
Performance Assessment of Data Prefetchers in High Error Rate Technologies

Nikos Foutris Dimitris Gizopoulos Athanasios Chatzidimitriou John Kalamatianos Vilas Sridharan
 Department of Informatics & Telecommunications AMD Research RAS Architecture

 University of Athens Advanced Micro Devices, Inc.

 Athens, Greece Boxborough, MA, USA

 {nfoutris, dgizop}@di.uoa.gr {john.kalamatianos, vilas.sridharan}@amd.com

Abstract—Modern microprocessors are equipped with an

arsenal of speculative mechanisms, such as data prefetchers, to

mitigate ever-growing memory access latency. Aggressive

technology scaling along with near-threshold voltage operation

exacerbates the likelihood and rate of hard faults not only in

large arrays such as caches but in speculative components as

well. While data prefetchers do not affect correct processor

operation, they are critical for performance and faults in them

can cause significant performance degradation and variability

across otherwise identical cores. The impact of hard faults in

data prefetchers has not been quantified accurately.

In this paper, we quantify the performance and variability

impact of hard faults in stride data prefetchers. Our study

reveals fault scenarios in the prefetcher table that can degrade

IPC more than 17%, while faults in the prefetch input and

request queues can slow IPC up to 24% and 26%, respectively,

compared to a fault-free component. Finally, a faulty data

prefetcher can increase performance variability across

identical cores because the standard deviation of IPC loss for

different benchmarks can be more than 4.5%.

I. INTRODUCTION

High-performance multi-core microprocessor architectures
[12] [13] [14] dominate different application domains.
However, the inherent unreliability of deep nanometer-scale
technologies [5] [6] [10] [18] and near-threshold voltage
operation [1] [8] increase the vulnerability of on-chip
memory array cells to hard (permanent) faults. If
unaddressed, these faults will impose significant constraints
on microprocessor design.

To hide the performance impact of high-latency memory
accesses, computer architects integrate multi-layer cache
memories along with sophisticated data prefetchers [17]
[19]; both structures can occupy noticeable silicon estate.
Data prefetch designs predict the flow of data and
correspondingly increase CPU utilization by reducing the
stalls due to cache misses. One widely used class of data
prefetch mechanisms, the stride data prefetchers, have been
shown to be highly effective for scientific, multi-media,
desktop, and engineering applications [16].

Technology modeling in resilience roadmaps predicts

that the failure probability of SRAM cells is expected to be

extremely high (10
5
 and 10

3
 times larger than that of latches

for the 16- and 12-nm nodes, respectively) [26]. Most

reliability studies have focused on SRAM caches due to the

area they occupy and their immediate impact on both

functional correctness and performance [2] [4] [20] [23] [24]

[25]. Previous work focused on non-cache SRAM arrays

such as those in data flow speculative hardware [3] [9].

However, no previous work has performed a comprehensive

and accurate assessment of the impact of hard faults on data

prefetchers, despite these structures being critical for

maintaining processor performance.

Unlike cache memories, data prefetchers do not affect

program correctness because they are purely speculative in

nature. However, hard faults in prefetcher arrays can

degrade performance significantly, by (a) reducing training

opportunities, and therefore decreasing the number of

generated prefetch requests (reduce prefetch coverage); (b)

issuing prefetch requests later or earlier than the fault-free

case (degrade prefetch timeliness); and, (c) perturbing the

prefetch address-generation logic (reduce prefetch accuracy).

Recent work [9] reported that more than 48% of single hard

faults in SRAM cells of a conservative data prefetcher

model can degrade performance up to 3%. In many-core

designs, data prefetcher arrays can experience faults, which

will trigger imbalances in the data stream sent to memory

system, leading to inter-core performance variability. This is

an undesirable property both for the data-center deployment

[1] and for the mobile and desktop markets [15].

