

Towards Early and Accurate Reliability Evaluation

Dimitris Gizopoulos

University of Athens Computer Architecture Lab Nikos Foutris Manolis Kaliorakis Sotiris Tselonis George Papadimitriou

Reliability – Dependability

Computing Continuum

Services

Application

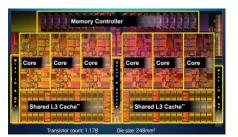
System SW

Architectures

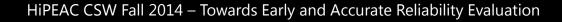
Silicon

• Importance across the Computing Continuum

- Failure rates (MTBF):
 - Today: days/weeks
 - 2018: mins/secs?



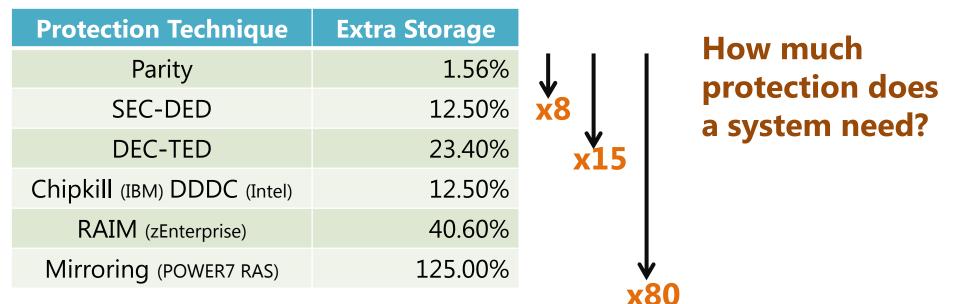
Drivers of **Un**-Reliability


- Devices shrinking (10nm and smaller)
- Processes (FinFET, scaled bulk, 3D stacks, spin logic, ...)
- Variability
- Aging, wear-out
- Environment

- radiation, temperature, humidity
- Many cores, many memories
- Heterogeneity

Protection

- Protection against (transient, permanent, intermittent) hardware faults costs
 - area, performance, power/energy, design time, ...
- Protection: detection, diagnosis, recovery, repair



Protection: where and how much?

- Some components are more vulnerable
 - memory: DRAM, SRAM, registers
- But protection technique costs vary:

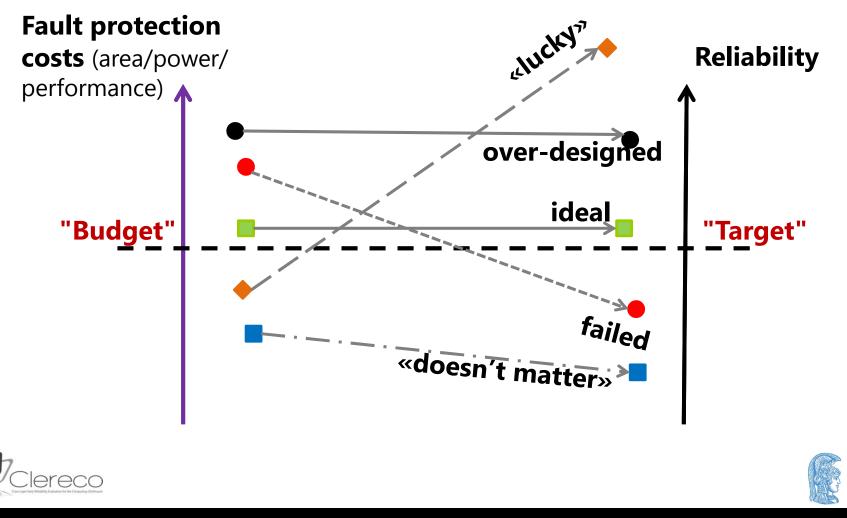
Y.Luo, *et. al.* "Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory", DSN, 2014.

HiPEAC CSW Fall 2014 – Towards Early and Accurate Reliability Evaluation

How much protection: Decide Early

 Early protection decisions save costs but should be accurate

- Ideally, no re-design cycles to enhance reliability


- But can "early" be accurate ?
 - System details missing
 - Unknown software
 - Unknown context

• When can early be accurate ?

Cost & Obtained Reliability

Micro-architectural Simulators

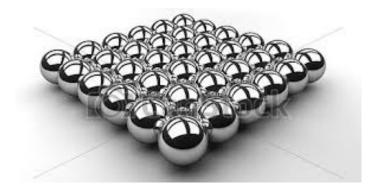
- Reliability evaluation using microarchitectural simulator models
 - This is **early**

ereco

– Is it **fast enough**?

– Is it accurate enough?

