012

[5] Solver: D. L. George, Augmented Riemann solvers for the shallow water equations over variable topography with
steady states and inundation, J. Comput. Phys., 2008

[6] M. J. Berger, D. L. George, R. J. LeVeque, K. T. Mandli, The GeoClaw software for depth-averaged flows with adap-
tive refinement, Advances in Water Resources, 2011

[7] PIN. http://rogue.colorado.edu/Wikipin/index.php/Main_Page.

[8] Sierpinski Framework http://www5.in.tum.de/sierpinski/