Figure 1 and Figure 2 visualize the motivation of this

paper. Figure 1 shows the IPC of fault-free and faulty

microprocessor models for GemsFDTD and bzip2

benchmarks. In Figure 1, the blue line presents the IPC with

the data prefetcher disabled, the red line shows the IPC with

the data prefetcher enabled, and the green line points show

the maximum IPC loss among all faults with the same group

cardinality. (Details for all SPEC CPU2006 benchmarks are

provided in Section IV.) Clearly, faulty data prefetchers can

severely affect performance: both GemsFDTD and bzip2

lost more than 17% of their performance in the worst case.

Figure 2 presents the performance variability in a multi-

core design with faulty data prefetchers in different cores,

suffering from the same number of faults and executing the

same benchmark. The IPC difference between the worst and

best cases is up to 17 percentage points, while standard

deviation ranges from 1.9% to 4.5%. Thus, a faulty data

prefetcher can increase significantly the variability across

otherwise identical cores.
In this paper, we contribute the following:

 We measure, for the first time, the performance
impact of multiple permanent faults on an L1 stride
data prefetcher on an architectural simulator using
the complete SPEC CPU2006 benchmark suite.

 We evaluate the degree of performance variability
among cores caused by faulty stride data prefetchers.

Our results show that the performance impact is up to

26% (on average, 0.5% when quintuple faults are injected

into the prefetch table array, and 1.5% and 2.5% when a

single fault is injected into the prefetch input and request

queue, respectively). Meanwhile, the performance

variability can be more than 26 percentage points compared

to the fault-free case (standard deviation of IPC loss

between benchmarks ranges from 0.01% to 4.5%).

1.0740 1.0740 1.0740 1.0740

1.284 1.284 1.284

1.284

1.226
1.221

1.064

1.000

1.050

1.100

1.150

1.200

1.250

1.300

0.529 0.529 0.529 0.529

0.634 0.634 0.634

0.634

0.561 0.558

0.525

0.500

0.520

0.540

0.560

0.580

0.600

0.620

0.640

0.660

0 1 3 5#faults

w/o prefetcher w/ prefetcher faulty prefetcher

Performance Loss

Performance Loss

bzip2

GemsFDTD

IP
C

Figure 1: Performance impact of hard faults in stride
data prefetchers (blue line is fault-free model with no
data prefetching; red line is fault-free model with data
prefetching; green line is faulty prefetcher model with

one, three, and five hard faults).

fault-free IPC

Performance

Variability

Core0

Core1

Core2

Core3

IPC with faulty data prefetcher

0.6331

0.5250

0.6114

0.5787

Figure 2: Performance variability in a 4-core chip for
GemsFDTD with five hard faults in the data prefetcher of
each core.

II. BACKGROUND

Resilience roadmaps predict a large numbers of hard faults

in SRAM arrays that operate in near-threshold voltages [1]

[8] [28], as well as in forthcoming chips (16- and 12-nm

processes) [26]. In both contexts, the single-bit failure

probability (Pfail) of SRAM cells is expected to fall between

10
-6

 and 10
-4

 [8] [26] [28]. Given a binomial probability

distribution, such failure rates would result in very high

probabilities of multiple hard faults in SRAM arrays. For

example, in a 5,000-bit SRAM array (a typical array size for

a stride data prefetcher) at the 12-nm process node, the

cumulative probability that up to five hard faults exist in the

array is 7.25E-01. Circuit-level techniques such as wordline

boosting [22] can be employed to reduce these probabilities;

however, such techniques add complexity and area to the

array design.

III. EXPERIMENTAL SET-UP

We perform a comprehensive statistical fault-injection

campaign on top of the PTLsim x86 architectural simulator

[29]. We employ the microprocessor configuration of [9]

enhanced with the modifications shown in Table 1. We use

a statistical fault-injection framework [21] [22] (with a

confidence level of 99% and an error margin of 3%) that

includes a faults database populated with the fault

descriptions (component, entry, bit, type) for the L1 cache-

stride data prefetcher. We use the stuck-at fault model [7]

[11] [25] in which a faulty cell permanently stores logic 0 or

1. A total of 900 different fault masks (100 single, 300

triple, 500 quintuple faults) are injected in the data

prefetcher component (the total number of fault injections

for the 29 SPEC CPU2006 benchmarks are 26,100).