 For which components can this be good enough?



Components in uarch models

Component class	Realism of uarch models	Size	Vulnera- billity
Memory arrays (caches, regs, buffersm queues)	Yes	Large	High
Functional	No	Medium	Low
Control logic	No	Small/	Low
		Medium	cal@di

Micro-architecture Arrays

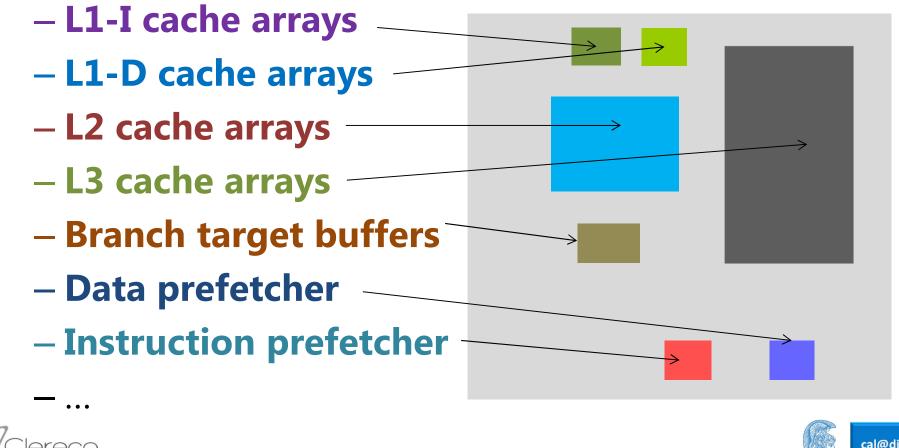
- Storage arrays
 - registers, buffers, caches, memory...
- Arrays/tables in the uarch models
- #Bits as in final hardware implementation
- Most vulnerable
 - DRAM, SRAM, flip-flops, ...

Fault Injection or Analytical ?

- Statistical Fault injection vs. Analytical Methods
 - SFI is accurate but can be very time consuming
 - Analytical methods (such as ACE-analysis for AVF estimations) are very fast (single-pass) but can be very pessimistic
 - Here we make the SFI choice to obtain accuracy and evaluate the speed of the measurement campaign

Requirements for Accuracy

- A micro-architectural simulator can provide accurate reliability evaluation through SFI for storage arrays when:
- 1. All important arrays are modeled
- 2. #Injections is statistically significant
- **3. Injection throughput** is high


Marssx86-FI

- Fault injector on Marssx86 uarch simulator
 - Transient/intermittent/permanent faults
 - Multiple faults on single or multiple components
 - Full system simulation
- Fault behavior classes:
 - **SDC** (silent data corruptions)
 - **DUE** (detected unrecoverable errors)
 - Masked (benign)
 - Deadlock

Marssx86 Enhancements

Original Marssx86 model enhancements

Statistical Significance

• Population (N)

- Bit positions (permanent faults)
- Bit positions x Execution cycles (transient faults)
- Confidence (t)
- Error margin (e)
- Equally probable (sa0/sa1, 0-to-1/1-to-0 flips)
- #Injections

$-n = N / [1 + e^2 x (N - 1)/(t^2 x 0.25)]$

R.Leveugle, *et. al.* "Statistical Fault Injection: quantified error and confidence", DATE, 2009.

HiPEAC CSW Fall 2014 – Towards Early and Accurate Reliability Evaluation

Example Numbers of Injections

- Physical integer register file (IntRF)
 256 registers, 64-bit = 16,384 bits
- or a **32KB** L1 D-Cache or L1 I-Cache
- Benchmark exec. time = **100M cycles**
- Error margin 1%
- Confidence 99%
- **16,587** injections [transient faults] (for each of the 3 cases) (8,243 injections for permanent faults)
 - #injections saturates

SFI Throughput

- Injection machine
 - Intel® Core[™] i7-3970X @ 3.50 GHz (6 Cores, 12 Threads, 32 GB RAM, Ubuntu 14.04.1 LTS 3.13.0-36-generic x86_64