Parameter Setting

Prefetch input queue 8 entries

Prefetch table 64 entries, direct-mapped, PC-

indexed

Confidence size 3 bits (threshold: 2)

Stride size 5 bits

Prefetch distance Address + Stride, Address +2*Stride

Prefetch request queue 8 entries
Table 1: L1 cache-stride data prefetcher configuration.

Each fault-injection run applies randomly selected

multiple fault masks to the sub-arrays (fields) of the prefetch

table (i.e., tag, load address, stride, confidence, LRU, and

valid arrays) with the exception of the prefetch input queue

(PIQ) and the prefetch request queue (PRQ), into which we

inject single faults only due to these structures’ small sizes.

We run all SPEC CPU2006 benchmarks, simulating the

largest-weight 100-million-instruction SimPoint sample per

benchmark with a 20-million-instruction warm-up. We

compare the results of each injection experiment to fault-

free execution. To measure the average performance

degradation, we look at the average IPC impact per fault

group size (one, three, and five; based on Section II, one,

three, and five faults have high probabilities of occurring on

a 5,000-bit SRAM array, which is the size of the prefetcher

array of this study). To examine performance variability, we

calculate the maximum IPC loss and standard deviation of

IPC losses per fault group size across all benchmarks.

IV. EXPERIMENTS

A. Prefetch-friendly and -unfriendly Benchmarks

We profile the full set of SPEC CPU2006 benchmarks to

measure the IPC impact of a fault-free L1 cache-stride data

prefetcher. Table 2 presents the IPC speed-up for each

benchmark due to the stride data prefetcher. On average, the

data prefetcher boosts IPC by 6.85%. However,

performance improvement varies and depends on the stream

of memory access patterns generated by each benchmark.

For that reason, we classify benchmarks into two major

categories: prefetch-friendly, in which the IPC change is

greater than the average speed-up across all SPEC CPU2006

benchmarks, and prefetch-unfriendly, in which the change is

less than the average speed-up. Eleven benchmarks are

classified as prefetch-friendly and 18 are classified as

prefetch-unfriendly. The impact of faults on performance

significantly differs between the two groups of benchmarks.

Prefetch-friendly

benchmarks

IPC (%)

Speed-up

Prefetch-

unfriendly

benchmarks

IPC (%)

Speed-up

bzip2 19.99 perlbench 2.58

bwaves 10.14 gcc 1.89

gamess 21.51 mcf 0.16

zeusmp 9.10 milc –4.11*

leslie3d 7.55 gromacs 2.86

dealII 9.61 cactusADM 0.49

soplex 9.50 namd 0.34

GemsFDTD 19.66 gobmk 0.60

libquantum 17.20 povray 0.42

tonto 15.91 calculix 4.73

wrf 34.59 hmmer 0.62

average 15.887 sjeng 0.07

 h2564ref 0.96

 lbm 4.66

 omnetpp 0.07

 astar 3.01

 sphinx3 0.67

 xalancbmk 3.80

 average 1.780

Overall average (%) 6.85
Table 2: Per-benchmark IPC speed-up provided by the

L1 data prefetcher (*milc’s IPC is slowed by 4.11%).

B. Performance Impact of Faults

In this section, we measure the performance impact of hard

faults injected into the data prefetcher. Figure 3 shows the

average and maximum IPC slow-down (due to faults) when

one, three, and five faults are injected in the prefetch table

along with the standard deviation; the upper diagram shows

prefetch-friendly benchmarks and the lower diagram shows

prefetch-unfriendly benchmarks. Figure 3 presents the

average performance loss across all benchmarks (i.e., the

prefetch-friendly benchmarks show a combined 3.049% IPC

loss if we average the maximum IPC loss over all single

fault runs per benchmark, 5.759% IPC loss over all triple

faults, and 9.271% IPC loss over all quintuple faults). Thus,

an L1 cache-stride data prefetcher can severely degrade

microprocessor performance, up to 9.271% on average for

the prefetch-friendly and up to 0.733% on average for the

prefetch-unfriendly benchmarks, when the prefetcher table’s

SRAM cells suffer multiple hard faults.

0.771%
1.324% 1.595%

0.487%
0.927%

1.271%

3.049%

5.759%

9.271%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

1 3 5

IP
C

 (
%

)
s

lo
w

d
o

w
n

#faults

stdev

avg

max

0.065% 0.075% 0.085%

0.055%
0.092%

0.112%

0.274%

0.427%

0.733%

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

1 3 5

IP
C

 (
%

)
s

lo
w

d
o

w
n

#faults

stdev

avg

max

Prefetch-friendly

Prefetch-unfriendly

Figure 3: IPC loss for the prefetch-friendly (upper graph)

and -unfriendly (lower).

Figure 4 shows the average (upper) and maximum

(lower) normalized IPC slow-down for each SPEC

CPU2006 benchmark when one, three, and five faults are

injected. The benchmarks are grouped into prefetch-friendly

(left half) and -unfriendly (right half), to identify any

correlation between workloads and performance loss. The

colors on each column depict the additional IPC loss relative

to the fault-free model from the injection of one, three, and

five faults. For example, on bzip2, the maximum IPC loss is

4.5% for a single injected fault, 4.8% for triple faults, and

17.1% for quintuple faults (i.e., the aggregation of single,

triple, and quintuple IPC losses). As expected, the prefetch-

friendly benchmarks show a greater IPC impact with the

same number of faults compared to the prefetch-unfriendly.

In particular, a fault-free prefetcher improves execution time

of GemsFDTD by 20% and sphinx3 by 0.6% (Table 2).

GemsFDTD suffers a maximum 17% IPC slow-down, while

sphinx3 loses only 0.06% when quintuple faults are injected.

By further analyzing the internal behavior of the

prefetcher, we found that the extent of the performance

impact depends on the distribution of the training input

addresses across the prefetch table entries. For example,

Figure 5 presents the activity of each prefetcher table entry

for two benchmarks, bzip2 and gcc, and shows very

different sensitivities to data prefetching (17% and 0.06%,

respectively). gcc shows a much more uniform usage of the

entries of the table, while bzip2 trains only seven entries

(95% of training occurs on only three entries and the

remaining four are trained only marginally). Thus, in gcc,

the majority of the training addresses remain unaffected by

the injected faults; even if they do access a faulty entry, the

IPC impact is relatively small because of the lower average

dynamic usage frequency. In bzip2, if the fault occurs in one

of the heavily used entries, the majority of training is

affected, and so the IPC loss due to faults is much greater.

96%

97%

98%

99%

100%
A

v
e
ra

g
e
 IP

C
 (
%

)
s
lo

w
d

o
w

n

1 fault 3 faults 5 faults

82%

83%

84%

85%

86%

87%

88%

89%

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

M
a
x
im

u
m

 IP
C

 (
%

)
s
lo

w
d

o
w

n

1 fault 3 faults 5 faults

Figure 4: Normalized average (upper graph) and maximum (lower) IPC loss of all SPEC CPU2006 benchmarks when
one, three, and five faults are injected into the prefetcher table. The 100% point of the vertical axis is the fault-free

IPC; we show the IPC loss due to single faults (red bar), triple faults (green bar), and quintuple faults (purple bar). The
11 left-most bars show the prefetch-friendly benchmarks, the next 18 show the prefetch-unfriendly benchmarks, and

two right-most bars of each diagram show the averages for the two categories.

To understand the results of Figure 4 better, we collected

additional data, shown in in Figure 6, that shows the issued

prefetch requests rate (per 1,000 committed instructions)

and the average L1 cache miss rate (misses per 1,000

committed instructions, or MPKI) for the fault-free and

faulty cases for each group of injected faults.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

P
re

fe
tc

h
 t
a

b
le

 e
n

tr
y
 a

c
ti

v
it

y

(%
)

#entries

gcc

bzip2

Figure 5: Activity of each prefetcher table entry for gcc

and bzip2.