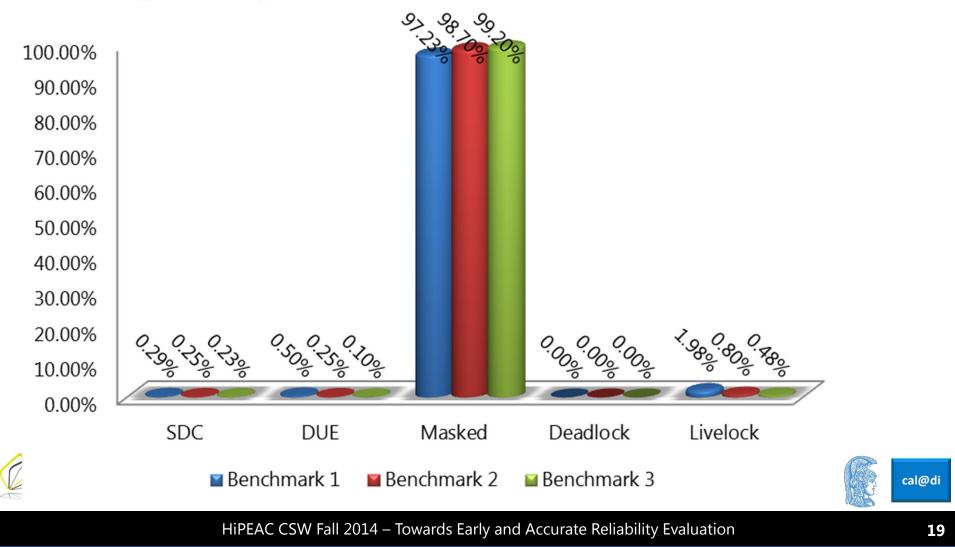
Time/ injection		jections/ mponent	#Components		#Benchmarks	
~3 mins		16,587	3 (IntRF, L1D, L1I)		20	
		Total t (12 thre		Total time (10 injection machines, 120 threads)		
~2070 da	ys	~ 175 days		~ 1	18 days	
					cal@di	

HiPEAC CSW Fall 2014 – Towards Early and Accurate Reliability Evaluation

SFI Throughput (more accuracy)

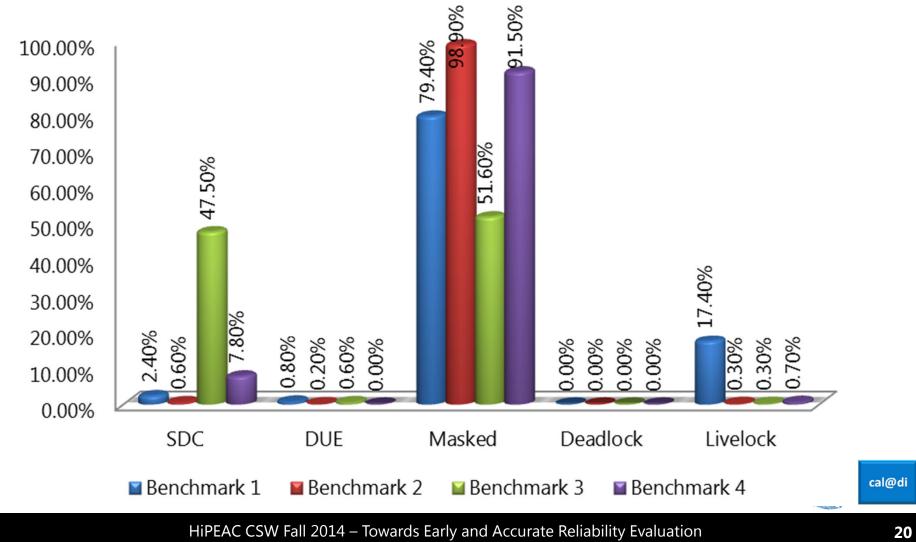
• All same but 0.5% error margin (instead of 1%) and 99.8% confidence (instead of 99%)

Time/ injection		njections/ #Cor omponent		nponents	#Benchmarks
~3 mins		95,493 3 (Int		RF, L1D, L1I)	20
Total time (1 thread)		Total time (12 threads)		Total time (10 injection machines, 120 threads)	
~12,000 da	~12,000 days ~ 993 d		days	~ 9	9 days



Calculations refer to single transient faults. Larger numbers of fault injections are needed for multiple transient fault studies.

HiPEAC CSW Fall 2014 – Towards Early and Accurate Reliability Evaluation


Results (1)

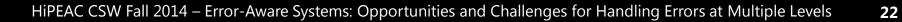
• Integer Register File

Results (2)

L1 DCache ullet

Conclusions

- Micro-architectural simulators for SFI and Reliability Evaluation of Storage Arrays
- Early evaluation
- Simulators need **enhancements**
- Fault injection **throughput** depends on:
 - Benchmarks number and execution times
 - Seeked accuracy (confidence, error margin)
 - Arrays sizes and numbers


Thank you.

Dimitris Gizopoulos

cal@di

University of Athens Computer Architecture Lab