According to Figure 6, the faulty prefetcher is throttled

because the faults block a number of training events. As a

result, the number of issued prefetch requests drops for all

benchmarks (on average, the number of issued prefetch

requests drops from 22 to 20 per 1,000 committed

instructions); therefore, performance gains due to

prefetching are lower (the average L1 cache miss rate

increases from 26 to 27 MPKI in the quintuple injected fault

scenario). The data in Figure 6 illustrate the greater

performance sensitivity of the prefetch-friendly benchmarks

to faults. Also, faults in the prefetch table sometimes change

the prefetch addresses sent to memory, which affects the L1

cache miss rate and IPC.

Due to the small size of PIQ and PRQ (8 entries in total),

we injected only single faults. This was sufficient to

demonstrate the severe impact on performance that hard

faults have on these queues. Figure 7 shows the maximum

and average IPC slow-downs and the standard deviation for

single faults injected into the PIQ and PRQ per benchmark.

Across all benchmarks, the average IPC loss (1.5% and

2.5% for PIQ and PRQ, respectively) and maximum IPC

loss (24.3% and 26.3% for PIQ and PRQ, respectively) are

significantly higher than that of the prefetch table because

the training addresses (buffered in PIQ) and the prefetch

requests (queued in PRQ) are more likely to be polluted by a

fault due to their small size. The fault location determines

the extent of the performance impact. More specifically, the

PIQ entries are utilized uniformly across all benchmarks

(utilization ranges from 35% to 7%, moving from the top to

the bottom entry). By contrast, the top three entries in PRQ

handle 95% of activity across all benchmarks. Therefore,

faults that reside in the bottom entries of the queue have

minimal impact on performance.

0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/o prefetcher 1-faults 3-faults 5-faults

0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/o prefetcher 1-faults 3-faults 5-faults

0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/o prefetcher 1-faults 3-faults 5-faults

0

50

100

150

200

M
is

s
 r
a

te

fault-free w/o prefetcher 1-fault 3-faults 5-faults

0

50

100

150

200

M
is

s
 r
a

te

fault-free w/o prefetcher 1-fault 3-faults 5-faults

0

50

100

150

200

M
is

s
 r
a

te

fault-free w/o prefetcher 1-fault 3-faults 5-faults0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/ prefetcher 1-faults 3-faults 5-faults

0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/ prefetcher 1-faults 3-faults 5-faults
0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/ prefetcher 1 faults 3 faults 5 faults

0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/ prefetcher 1 faults 3 faults 5 faults
0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/ prefetcher 1 fault 3 faults 5 faults

0

20

40

60

80

100

Is
s

u
e

d
 P

re
f.

 R
e

q
s

 r
a

te

fault-free w/ prefetcher 1 fault 3 faults 5 faults

0

50

100

150

200

M
is

s
 r
a

te

fault-free 1-fault 3-faults 5-faults

Figure 6: Average L1 cache miss rate and average issued prefetch requests (per 1,000 committed instructions) for
SPEC CPU2006 benchmarks with one, three, and five faults injected.

0%

5%

10%

15%

20%

25%

30%

p
e

rl
b

e
n

c
h

b
z
ip

2

g
c
c

b
w

a
v
e

s

g
a

m
e

s
s

m
c
f

m
ilc

z
e

u
s
m

p

g
ro

m
a

c
s

c
a

c
tu

s
A

D
M

le
s
lie

3
d

n
a

m
d

g
o

b
m

k

d
e

a
lI
I

s
o

p
le

x

p
o

v
ra

y

c
a

lc
u

lix

h
m

m
e

r

s
je

n
g

G
e

m
s
F

D
T

D

lib
q

u
a

n
tu

m

h
2

6
4

re
f

to
n

to

lb
m

o
m

n
e

tp
p

a
s
ta

r

w
rf

s
p

h
in

x

x
a

la
n

c
b
m

k

a
v
e

ra
g

e

IP
C

 (
%

)
s

lo
w

d
o

w
n

max

avg

stdev

0%

5%

10%

15%

20%

25%

IP
C

 (
%

)
s

lo
w

d
o

w
n

max

avg

stdev

(a)

(b)

0%

5%

10%

15%

20%

25%

30%

p
e

rl
b

e
n

c
h

b
z
ip

2

g
c
c

b
w

a
v
e

s

g
a

m
e

s
s

m
c
f

m
ilc

z
e

u
s
m

p

g
ro

m
a

c
s

c
a

c
tu

s
A

D
M

le
s
lie

3
d

n
a

m
d

g
o

b
m

k

d
e

a
lI
I

s
o

p
le

x

p
o

v
ra

y

c
a

lc
u

lix

h
m

m
e

r

s
je

n
g

G
e

m
s
F

D
T

D

lib
q

u
a

n
tu

m

h
2

6
4

re
f

to
n

to

lb
m

o
m

n
e

tp
p

a
s
ta

r

w
rf

s
p

h
in

x

x
a

la
n

c
b
m

k

a
v
e

ra
g

e

IP
C

 (
%

)
s

lo
w

-d
o

w
n

max

avg

stdev

0%

5%

10%

15%

20%

25%

30%

p
e

rl
b

e
n

c
h

b
z
ip

2

g
c
c

b
w

a
v
e

s

g
a

m
e

s
s

m
c
f

m
ilc

z
e

u
s
m

p

g
ro

m
a

c
s

c
a

c
tu

s
A

D
M

le
s
lie

3
d

n
a

m
d

g
o

b
m

k

d
e

a
lI
I

s
o

p
le

x

p
o

v
ra

y

c
a

lc
u

lix

h
m

m
e

r

s
je

n
g

G
e

m
s
F

D
T

D

lib
q

u
a

n
tu

m

h
2

6
4

re
f

to
n

to

lb
m

o
m

n
e

tp
p

a
s
ta

r

w
rf

s
p

h
in

x

x
a

la
n

c
b
m

k

a
v
e

ra
g

e

IP
C

 (
%

)
s

lo
w

-d
o

w
n

max

avg

stdev

Figure 7: Average and maximum IPC slow-downs and
standard deviations for the fault-free and faulty (a) PIQ

and (b) PRQ when single faults are injected in the SPEC
CPU2006 suite.

The impact of faults in the prefetcher can affect

microprocessor performance even more when data sharing

occurs in multi-threaded applications. A faulty prefetcher

can prefetch shared data erroneously into the cache, causing

additional remote references from other threads, or not

prefetch shared data into the cache, causing additional

remote references from the current thread.

Based on this analysis, we conclude that microprocessor

performance can be degraded severely by a faulty L1 cache-

stride data prefetcher. The impact can be more than 24%

IPC slow-down due to PIQ faults, up to 26% IPC slow-

down due to PRQ faults, and up to 18% IPC slow-down due

to faults in the prefetch table due to prefetch throttling or

cache pollution. Furthermore, the benchmarks with highly

repeatable address patterns are the most susceptible to IPC

loss due to faults.

C. Performance Variability

In this section, we discuss performance variability across

cores in the presence of multiple faults in the prefetcher.

Performance variability can affect the cost and the power

budget of a data center. Our findings are the following:

 The maximum IPC slow-down for even single faults can

be up to 7% for the prefetch table, 24% for the PIQ, and

26% for the PRQ. For most benchmarks, maximum IPC

loss is higher than the IPC gain of the fault-free data

prefetcher. Therefore, there is a large variation in IPC

under the presence of different single faults in the data

prefetcher. This finding holds when all cores are affected

by the same number of faults.

 The difference in IPC slow-down for different numbers

of faults across the cores ranges between 0.005% and

17% compared to the fault-free IPC, on average and

considering only faults in the prefetch table. The same

range is 0.01 to 24% for PIQ faults and 0.02% to 26%

for PRQ faults.

 The difference between the best- and worst-case

performances for single and multiple faults is not due to

outlier behavior. The standard deviation of the IPC loss

on the prefetch-friendly benchmarks due to faults in the

prefetcher table is 0.7%, 1.3%, and 1.6% for single,

triple, and quintuple faults, respectively. The standard

deviation of IPC loss for the prefetch-unfriendly

benchmarks is 0.06%, 0.07%, and 0.08%. The standard

deviation of the IPC drop for all single faults injected

into PIQ and PRQ is 2.0% and 2.4%, respectively.

The key message regarding performance variability is

that hard faults in data prefetchers in a many-core system

significantly increase the inter-core performance variability.

V. RELATED WORK

Previous work on array faults focused on caches. Abella et

al. [1] proposed disabling and re-mapping to guarantee

predictable performance at low voltages. Agarwal et al. [2]

focused on yield improvements tolerating process variations.

Ansari et al. [4] proposed Zerehcache architecture to deal

with massively defective caches. Chishti et al. [8] employed

special types of error-correcting codes to improve lifetime

reliability. Performance implications with disabled cache

parts were discussed in [1] [4] [20] [23]. Roberts et al. [24]

proposed cache-line merging techniques, and Wilkerson et

al. [28] also employed cache-line combining and disabling

to survive voltage scaling. Hardy et al. [11] presented an

analytical model that covers microprocessor arrays, while

previous related effort on caches only was presented by

Sanchez et al. [27]. Almukhaizim et al. [3] presented an

approach for deterministic, software-based testing of a

multi-entry stream buffer. Foutris et al. [9] measured the

impact of single hard faults using a conservative data

prefetcher configuration. Our work differs significantly

from [9] because we measure the impact of multiple faults

in the prefetcher and its supporting logic (PIQ and PRQ).

VI. CONCLUSIONS

The existence of hard faults in a stride data prefetcher can

affect microprocessor performance significantly and

increase inter-core performance variability. Our detailed

experimental analysis demonstrates that IPC loss due to

hard faults in the prefetch table can be up to 17%, and up to

24% and 26% for the prefetch input queue and prefetch

request queue, respectively. Also, performance variability

across cores is increased: the standard deviation of IPC loss

between benchmarks can be more than 4.5%. Thus,

prefetcher structures should be protected in both current and

forthcoming microprocessor technologies.

ACKNOWLEDGMENT

This work has been supported by an AMD Research grant to

the Computer Architecture Lab of the University of Athens,

by Thales-UoA HOLISTIC Project and the 7
th

 Framework

Program of the European Union through the CLERECO

Project, under Grant Agreement 611404.

REFERENCES
[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, A. Gonzalez, “Low

Vccmin Fault-Tolerant Cache with Highly Predictable Performance,”
MICRO, 2009.

[2] A. Agarwal, B.C. Paul, H. Mahmoodi, A. Datta, K. Roy, “A Process-
Tolerant Cache Architecture for Improved Yield in Nanoscale
Technologies,” IEEE Trans. on VLSI Systems,” vol. 13, no. 1, pp. 27-
38, January 2005.

[3] S. Almukhaizim, P. Petrov, A. Orailoglu, “Faults in processor control
subsystems: testing correctness and performance faults in data
prefetching unit,” ATS 2001.

[4] A.Ansari, S.Gupta, S.Feng, S.Mahlke, “Zerehcache: Armoring Cache
Architectures in High Defect Density Technologies,” MICRO, 2009.

[5] R. Blish, T. Dellin, S. Huber, M. Johnson, J. Maiz, B. Likins, N.
Lycoudes, J. McPherson, Y. Peng, C. Peridier, A. Preussger, G.
Prokop, L. Tullos, “Critical Reliability Challenges for The Int’l
Technology Roadmap for Semiconductors (ITRS),” Technical Report
03024377A-TR, Int’l SEMATECH, March 2003 [Online]
http://www.itrs.net/Links/2003ITRS/LinkedFiles/PIDS/4377atr.pdf.

[6] S. Borkar, “Designing reliable systems from unreliable components:
The challenges of transistor variability and degradation,” IEEE
Micro, 25(6):10–16, 2005.

[7] F.A. Bower, P.G. Shealy, S. Ozev, D.J. Sorin, “Tolerating Hard
Faults in Microprocessor Array Structures,” DSN, 2004.

[8] Z.Chishti, A.R.Alameldeen, C.Wilkerson, W.Wu, S.-L.Lu,
“Improving Cache Lifetime Reliability at Ultra-low Voltages,”
MICRO, 2009.

[9] N. Foutris, D. Gizopoulos, J. Kalamatianos, V. Sridharan, “Assessing
the impact of hard faults in performance components of modern
microprocessors,” ICCD, 2013.

[10] N. Hardavellas, I. Pandis, R. Johnson, N.G. Mancheril, A. Aillamaki,
B. Falsafi, “Database servers on chip multiprocessors: Limitations
and opportunities,” Proceedings of the 3rd CIDR, January 2007.

[11] D. Hardy, I. Sideris, N. Ladas, Y. Sazeides, “The performance
vulnerability of architectural and non-architectural arrays to
performance faults,” MICRO, 2012.

[12] http://newsroom.intel.com/community/intel_newsroom/blog/2013/06/
17/intel-powers-the-worlds-fastest-supercomputer-reveals-new-and-
future-high-performance-computing-technologies.

[13] http://www.amd.com/us/products/server/processors/2100seriesplatfor
m/Pages/x2150seriesprocessors.aspx

[14] http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-
Architecture-Whitepaper.pdf.

[15] C. Hughes, P. Kaul, S.V. Adve, R. Jain, C. Park, J. Srinivasan,
“Variability in the Execution of Multimedia Applications and
Implications for Architecture,” ISCA 2001.

[16] S.Iacobovici, L.Spracklen, S.Kadambi, Y.Chou, S.G.Abraham,
“Effective stream-based and execution-based data prefetching,” ICS
2004.

[17] B. Jacob, S. Ng, D. Wang, Memory Systems: Cache, DRAM, Disk,
Morgan Kaufmann, 2008.

[18] JEDEC Solid State Technology Association. “Failure Mechanisms
and Models for Semiconductor Devices.” JEDEC Publication
JEP122-G, October 2011 [Online] http://www.jedec.org/standards-
documents/docs/jep-122e.

[19] V. Jimenez, R. Gioiosa, F.J. Gazorla, A. Buyuktosunoglu, P. Bose,
F.P. O’Connell, “Making data prefetch smarter: adaptive prefetching
on POWER7,” PACT 2007.

[20] H. Lee, S. Cho, B.R. Childers, “Performance of Graceful Degradation
for Cache Faults,” IEEE Comp. Society Symp. on VLSI, 2007.

[21] R. Leveugle, A. Calvez, P. Maistri, P. Vanhauwaert, “Statistical Fault
Injection: Quantified Error and Confidence,” DATE, 2009.

[22] Y. Pan, J. Kong, S. Ozdemir, G. Memik, S.W. Chung, “Selecting
Wordline Voltage Boosting for Caches to Manage Yield under
Process Variations,” DAC, 2009.

[23] A.F. Pour, M.D. Hill, “Performance implications of tolerating cache
faults,” IEEE Trans. on Computers, vol. 42, no. 3, pp. 257-267,
March 1993.

[24] D. Roberts, S.K. Nam, T. Mudge, “On-chip cache device scaling
limits and effective fault repair techniques in future nanoscale
technology,” Microprocessors and Microsystems, vol. 32, no. 5-6, pp.
244-253, August 2008.

[25] B.F. Romanescu, D.J. Sorin, “Core Cannibalization Architecture:
Improving Lifetime Chip Performance for Multicore Processors in the
Presence of Hard Faults,” PACT, 2008.

[26] S.R.Nassif, N.Mehta, Y.Cao, “A Resilience Roadmap,” DATE, 2010.
[27] D. Sánchez, Y. Sazeides, J.L. Aragon, J.M. Garcia, “An Analytical

Model for the Calculation of the Expected Miss Ratio in Faulty
Caches,” IOLTS, 2011.

[28] C. Wilkerson, G. Hongliang, A.R. Alameldeen, Z. Chishti, M.
Khellah, L. Shih-Lien, “Trading off Cache Capacity for Reliability to
Enable Low Voltage Operation,” ISCA, 2008.

[29] M. Yourst, “PTLsim: A cycle Accurate Full System x86-64
Microarchitectural Simulator,” ISPASS, 2007.

